Nanoparticleâ€Enhanced Radiotherapy to Trigger Robu

Advanced Materials 31, e1802228 DOI: 10.1002/adma.201802228

Citation Report

#	Article	IF	CITATIONS
1	Covalent Organic Framework‧upported Molecularly Dispersed Nearâ€Infrared Dyes Boost Immunogenic Phototherapy against Tumors. Advanced Functional Materials, 2019, 29, 1902757.	14.9	106
2	Nanocatalytic Medicine. Advanced Materials, 2019, 31, e1901778.	21.0	396
3	Fabrication of H ₂ O ₂ -driven nanoreactors for innovative cancer treatments. Nanoscale, 2019, 11, 16164-16186.	5.6	46
4	Nanozymes-Engineered Metal–Organic Frameworks for Catalytic Cascades-Enhanced Synergistic Cancer Therapy. Nano Letters, 2019, 19, 5674-5682.	9.1	259
5	Nanomedicineâ€Based Immunotherapy for the Treatment of Cancer Metastasis. Advanced Materials, 2019, 31, e1904156.	21.0	120
6	Hybrid Protein Nanoâ€Reactors Enable Simultaneous Increments of Tumor Oxygenation and Iodineâ€131 Delivery for Enhanced Radionuclide Therapy. Small, 2019, 15, e1903628.	10.0	32
7	Local biomaterials-assisted cancer immunotherapy to trigger systemic antitumor responses. Chemical Society Reviews, 2019, 48, 5506-5526.	38.1	209
8	Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure. Advanced Materials, 2019, 31, e1904914.	21.0	348
9	Immune Checkpoint Blockade Mediated by a Smallâ€Molecule Nanoinhibitor Targeting the PDâ€1/PDâ€L1 Pathway Synergizes with Photodynamic Therapy to Elicit Antitumor Immunity and Antimetastatic Effects on Breast Cancer. Small, 2019, 15, e1903881.	10.0	124
10	A Review on Curability of Cancers: More Efforts for Novel Therapeutic Options Are Needed. Cancers, 2019, 11, 1782.	3.7	53
11	NIRâ€IIâ€Excited Intravital Twoâ€Photon Microscopy Distinguishes Deep Cerebral and Tumor Vasculatures with an Ultrabright NIRâ€I AIE Luminogen. Advanced Materials, 2019, 31, e1904447.	21.0	93
12	Nucleic acids presenting polymer nanomaterials as vaccine adjuvants. Journal of Materials Chemistry B, 2019, 7, 6321-6346.	5.8	26
13	The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials, 2019, 223, 119469.	11.4	103
14	Ultrathin Metal-Organic-Layer Mediated Radiotherapy-Radiodynamic Therapy. Matter, 2019, 1, 1331-1353.	10.0	78
15	Immunomodulatory Nanosystems. Advanced Science, 2019, 6, 1900101.	11.2	255
16	Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano, 2019, 13, 8618-8629.	14.6	141
17	Atomically Precise Gold–Levonorgestrel Nanocluster as a Radiosensitizer for Enhanced Cancer Therapy. ACS Nano, 2019, 13, 8320-8328.	14.6	126
18	Erythrocyte Membrane-Camouflaged IR780 and DTX Coloading Polymeric Nanoparticles for Imaging-Guided Cancer Photo–Chemo Combination Therapy. Molecular Pharmaceutics, 2019, 16, 3208-3220.	4.6	48

#	Article	IF	CITATIONS
19	Toll-like receptor-targeted particles: A paradigm to manipulate the tumor microenvironment for cancer immunotherapy. Acta Biomaterialia, 2019, 94, 82-96.	8.3	40
20	Light-Enhanced O ₂ -Evolving Nanoparticles Boost Photodynamic Therapy To Elicit Antitumor Immunity. ACS Applied Materials & Interfaces, 2019, 11, 16367-16379.	8.0	90
21	Enhancing Triple Negative Breast Cancer Immunotherapy by ICGâ€Templated Selfâ€Assembly of Paclitaxel Nanoparticles. Advanced Functional Materials, 2020, 30, 1906605.	14.9	145
22	Tumor immune microenvironment modulation-based drug delivery strategies for cancer immunotherapy. Nanoscale, 2020, 12, 413-436.	5.6	49
23	Reactive oxygen species-activatable camptothecin polyprodrug based dextran enhances chemotherapy efficacy by damaging mitochondria. Journal of Materials Chemistry B, 2020, 8, 1245-1255.	5.8	9
24	Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials, 2020, 233, 119755.	11.4	139
25	Nanoplatforms with Remarkably Enhanced Absorption in the Second Biological Window for Effective Tumor Thermoradiotherapy. ACS Applied Materials & Interfaces, 2020, 12, 2152-2161.	8.0	16
26	Advanced nanotechnology for hypoxia-associated antitumor therapy. Nanoscale, 2020, 12, 2855-2874.	5.6	54
27	Single-atom nanozymes for biological applications. Biomaterials Science, 2020, 8, 6428-6441.	5.4	62
28	Triangle-Shaped Tellurium Nanostars Potentiate Radiotherapy by Boosting Checkpoint Blockade Immunotherapy. Matter, 2020, 3, 1725-1753.	10.0	74
29	Immunotherapy for Ovarian Cancer: Adjuvant, Combination, and Neoadjuvant. Frontiers in Immunology, 2020, 11, 577869.	4.8	147
30	Plasmonic core–shell nano-heterostructures with temperature-dependent optical nonlinearity. Nanoscale, 2020, 12, 22995-23002.	5.6	6
31	Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Accounts of Chemical Research, 2020, 53, 2094-2105.	15.6	129
32	Biomaterial-assisted photoimmunotherapy for cancer. Biomaterials Science, 2020, 8, 5846-5858.	5.4	15
33	Magnetic field boosted ferroptosis-like cell death and responsive MRI using hybrid vesicles for cancer immunotherapy. Nature Communications, 2020, 11, 3637.	12.8	158
34	Chitosan/γ-PGA nanoparticles-based immunotherapy as adjuvant to radiotherapy in breast cancer. Biomaterials, 2020, 257, 120218.	11.4	60
35	New combination treatment from ROS-Induced sensitized radiotherapy with nanophototherapeutics to fully eradicate orthotopic breast cancer and inhibit metastasis. Biomaterials, 2020, 257, 120229.	11.4	34
36	Enhancing Combined Immunotherapy and Radiotherapy through Nanomedicine. Bioconjugate Chemistry, 2020, 31, 2668-2678.	3.6	13

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
37	Immunogenicity of Externally Activated Nanoparticles for Cancer Therapy. Cancers, 2020, 12, 3559.	3.7	6
38	Preparation of microspheres encapsulating sorafenib and catalase and their application in rabbit VX2 liver tumor. Biomedicine and Pharmacotherapy, 2020, 129, 110512.	5.6	12
39	Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4774-4798.	5.2	23
40	Biodegradable Implants Combined with Immunogenic Chemotherapy and Immune Checkpoint Therapy for Peritoneal Metastatic Carcinoma Postoperative Treatment. ACS Biomaterials Science and Engineering, 2020, 6, 5281-5289.	5.2	15
41	Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer. Science Advances, 2020, 6, eaba3546.	10.3	144
42	Normalizing the Tumor Microenvironment for Radiosensitization. Cancer Drug Discovery and Development, 2020, , 301-338.	0.4	4
43	Recent advances in functional nanomaterials for X-ray triggered cancer therapy. Progress in Natural Science: Materials International, 2020, 30, 567-576.	4.4	27
44	Transferred Photothermal to Photodynamic Therapy Based on the Marriage of Ultrathin Titanium Carbide and Up-Conversion Nanoparticles. Langmuir, 2020, 36, 13060-13069.	3.5	5
45	Multifunctional Nanoparticles Boost Cancer Immunotherapy Based on Modulating the Immunosuppressive Tumor Microenvironment. ACS Applied Materials & Interfaces, 2020, 12, 50734-50747.	8.0	49
46	Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. Small, 2020, 16, e2004345.	10.0	17
47	Covalent Organic Framework-Based Nanocomposite for Synergetic Photo-, Chemodynamic-, and Immunotherapies. ACS Applied Materials & Interfaces, 2020, 12, 43456-43465.	8.0	49
48	Nearâ€Infrared Triggered Cascade of Antitumor Immune Responses Based on the Integrated Core–Shell Nanoparticle. Advanced Functional Materials, 2020, 30, 2000335.	14.9	29
49	Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. Nano Research, 2020, 13, 3403-3415.	10.4	25
50	A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano, 2020, 14, 12679-12696.	14.6	116
51	Tumorâ€Activated Sizeâ€Enlargeable Bioinspired Lipoproteins Access Cancer Cells in Tumor to Elicit Antiâ€Tumor Immune Responses. Advanced Materials, 2020, 32, e2002380.	21.0	43
52	Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small, 2020, 16, e2003000.	10.0	36
53	Na ₂ S ₂ O ₈ Nanoparticles Trigger Antitumor Immunotherapy through Reactive Oxygen Species Storm and Surge of Tumor Osmolarity. Journal of the American Chemical Society, 2020, 142, 21751-21757.	13.7	133
54	Nanozyme-Incorporated Biodegradable Bismuth Mesoporous Radiosensitizer for Tumor Microenvironment-Modulated Hypoxic Tumor Thermoradiotherapy. ACS Applied Materials & Interfaces, 2020, 12, 57768-57781.	8.0	47

#	Article	IF	CITATIONS
55	Designing and Engineering of Nanocarriers for Bioapplication in Cancer Immunotherapy. ACS Applied Bio Materials, 2020, 3, 8321-8337.	4.6	25
56	Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 986-994.	6.1	93
57	Nanomaterials for Combinational Radio–Immuno Oncotherapy. Advanced Functional Materials, 2020, 30, 1910676.	14.9	45
58	Proteinâ€Based Artificial Nanosystems in Cancer Therapy. Small, 2020, 16, 1907256.	10.0	42
59	A biomimetic nanozyme/camptothecin hybrid system for synergistically enhanced radiotherapy. Journal of Materials Chemistry B, 2020, 8, 5312-5319.	5.8	42
60	Engineering a pH/Glutathione-Responsive Tea Polyphenol Nanodevice as an Apoptosis/Ferroptosis-Inducing Agent. ACS Applied Bio Materials, 2020, 3, 4128-4138.	4.6	31
61	Functional Gadofullerene Nanoparticles Trigger Robust Cancer Immunotherapy Based on Rebuilding an Immunosuppressive Tumor Microenvironment. Nano Letters, 2020, 20, 4487-4496.	9.1	57
62	Cold to Hot: Binary Cooperative Microneedle Array-Amplified Photoimmunotherapy for Eliciting Antitumor Immunity and the Abscopal Effect. ACS Applied Materials & Interfaces, 2020, 12, 32259-32269.	8.0	65
63	Engineering nanoparticles to reprogram radiotherapy and immunotherapy: recent advances and future challenges. Journal of Nanobiotechnology, 2020, 18, 75.	9.1	61
64	Nanoengineered targeting strategy for cancer immunotherapy. Acta Pharmacologica Sinica, 2020, 41, 902-910.	6.1	23
65	Designing immunogenic nanotherapeutics for photothermal-triggered immunotherapy involving reprogramming immunosuppression and activating systemic antitumor responses. Biomaterials, 2020, 255, 120153.	11.4	68
66	Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer. Nano Letters, 2020, 20, 4393-4402.	9.1	93
67	Magnetic nanoparticles coated with polyphenols for spatio-temporally controlled cancer photothermal/immunotherapy. Journal of Controlled Release, 2020, 326, 131-139.	9.9	125
68	Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Advanced Drug Delivery Reviews, 2020, 158, 73-90.	13.7	83
69	Biomaterial-based strategies to prime dendritic cell-mediated anti-cancer immune responses. International Materials Reviews, 2020, 65, 445-462.	19.3	16
70	Improving tumor hypoxia and radiotherapy resistance via in situ nitric oxide release strategy. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 150, 96-107.	4.3	17
71	Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics, 2020, 10, 3099-3117.	10.0	70
72	Reshaping Tumor Immune Microenvironment through Acidity-Responsive Nanoparticles Featured with CRISPR/Cas9-Mediated Programmed Death-Ligand 1 Attenuation and Chemotherapeutics-Induced Immunogenic Cell Death. ACS Applied Materials & Amp; Interfaces, 2020, 12, 16018-16030.	8.0	84

#	Article	IF	Citations
73	Biologically Responsive Plasmonic Assemblies for Second Near-Infrared Window Photoacoustic Imaging-Guided Concurrent Chemo-Immunotherapy. ACS Nano, 2020, 14, 3991-4006.	14.6	78
74	Irradiated tumor cell–derived microparticles mediate tumor eradication via cell killing and immune reprogramming. Science Advances, 2020, 6, eaay9789.	10.3	139
75	Nanomaterials for radiotherapeutics-based multimodal synergistic cancer therapy. Nano Research, 2020, 13, 2579-2594.	10.4	49
76	Localized cocktail chemoimmunotherapy after in situ gelation to trigger robust systemic antitumor immune responses. Science Advances, 2020, 6, eaaz4204.	10.3	136
77	Cancer cell membrane-coated gold nanorods for photothermal therapy and radiotherapy on oral squamous cancer. Journal of Materials Chemistry B, 2020, 8, 7253-7263.	5.8	67
78	Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nature Reviews Clinical Oncology, 2020, 17, 251-266.	27.6	408
79	An optimized lanthanide-chlorophyll nanocomposite for dual-modal imaging-guided surgery navigation and anti-cancer theranostics. Biomaterials Science, 2020, 8, 1270-1278.	5.4	8
80	Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proceedings of the United States of America, 2020, 117, 3687-3692.	7.1	163
81	Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900181.	3.2	31
82	Recent Progress of Potentiating Immune Checkpoint Blockade with External Stimuli—an Industry Perspective. Advanced Science, 2020, 7, 1903394.	11.2	40
83	Nanomaterials for the regulation of the tumor microenvironment and theranostics. Nanoscale Advances, 2020, 2, 1395-1409.	4.6	11
84	Regulation of cancerâ€immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1612.	6.1	33
85	The Design of Poly(lactide-co-glycolide) Nanocarriers for Medical Applications. Frontiers in Bioengineering and Biotechnology, 2020, 8, 48.	4.1	124
86	BiO _{2–<i>x</i>} Nanosheets as Radiosensitizers with Catalase-Like Activity for Hypoxia Alleviation and Enhancement of the Radiotherapy of Tumors. Inorganic Chemistry, 2020, 59, 3482-3493.	4.0	64
87	Glutathioneâ€Depleting Nanoenzyme and Glucose Oxidase Combination for Hypoxia Modulation and Radiotherapy Enhancement. Advanced Healthcare Materials, 2020, 9, e1901819.	7.6	58
88	Advances in engineering local drug delivery systems for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1632.	6.1	35
89	Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics, 2020, 10, 5195-5208.	10.0	75
90	Cerium Oxide Nanoparticles: Advances in Biodistribution, Toxicity, and Preclinical Exploration. Small, 2020, 16, e1907322.	10.0	85

#	Article	IF	CITATIONS
91	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie, 2020, 132, 17484-17495.	2.0	12
92	Improving Cancer Immunotherapy Outcomes Using Biomaterials. Angewandte Chemie - International Edition, 2020, 59, 17332-17343.	13.8	48
93	Advances in nanomaterials for treatment of hypoxic tumor. National Science Review, 2021, 8, nwaa160.	9.5	58
94	Role of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Asian Journal of Pharmaceutical Sciences, 2021, 16, 129-132.	9.1	68
95	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 12792-12815.	2.0	14
96	Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 12682-12705.	13.8	151
97	Construction of Enzyme Nanoreactors to Enable Tumor Microenvironment Modulation and Enhanced Cancer Treatment. Advanced Healthcare Materials, 2021, 10, e2001167.	7.6	23
98	Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Research, 2021, 14, 212-221.	10.4	66
99	Galvanic replacement reaction for in situ fabrication of litchi-shaped heterogeneous liquid metal-Au nano-composite for radio-photothermal cancer therapy. Bioactive Materials, 2021, 6, 602-612.	15.6	43
100	Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosensors and Bioelectronics, 2021, 171, 112707.	10.1	128
101	Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. Biomaterials, 2021, 269, 120455.	11.4	36
102	Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials, 2021, 268, 120552.	11.4	23
103	Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Research, 2021, 14, 1244-1259.	10.4	37
104	Metal–ligand coordination nanomaterials for radiotherapy: emerging synergistic cancer therapy. Journal of Materials Chemistry B, 2021, 9, 208-227.	5.8	26
105	Transformable Honeycomb‣ike Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angewandte Chemie - International Edition, 2021, 60, 6581-6592.	13.8	82
106	Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials, 2021, 268, 120597.	11.4	93
107	Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. Nano Today, 2021, 36, 101023.	11.9	45
108	Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. ACS Applied Bio Materials, 2021, 4, 277-294.	4.6	6

#	Article	IF	CITATIONS
109	Selfâ€Adjuvanted Molecular Activator (SeaMac) Nanovaccines Promote Cancer Immunotherapy. Advanced Healthcare Materials, 2021, 10, e2002080.	7.6	20
110	Transformable Honeycombâ€Like Nanoassemblies of Carbon Dots for Regulated Multisite Delivery and Enhanced Antitumor Chemoimmunotherapy. Angewandte Chemie, 2021, 133, 6655-6666.	2.0	7
111	CaCO3-Assisted Preparation of pH-Responsive Immune-Modulating Nanoparticles for Augmented Chemo-Immunotherapy. Nano-Micro Letters, 2021, 13, 29.	27.0	46
112	Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy. Biomaterials, 2021, 269, 120604.	11.4	41
113	Energyâ€converting biomaterials for cancer therapy: Category, efficiency, and biosafety. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1663.	6.1	11
114	Coordination-Driven Enhancement of Radiosensitization by Black Phosphorus <i>via</i> Regulating Tumor Metabolism. ACS Nano, 2021, 15, 3047-3060.	14.6	51
115	Supramolecular Assembled Programmable Nanomedicine As In Situ Cancer Vaccine for Cancer Immunotherapy. Advanced Materials, 2021, 33, e2007293.	21.0	106
116	Tumor microenvironment-responsive multifunctional nanoplatform based on MnFe ₂ O ₄ -PEG for enhanced magnetic resonance imaging-guided hypoxic cancer radiotherapy. Journal of Materials Chemistry B, 2021, 9, 1625-1637.	5.8	23
117	Oxygen‣volving Manganese Ferrite Nanovesicles for Hypoxiaâ€Responsive Drug Delivery and Enhanced Cancer Chemoimmunotherapy. Advanced Functional Materials, 2021, 31, 2008078.	14.9	65
118	Cisplatin nanoparticles boost abscopal effect of radiation plus anti-PD1 therapy. Biomaterials Science, 2021, 9, 3019-3027.	5.4	16
119	Innovative strategies of hydrogen peroxide-involving tumor therapeutics. Materials Chemistry Frontiers, 2021, 5, 4474-4501.	5.9	16
120	Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. Nanoscale, 2021, 13, 13943-13961.	5.6	7
121	Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo–immunotherapy. Nanoscale, 2021, 13, 17218-17235.	5.6	63
122	Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by <i>in-situ</i> modulating hypoxia and cascade radio-phototherapy. Theranostics, 2021, 11, 3580-3594.	10.0	33
123	Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 2021, 33, e2004172.	21.0	141
124	Nanomedicine-Based Strategies Assisting Photodynamic Therapy for Hypoxic Tumors: State-of-the-Art Approaches and Emerging Trends. Biomedicines, 2021, 9, 137.	3.2	20
125	Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nature Communications, 2021, 12, 742.	12.8	269
126	Grade-targeted nanoparticles for improved hypoxic tumor microenvironment and enhanced photodynamic cancer therapy. Nanomedicine, 2021, 16, 221-235.	3.3	6

#	Article	IF	CITATIONS
127	Biocompatible nanoreactors of catalase and nanozymes for anticancer therapeutics. Nano Select, 2021, 2, 1849-1873.	3.7	8
128	Recent Advancements in Nanomedicine for â€~Cold' Tumor Immunotherapy. Nano-Micro Letters, 2021, 13, 92.	27.0	41
129	Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. Nanomaterials, 2021, 11, 661.	4.1	23
130	Recent Progress of Alkyl Radicals Generationâ€Based Agents for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2100055.	7.6	21
131	ATPâ€Responsive Smart Hydrogel Releasing Immune Adjuvant Synchronized with Repeated Chemotherapy or Radiotherapy to Boost Antitumor Immunity. Advanced Materials, 2021, 33, e2007910.	21.0	123
132	Application of New Radiosensitizer Based on Nano-Biotechnology in the Treatment of Glioma. Frontiers in Oncology, 2021, 11, 633827.	2.8	16
133	Emerging nanotechnological strategies to reshape tumor microenvironment for enhanced therapeutic outcomes of cancer immunotherapy. Biomedical Materials (Bristol), 2021, 16, 042001.	3.3	6
134	High drug loading and pH-responsive nanomedicines driven by dynamic boronate covalent chemistry for potent cancer immunotherapy. Nano Research, 2021, 14, 3913-3920.	10.4	11
135	Nanomedicineâ€Boosting Tumor Immunogenicity for Enhanced Immunotherapy. Advanced Functional Materials, 2021, 31, 2011171.	14.9	84
136	A Nano "Immuneâ€Guide―Recruiting Lymphocytes and Modulating the Ratio of Macrophages from Different Origins to Enhance Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2009116.	14.9	24
137	Reversing Immunosuppression in Hypoxic and Immuneâ€Cold Tumors with Ultrathin Oxygen Selfâ€Gupplementing Polymer Nanosheets under Near Infrared Light Irradiation. Advanced Functional Materials, 2021, 31, 2100354.	14.9	25
138	Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Frontiers in Immunology, 2021, 12, 617365.	4.8	21
139	Nanomaterial Complexes Enriched With Natural Compounds Used in Cancer Therapies: A Perspective for Clinical Application. Frontiers in Oncology, 2021, 11, 664380.	2.8	8
140	Aliphatic Polyesterâ€Based Materials for Enhanced Cancer Immunotherapy. Macromolecular Bioscience, 2021, 21, e2100087.	4.1	7
141	Protein-Based Nanomedicine for Therapeutic Benefits of Cancer. ACS Nano, 2021, 15, 8001-8038.	14.6	59
142	Tumor Microenvironment-Responsive Theranostic Nanoplatform for Guided Molecular Dynamic/Photodynamic Synergistic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 17392-17403.	8.0	13
143	An Ultraâ€Stable, Oxygenâ€Supply Nanoprobe Emitting in Nearâ€Infraredâ€II Window to Guide and Enhance Radiotherapy by Promoting Antiâ€Tumor Immunity. Advanced Healthcare Materials, 2021, 10, e2100090.	7.6	27
144	NIR responsive tumor vaccine in situ for photothermal ablation and chemotherapy to trigger robust antitumor immune responses. Journal of Nanobiotechnology, 2021, 19, 142.	9.1	28

#	Article	IF	CITATIONS
145	Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy. Journal of Nanobiotechnology, 2021, 19, 138.	9.1	20
146	Erythrocyte Membrane-Camouflaged PCN-224 Nanocarriers Integrated with Platinum Nanoparticles and Glucose Oxidase for Enhanced Tumor Sonodynamic Therapy and Synergistic Starvation Therapy. ACS Applied Materials & Interfaces, 2021, 13, 24532-24542.	8.0	64
147	Recent Advances in Engineered Materials for Immunotherapyâ€Involved Combination Cancer Therapy. Advanced Materials, 2021, 33, e2007630.	21.0	112
148	Development of Toll-like Receptor Agonist-Loaded Nanoparticles as Precision Immunotherapy for Reprogramming Tumor-Associated Macrophages. ACS Applied Materials & Interfaces, 2021, 13, 24442-24452.	8.0	26
149	Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Scientific Reports, 2021, 11, 10846.	3.3	14
150	Hitchhiking on Controlled-Release Drug Delivery Systems: Opportunities and Challenges for Cancer Vaccines. Frontiers in Pharmacology, 2021, 12, 679602.	3.5	15
151	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Advanced Materials, 2021, 33, e2008094.	21.0	60
152	Charge convertible biomimetic micellar nanoparticles for enhanced melanoma-targeted therapy through tumor cells and tumor-associated macrophages dual chemotherapy with IDO immunotherapy. Chemical Engineering Journal, 2021, 412, 128659.	12.7	19
153	The Hostâ€Defenseâ€Peptideâ€Mimicking Synthetic Polypeptides Effectively Enhance Antitumor Immunity through Promoting Immunogenic Tumor Cell Death. Macromolecular Bioscience, 2021, 21, e2100171.	4.1	6
154	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	12.0	70
155	Chemodynamic nanomaterials for cancer theranostics. Journal of Nanobiotechnology, 2021, 19, 192.	9.1	51
156	A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharmaceutica Sinica B, 2022, 12, 378-393.	12.0	63
157	Hyperbaric Oxygen Boosts PDâ€1 Antibody Delivery and T Cell Infiltration for Augmented Immune Responses Against Solid Tumors. Advanced Science, 2021, 8, e2100233.	11.2	42
158	Pdâ€Singleâ€Atom Coordinated Biocatalysts for Chemâ€∤Sonoâ€∤Photoâ€Trimodal Tumor Therapies. Advanced Materials, 2021, 33, e2101095.	21.0	87
159	Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. International Journal of Molecular Sciences, 2021, 22, 6546.	4.1	16
160	Nanocarriers Used in Drug Delivery to Enhance Immune System in Cancer Therapy. Pharmaceutics, 2021, 13, 1167.	4.5	25
161	Î ³ -Ray-Triggered Drug Release of Reactive Oxygen Species-Sensitive Nanomedicine for Enhanced Concurrent Chemoradiation Therapy. ACS Omega, 2021, 6, 19445-19457.	3.5	7
162	Phenolic molecules constructed nanomedicine for innovative cancer treatment. Coordination Chemistry Reviews, 2021, 439, 213912.	18.8	15

#	Article	IF	Citations
163	An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials, 2021, 274, 120893.	11.4	24
164	A Near-Infrared Light Triggered Composite Nanoplatform for Synergetic Therapy and Multimodal Tumor Imaging. Frontiers in Chemistry, 2021, 9, 695511.	3.6	2
165	Lactate Consumption via Cascaded Enzymes Combined VEGF siRNA for Synergistic Antiâ€Proliferation and Antiâ€Angiogenesis Therapy of Tumors. Advanced Healthcare Materials, 2021, 10, e2100799.	7.6	28
166	Immunogenic Cell Death Induction by Ionizing Radiation. Frontiers in Immunology, 2021, 12, 705361.	4.8	99
167	Cascade-responsive nanobomb with domino effect for anti-tumor synergistic therapies. National Science Review, 2022, 9, nwab139.	9.5	29
168	Vaccine delivery systems toward lymph nodes. Advanced Drug Delivery Reviews, 2021, 179, 113914.	13.7	62
169	Nano-ablative immunotherapy for cancer treatment. Nanophotonics, 2021, 10, 3247-3266.	6.0	4
170	Engineering Endogenous Tumorâ€Associated Macrophageâ€Targeted Biomimetic Nanoâ€RBC to Reprogram Tumor Immunosuppressive Microenvironment for Enhanced Chemoâ€Immunotherapy. Advanced Materials, 2021, 33, e2103497.	21.0	73
171	Firing up the Tumor Microenvironment with Nanoparticle-Based Therapies. Pharmaceutics, 2021, 13, 1338.	4.5	2
172	Reinforcing the Induction of Immunogenic Cell Death Via Artificial Engineered Cascade Bioreactorâ€Enhanced Chemoâ€Immunotherapy for Optimizing Cancer Immunotherapy. Small, 2021, 17, e2101897.	10.0	42
173	Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy—Current Status and Future Perspectives. Vaccines, 2021, 9, 935.	4.4	18
174	Balance and modulation of immunoediting for cancer treatment using synergistic nano-photo-immuno effects. Nanophotonics, 2021, 10, 3383-3389.	6.0	1
175	Tumor Microenvironment-Activated Nanoparticles Loaded with an Iron-Carbonyl Complex for Chemodynamic Immunotherapy of Lung Metastasis of Melanoma <i>In Vivo</i> . ACS Applied Materials & Interfaces, 2021, 13, 39100-39111.	8.0	24
176	Natural discoidal lipoproteins with tiny modification for tumor extracellular dissociation in antitumor chemoimmunotherapy. Biomaterials, 2021, 275, 120859.	11.4	4
177	Responsive polymeric drug delivery systems for combination anticancer therapy: experimental design and computational insights. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1221-1239.	3.4	3
178	Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. Science Advances, 2021, 7, eabg5686.	10.3	32
179	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	4.3	7
180	Recent advances in immunotherapy, immunoadjuvant, and nanomaterial-based combination immunotherapy. Coordination Chemistry Reviews, 2021, 442, 214009.	18.8	29

#	Article	IF	Citations
182	A Versatile Nanoplatform for Broad-Spectrum Immunotherapy by Reversing the Tumor Microenvironment. ACS Applied Materials & Interfaces, 2021, 13, 45335-45345.	8.0	4
183	Chitosan-based nanoparticle co-delivery of docetaxel and curcumin ameliorates anti-tumor chemoimmunotherapy in lung cancer. Carbohydrate Polymers, 2021, 268, 118237.	10.2	63
184	Tuning the Toxicity of Reactive Oxygen Species into Advanced Tumor Therapy. Nanoscale Research Letters, 2021, 16, 142.	5.7	7
185	Nanosonosensitizers With Ultrasound-Induced Reactive Oxygen Species Generation for Cancer Sonodynamic Immunotherapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 761218.	4.1	16
186	Functionalized Organic–Inorganic Liposome Nanocomposites for the Effective Photo-Thermal Therapy of Breast Cancer. Frontiers in Materials, 2021, 8, .	2.4	1
187	Cancer immunogenic cell death via photo-pyroptosis with light-sensitive Indoleamine 2,3-dioxygenase inhibitor conjugate. Biomaterials, 2021, 278, 121167.	11.4	69
188	Three-Dimensional Covalent Organic Frameworks with Cross-Linked Pores for Efficient Cancer Immunotherapy. Nano Letters, 2021, 21, 7979-7988.	9.1	38
189	Hypoxia-alleviated nanoplatform to enhance chemosensitivity and sonodynamic effect in pancreatic cancer. Cancer Letters, 2021, 520, 100-108.	7.2	19
190	Emerging two-dimensional silicene nanosheets for biomedical applications. Materials Today Nano, 2021, 16, 100132.	4.6	19
191	Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioactive Materials, 2022, 7, 389-400.	15.6	33
192	Proof of concept for dual anticancer effects by a novel nanomaterial-mediated cancer cell killing and nano-radiosensitization. Chemical Engineering Journal, 2022, 429, 132328.	12.7	16
193	Nanoparticle-mediated tumor vaccines for personalized therapy: preparing tumor antigens <i>in vivo</i> or <i>ex vivo</i> ?. Journal of Materials Chemistry B, 2021, 9, 2352-2366.	5.8	6
194	Rediscovery of nanoparticle-based therapeutics: boosting immunogenic cell death for potential application in cancer immunotherapy. Journal of Materials Chemistry B, 2021, 9, 3983-4001.	5.8	28
195	A Multifunctional Nanovaccine based on Lâ€Arginine‣oaded Black Mesoporous Titania: Ultrasoundâ€Triggered Synergistic Cancer Sonodynamic Therapy/Gas Therapy/Immunotherapy with Remarkably Enhanced Efficacy. Small, 2021, 17, e2005728.	10.0	68
196	Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Molecular Cancer, 2021, 20, 10.	19.2	70
197	Oxygenâ€Enriched Metalâ€Phenolic Xâ€Ray Nanoprocessor for Cancer Radioâ€Radiodynamic Therapy in Combination with Checkpoint Blockade Immunotherapy. Advanced Science, 2021, 8, 2003338.	11.2	91
198	Next Generation of Cancer Immunotherapy: Targeting the Cancer-Immunity Cycle with Nanotechnology. , 2020, , 191-253.		2
199	Membrane-core nanoparticles for cancer nanomedicine. Advanced Drug Delivery Reviews, 2020, 156, 23-39.	13.7	53

#	Article	IF	CITATIONS
200	Smart strategies to overcome tumor hypoxia toward the enhancement of cancer therapy. Nanoscale, 2020, 12, 21519-21533.	5.6	26
201	Immunogenic cell death inducers for enhanced cancer immunotherapy. Chemical Communications, 2021, 57, 12087-12097.	4.1	56
202	Light-responsive hyaluronic acid nanomicelles co-loaded with an IDO inhibitor focus targeted photoimmunotherapy against "immune cold―cancer. Biomaterials Science, 2021, 9, 8019-8031.	5.4	18
203	Bioinspired and Biomimetic Delivery Platforms for Cancer Vaccines. Advanced Materials, 2022, 34, e2103790.	21.0	81
204	Advances of Nanomedicine in Radiotherapy. Pharmaceutics, 2021, 13, 1757.	4.5	22
205	Boosting image-guiding radiation therapy through W18O49 nanospheres and the second near-infrared light irradiation. Nano Research, 2022, 15, 2315-2323.	10.4	10
206	Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation(China), 2021, 2, 100174.	9.1	29
207	A nanoplatform to boost multi-phases of cancer-immunity-cycle for enhancing immunotherapy. Journal of Controlled Release, 2021, 339, 403-415.	9.9	18
208	Adaptable peptide-based therapeutics modulating tumor microenvironment for combinatorial radio-immunotherapy. Journal of Controlled Release, 2021, 340, 35-47.	9.9	16
209	Reeducating Tumor-Associated Macrophages Using CpG@Au Nanocomposites to Modulate Immunosuppressive Microenvironment for Improved Radio-Immunotherapy. ACS Applied Materials & Interfaces, 2021, 13, 53504-53518.	8.0	21
210	Combined Application of Nanotechnology and Multiple Therapies with Tumor Immune Checkpoints. ChemistrySelect, 2020, 5, 14943-14954.	1.5	2
211	SnFe2O4 Nanozyme Based TME Improvement System for Anti-Cancer Combination Thermoradiotherapy. Frontiers in Oncology, 2021, 11, 768829.	2.8	2
212	Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers. Matter, 2019, 1, 1331-1353.	10.0	20
213	Novel insights into nanomaterials for immunomodulatory bone regeneration. Nanoscale Advances, 2022, 4, 334-352.	4.6	14
214	A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics, 2022, 12, 59-75.	10.0	40
215	Dual Tumor Microenvironment Remodeling by Glucoseâ€Contained Radical Copolymer for MRIâ€Guided Photoimmunotherapy. Advanced Materials, 2022, 34, e2107674.	21.0	52
216	Stapled Liposomes Enhance Crossâ€Priming of Radioâ€Immunotherapy. Advanced Materials, 2022, 34, e2107161.	21.0	19
217	Tumorâ€Microenvironmentâ€Responsive Nanomedicine for Enhanced Cancer Immunotherapy. Advanced Science, 2022, 9, e2103836.	11.2	142

#	Article	IF	CITATIONS
218	Immunotherapy for Tumor Metastasis by Artificial Antigen-Presenting Cells via Targeted Microenvironment Regulation and T-Cell Activation. ACS Applied Materials & Interfaces, 2021, 13, 55890-55901.	8.0	16
219	Coordination Polymerâ€Coated CaCO ₃ Reinforces Radiotherapy by Reprogramming the Immunosuppressive Metabolic Microenvironment. Advanced Materials, 2022, 34, e2106520.	21.0	54
220	Tumorâ€Microenvironmentâ€Activatable Polymer Nanoâ€Immunomodulator for Precision Cancer Photoimmunotherapy. Advanced Materials, 2022, 34, e2106654.	21.0	71
221	Efficient Magnetic Nanocatalyst-Induced Chemo- and Ferroptosis Synergistic Cancer Therapy in Combination with T ₁ –T ₂ Dual-Mode Magnetic Resonance Imaging Through Doxorubicin Delivery. ACS Applied Materials & Interfaces, 2022, 14, 3621-3632.	8.0	20
222	Atom-precise fluorescent copper cluster for tumor microenvironment targeting and transient chemodynamic cancer therapy. Journal of Nanobiotechnology, 2022, 20, 20.	9.1	6
223	Mesoporous radiosensitized nanoprobe for enhanced NIR-II photoacoustic imaging-guided accurate radio-chemotherapy. Nano Research, 2022, 15, 4154-4163.	10.4	13
224	Glutamine Antagonist Synergizes with Electrodynamic Therapy to Induce Tumor Regression and Systemic Antitumor Immunity. ACS Nano, 2022, 16, 951-962.	14.6	39
225	Targeting Cancer Metabolism Plasticity with JX06 Nanoparticles via Inhibiting PDK1 Combined with Metformin for Endometrial Cancer Patients with Diabetes. Advanced Science, 2022, 9, e2104472.	11.2	14
226	Activatable UCL/CT/MR-enhanced <i>in vivo</i> imaging-guided radiotherapy and photothermal therapy. Journal of Materials Chemistry B, 2022, 10, 549-561.	5.8	13
227	Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 16-30.	4.3	4
228	Nanovaccines with cell-derived components for cancer immunotherapy. Advanced Drug Delivery Reviews, 2022, 182, 114107.	13.7	41
229	ç"Ÿç‰©åŒ»ç"¨çº³ç±³ææ–™åœ¨å¢žå¼ºè,¿ç~̈¤҉»†èfžåç−«åŽŸæ€§æ»äº¡ä,的应用. Chinese Science Bulletin, 20	027;,.	Ο
230	Combinational Chemoimmunotherapy for Breast Cancer by Codelivery of Doxorubicin and PD-L1 siRNA Using a PAMAM-Incorporated Liposomal Nanoplatform. ACS Applied Materials & Interfaces, 2022, 14, 8782-8792.	8.0	20
231	Bioenzyme-based nanomedicines for enhanced cancer therapy. Nano Convergence, 2022, 9, 7.	12.1	19
232	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia for Cancer Therapy. Advanced Science, 2022, 9, e2104885.	11.2	34
233	Effective Combinations of Immunotherapy and Radiotherapy for Cancer Treatment. Frontiers in Oncology, 2022, 12, 809304.	2.8	23
234	A Tripleâ€Kill Strategy for Tumor Eradication Reinforced by Metalâ€Phenolic Network Nanopumps. Advanced Functional Materials, 2022, 32, .	14.9	21
235	Branched Polymerâ€Based Redox/Enzymeâ€Activatable Photodynamic Nanoagent to Trigger STINGâ€Dependent Immune Responses for Enhanced Therapeutic Effect. Advanced Functional Materials, 2022, 32, .	14.9	59

#	Article	IF	CITATIONS
236	Stimuliâ€Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Advanced Science, 2022, 9, e2103444.	11.2	102
237	Concluding remarks and future perspective of combination drug delivery systems. , 2022, , 353-396.		0
238	Recent Advance of Nanomaterial-Mediated Tumor Therapies in the Past Five Years. Frontiers in Pharmacology, 2022, 13, 846715.	3.5	2
239	Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Seminars in Cancer Biology, 2022, 86, 909-922.	9.6	26
240	Harnessing antiâ€ŧumor and tumorâ€ŧropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration, 2022, 2, .	11.0	64
241	Hypoxia Alleviating PdTe Nanoenzymes for Thermoradiotherapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 815185.	4.1	3
242	DNA-Based MXFs to Enhance Radiotherapy and Stimulate Robust Antitumor Immune Responses. Nano Letters, 2022, 22, 2826-2834.	9.1	33
243	Advanced Biomaterials for Cell‣pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	11.2	26
244	Mitochondrial Glutathione Depletion Nanoshuttles for Oxygen-Irrelevant Free Radicals Generation: A Cascaded Hierarchical Targeting and Theranostic Strategy Against Hypoxic Tumor. ACS Applied Materials & Interfaces, 2022, 14, 13038-13055.	8.0	10
245	Biomimetic radiosensitizers unlock radiogenetics for local interstitial radiotherapy to activate systematic immune responses and resist tumor metastasis. Journal of Nanobiotechnology, 2022, 20, 103.	9.1	25
246	Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS Nano, 2022, 16, 5036-5061.	14.6	30
247	Metastasis prevention: targeting causes and roots. Clinical and Experimental Metastasis, 2022, 39, 505-519.	3.3	8
248	Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Seminars in Cancer Biology, 2022, 86, 624-644.	9.6	41
249	Multifunctional nanomedicines for synergistic photodynamic immunotherapy based on tumor immune microenvironment. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 173, 103-120.	4.3	1
250	Light-triggered multifunctional nanoplatform for efficient cancer photo-immunotherapy. Journal of Nanobiotechnology, 2022, 20, 181.	9.1	30
251	Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics, 2022, 14, 784.	4.5	3
252	Cancer cell membrane-coated nanoparticles for bimodal imaging-guided photothermal therapy and docetaxel-enhanced immunotherapy against cancer. Journal of Nanobiotechnology, 2021, 19, 449.	9.1	41
253	PLGA-based drug delivery system for combined therapy of cancer: research progress. Materials Research Express, 2021, 8, 122002.	1.6	18

#	Article	IF	CITATIONS
254	Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis. Nature Communications, 2021, 12, 7149.	12.8	63
255	Tumor acidity/redox hierarchical-activable nanoparticles for precise combination of X-ray-induced photodynamic therapy and hypoxia-activated chemotherapy. Journal of Materials Chemistry B, 2022, 10, 3849-3860.	5.8	8
256	Rising Interest in the Development of Metal Complexes in Cancer Immunotherapy. Chemistry - an Asian Journal, 2022, 17, .	3.3	14
258	Synergistic Radiosensitization Mediated by Chemodynamic Therapy via a Novel Biodegradable Peroxidases Mimicking Nanohybrid. Frontiers in Oncology, 2022, 12, .	2.8	2
259	Self-Assembly of Intelligent Nanoplatform for Endogenous H ₂ S-Triggered Multimodal Cascade Therapy of Colon Cancer. Nano Letters, 2022, 22, 4207-4214.	9.1	28
260	A peptide-AlEgen nanocomposite mediated whole cancer immunity cycle-cascade amplification for improved immunotherapy of tumor. Biomaterials, 2022, 285, 121528.	11.4	21
261	Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Advanced Drug Delivery Reviews, 2022, 185, 114308.	13.7	23
262	Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chemical Society Reviews, 2022, 51, 4996-5041.	38.1	179
263	Nanoparticle-enhanced radiotherapy synergizes with PD-L1 blockade to limit post-surgical cancer recurrence and metastasis. Nature Communications, 2022, 13, .	12.8	60
264	Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials, 2022, 12, 1738.	4.1	9
265	Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Advanced Science, 2022, 9, .	11.2	140
267	Oxygen-Generating Hydrogels Overcome Tumor Hypoxia to Enhance Photodynamic/Gas Synergistic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 27551-27563.	8.0	17
268	Non-cytotoxic nanoparticles re-educating macrophages achieving both innate and adaptive immune responses for tumor therapy. Asian Journal of Pharmaceutical Sciences, 2022, 17, 557-570.	9.1	7
269	Composition tunability of semiconductor radiosensitizers for low-dose X-ray induced photodynamic therapy. Journal of Nanobiotechnology, 2022, 20, .	9.1	4
270	Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiO _{<i>x</i>} â€Based Inverted Solar Cells with 23.5 % Efficiency. Angewandte Chemie - International Edition, 2022, 61, .	13.8	82
271	Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiOxâ€Based Inverted Solar Cells with 23.5% Efficiency. Angewandte Chemie, 0, , .	2.0	3
272	Designing Lactate Dehydrogenase-Mimicking SnSe Nanosheets To Reprogram Tumor-Associated Macrophages for Potentiation of Photothermal Immunotherapy. ACS Applied Materials & Interfaces, 2022, 14, 27651-27665.	8.0	18
273	Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Advanced Drug Delivery Reviews, 2022, 188, 114456.	13.7	19

#	Article	IF	CITATIONS
274	In Situ Antigen apturing Nanochaperone Toward Personalized Nanovaccine for Cancer Immunotherapy. Small, 2022, 18, .	10.0	15
275	Recent advances in sonodynamic immunotherapy. Journal of Cancer Research and Clinical Oncology, 2023, 149, 1645-1656.	2.5	6
276	Scavenging Tumorâ€Derived Small Extracellular Vesicles by Functionalized 2D Materials to Inhibit Tumor Regrowth and Metastasis Following Radiotherapy. Advanced Functional Materials, 2022, 32, .	14.9	8
277	Photothermal nanobomb blocking metabolic adenosine-A2AR potentiates infiltration and activity of T cells for robust antitumor immunotherapy. Chemical Engineering Journal, 2022, 450, 138139.	12.7	6
278	Nanozymes-engineered metal–organic frameworks for enhanced microwave thermodynamic therapy in PDX of hepatic carcinoma. Chemical Engineering Journal, 2022, 450, 138092.	12.7	15
279	Mitochondria-specific gadolinium (III) porphyrinate as efficient ROS generator for MRI visualization and sonodynamic-immunotherapy of deep localized tumors. Chemical Engineering Journal, 2022, 450, 138210.	12.7	7
280	Recent advances in biological membrane-based nanomaterials for cancer therapy. Biomaterials Science, 2022, 10, 5756-5785.	5.4	5
281	Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy. Materials Today Advances, 2022, 15, 100276.	5.2	4
282	Metalâ€Cyclic Dinucleotide Nanomodulatorâ€Stimulated STING Signaling for Strengthened Radioimmunotherapy of Large Tumor. Small, 2022, 18, .	10.0	15
283	An Activatable Nearâ€Infrared Afterglow Theranostic Prodrug with Selfâ€5ustainable Magnification Effect of Immunogenic Cell Death. Angewandte Chemie, 0, , .	2.0	0
284	An Activatable Nearâ€Infrared Afterglow Theranostic Prodrug with Selfâ€Sustainable Magnification Effect of Immunogenic Cell Death. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43
285	Nanotrains of DNA Copper Nanoclusters That Triggered a Cascade Fenton-Like Reaction and Glutathione Depletion to Doubly Enhance Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2022, 14, 37280-37290.	8.0	14
286	Catalase application in cancer therapy: Simultaneous focusing on hypoxia attenuation and macrophage reprogramming. Biomedicine and Pharmacotherapy, 2022, 153, 113483.	5.6	7
287	Nanoscale metal–organic framework-mediated immunogenic cell death boosting tumor immunotherapy. Materials and Design, 2022, 222, 111068.	7.0	3
288	Versatile BP/Pd-FPEI-CpG nanocomposite for "three-in-one" multimodal tumor therapy. Nano Today, 2022, 46, 101590.	11.9	10
289	Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy. Bioactive Materials, 2023, 21, 1-19.	15.6	19
290	A biodegradable nanocapsule for through-skull NIR-II fluorescence imaging/magnetic resonance imaging and selectively enhanced radio-chemotherapy for orthotopic glioma. Nano Today, 2022, 46, 101619.	11.9	13
291	Near-infrared photoactivatable semiconducting polymer nanocomplexes with bispecific metabolism interventions for enhanced cancer immunotherapy. Nano Today, 2022, 46, 101600.	11.9	22

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
292	Nano-drug delivery systems for T cell-based immunotherapy. Nano Today, 2022, 46, 101621.	11.9	13
293	Reshaping hypoxia and silencing CD73 via biomimetic gelatin nanotherapeutics to boost immunotherapy. Journal of Controlled Release, 2022, 351, 255-271.	9.9	10
294	An enzyme-responsive and transformable PD-L1 blocking peptide-photosensitizer conjugate enables efficient photothermal immunotherapy for breast cancer. Bioactive Materials, 2023, 22, 47-59.	15.6	17
295	"Nano effectsâ€! a review on nanoparticle-induced multifarious systemic effects on cancer theranostic applications. Materials Advances, 0, , .	5.4	1
296	Tumor Microenvironment Remodeling Via Targeted Depletion of M2-Like Tumor-Associated Macrophages for Cancer Immunotherapy. SSRN Electronic Journal, 0, , .	0.4	0
297	Application of nanosonosensitizer materials in cancer sono-dynamic therapy. RSC Advances, 2022, 12, 22722-22747.	3.6	16
298	Alpha radionuclide-chelated radioimmunotherapy promoters enable local radiotherapy/chemodynamic therapy to discourage cancer progression. Biomaterials Research, 2022, 26, .	6.9	18
299	Chemical Modulation of Glucose Metabolism with a Fluorinated CaCO ₃ Nanoregulator Can Potentiate Radiotherapy by Programming Antitumor Immunity. ACS Nano, 2022, 16, 13884-13899.	14.6	33
300	Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood–brain barrier. Journal of Materials Chemistry B, 2022, 10, 9314-9333.	5.8	7
301	Harnessing the Power of Nanomaterials to Alleviate Tumor Hypoxia in Favor of Cancer Therapy. Nanomedicine and Nanotoxicology, 2022, , 135-174.	0.2	0
303	Activating Nanomedicines with Electromagnetic Energy for Deepâ€Tissue Induction of Immunogenic Cell Death in Cancer Immunotherapy. Small Methods, 2023, 7, .	8.6	11
304	Novel Implications of Nanoparticle-Enhanced Radiotherapy and Brachytherapy: Z-Effect and Tumor Hypoxia. Metabolites, 2022, 12, 943.	2.9	7
305	Phosphorous Dendron Micelles as a Nanomedicine Platform for Cooperative Tumor Chemoimmunotherapy via Synergistic Modulation of Immune Cells. Advanced Materials, 2023, 35, .	21.0	22
306	Tantalum-carbon-integrated nanozymes as a nano-radiosensitizer for radiotherapy enhancement. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	1
307	Targeted Wolfram-Doped Polypyrrole for Photonic Hyperthermia-Synergized Radiotherapy. ACS Applied Materials & Interfaces, 2022, 14, 50557-50568.	8.0	5
308	Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials, 2022, 291, 121880.	11.4	28
309	Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chemical Society Reviews, 2022, 51, 9759-9830.	38.1	17
310	In-situ self-assembled vaccine constructed with dual switchable nanotransformer for tumor immunotherapy. Chemical Engineering Journal, 2023, 454, 140190.	12.7	1

	CITATION R	CITATION REPORT	
# 311	ARTICLE Multifunctional PVCL nanogels enable magnetic resonance imaging and immunostimulated radiotherapy of orthotopic glioblastoma. Chemical Engineering Journal, 2023, 453, 139634.	IF 12.7	CITATIONS 3
312	Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	9.1	21
313	Nanomaterials: small particles show huge possibilities for cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	9.1	14
314	Alternative Strategy to Optimize Cerium Oxide for Enhanced X-ray-Induced Photodynamic Therapy. ACS Nano, 2022, 16, 20805-20819.	14.6	25
315	Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies. Journal of Controlled Release, 2023, 353, 423-433.	9.9	23
316	Recent Progress of Surface Passivation Molecules for Perovskite Solar Cell Applications. Journal of Renewable Materials, 2023, 11, 1533-1554.	2.2	2
317	Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chemical Society Reviews, 2023, 52, 47-96.	38.1	19
318	Catalytic nanotechnology of X-ray photodynamics for cancer treatments. Biomaterials Science, 2023, 11, 1153-1181.	5.4	6
319	Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy. Theranostics, 2023, 13, 40-58.	10.0	6
320	Novel strategies for tumor radiosensitization mediated by multifunctional gold-based nanomaterials. Biomaterials Science, 2023, 11, 1116-1136.	5.4	11
321	Polymeric nanoparticle-based nanovaccines for cancer immunotherapy. Materials Horizons, 2023, 10, 361-392.	12.2	21
323	Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Frontiers in Immunology, 0, 13, .	4.8	12
324	Nanosonosensitizerâ€Augmented Sonoâ€Immunotherapy for Glioblastoma by Nonâ€Invasive Opening of the Blood–Brain Barrier. Advanced Functional Materials, 2023, 33, .	14.9	4
325	Nanoparticleâ€Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. Advanced Materials, 2023, 35, .	21.0	29
326	Biomimetic Active Materials Guided Immunogenic Cell Death for Enhanced Cancer Immunotherapy. Small Methods, 2023, 7, .	8.6	9
327	Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. International Journal of Nanomedicine, 0, Volume 17, 6427-6446.	6.7	28
328	Prodrug Nanosensitizer Overcomes the Radiation Resistance of Hypoxic Tumor. ACS Applied Materials & Interfaces, 2022, 14, 56454-56470.	8.0	3
329	Diselenideâ€Based Dualâ€Responsive Prodrug as Pyroptosis Inducer Potentiates Cancer Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	7.6	11

#	Article	IF	CITATIONS
330	Multifunctional nanoparticle for cancer therapy. MedComm, 2023, 4, .	7.2	8
331	Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo―and radioresistances. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	6.1	8
332	Metal Nanoparticles: Synthesis, Characterization, and Biomedical Applications. , 2023, , 85-102.		1
333	Highly triple-effective synergy based on tetrahedral DNA nanostructure-induced tumor vaccines for cancer therapy. Materials and Design, 2023, 226, 111584.	7.0	4
334	Preparation of Triptolide Nano Drug Delivery System and Its Antitumor Activity <i>In-Vitro</i> . Journal of Biomedical Nanotechnology, 2022, 18, 2417-2432.	1.1	1
335	Nanoparticles and Nanomaterials-Based Recent Approaches in Upgraded Targeting and Management of Cancer: A Review. Cancers, 2023, 15, 162.	3.7	10
336	Multifunctional Nanoâ€Biomaterials for Cancer Therapy via Inducing Enhanced Immunogenic Cell Death. Small Methods, 2023, 7, .	8.6	12
337	Biomaterials tools to modulate the tumour microenvironment in immunotherapy. , 2023, 1, 125-138.		34
338	Application of nanoâ€radiosensitizers in combination cancer therapy. Bioengineering and Translational Medicine, 2023, 8, .	7.1	7
339	DNA Nanoclusters Combined with Oneâ€Shot Radiotherapy Augment Cancer Immunotherapy Efficiency. Advanced Materials, 2023, 35, .	21.0	6
340	Boosting Checkpoint Immunotherapy with Biomaterials. ACS Nano, 2023, 17, 3225-3258.	14.6	20
341	Engineering nanoparticles boost TNBC therapy by CD24 blockade and mitochondrial dynamics regulation. Journal of Controlled Release, 2023, 355, 211-227.	9.9	9
342	Drug-loaded microbubble delivery system to enhance PD-L1 blockade immunotherapy with remodeling immune microenvironment. Biomaterials Research, 2023, 27, .	6.9	14
343	A Multifunctional Nanoplatform for Tumorâ€Targeted Imaging and Enhanced Ferroptosis Therapy. Advanced Therapeutics, 2023, 6, .	3.2	0
344	Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomaterialia, 2023, 160, 239-251.	8.3	19
345	Recent progress of hydrogel-based local drug delivery systems for postoperative radiotherapy. Frontiers in Oncology, 0, 13, .	2.8	3
346	Oxygen switches: Refueling for cancer radiotherapy. Frontiers in Oncology, 0, 12, .	2.8	1
347	Xâ€Ray Activatable Au/Ag Nanorods for Tumor Radioimmunotherapy Sensitization and Monitoring of the Therapeutic Response Using NIRâ€II Photoacoustic Imaging. Advanced Science, 2023, 10, .	11.2	4

#	Article	IF	CITATIONS
348	A nitric-oxide driven chemotactic nanomotor for enhanced immunotherapy of glioblastoma. Nature Communications, 2023, 14, .	12.8	27
349	Radiationâ€Induced Immunogenic Cell Death for Cancer Radioimmunotherapy. Small Methods, 2023, 7, .	8.6	14
350	Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Science Bulletin, 2023, 68, 622-636.	9.0	20
351	Vaccine-like nanomedicine for cancer immunotherapy. Journal of Controlled Release, 2023, 355, 760-778.	9.9	33
352	Engineering nanofusiform Iron-doped polydiaminopyridine boost intratumoral penetration for immunogenic cell Death-mediated synergistic Photothermal/Chemo therapy. Chemical Engineering Journal, 2023, 462, 142159.	12.7	5
353	Nanodrug constructed using dietary antioxidants for immunotherapy of metastatic tumors. Journal of Materials Chemistry B, 2023, 11, 2916-2926.	5.8	2
354	Biomineralized MnO ₂ Nanoplatforms Mediated Delivery of Immune Checkpoint Inhibitors with STING Pathway Activation to Potentiate Cancer Radio-Immunotherapy. ACS Nano, 2023, 17, 4495-4506.	14.6	29
355	Pyroptosisâ€Mediated Synergistic Photodynamic and Photothermal Immunotherapy Enabled by a Tumorâ€Membraneâ€Targeted Photosensitive Dimer. Advanced Materials, 2023, 35, .	21.0	34
356	Engineered Macrophagesâ€Based uPAâ€Scavenger Load Gemcitabine to Prompt Robust Treating Cancer Metastasis. Advanced Healthcare Materials, 2023, 12, .	7.6	1
357	Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. Journal of Controlled Release, 2023, 356, 623-648.	9.9	28
358	The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers, 2023, 15, 1892.	3.7	7
359	A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma. Journal of Industrial and Engineering Chemistry, 2023, 123, 330-341.	5.8	1
360	Activatable Graphene Quantumâ€Dotâ€Based Nanotransformers for Longâ€Period Tumor Imaging and Repeated Photodynamic Therapy. Advanced Materials, 2023, 35, .	21.0	9
361	Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Advanced Healthcare Materials, 2023, 12, .	7.6	7
362	Nanodrug Inducing Autophagy Inhibition and Mitochondria Dysfunction for Potentiating Tumor Photoâ€Immunotherapy. Small, 2023, 19, .	10.0	7
363	Phase-transition nanodroplets with immunomodulatory capabilities for potentiating mild magnetic hyperthermia to inhibit tumour proliferation and metastasis. Journal of Nanobiotechnology, 2023, 21, .	9.1	7
364	Neutrophil membrane-derived nanoparticle loading TLR7 agonists augments radiotherapy efficacy and boosts abscopal effect via regulating tumor microenvironment. Cancer Nanotechnology, 2023, 14, .	3.7	1
365	A NIRâ€II Fluorescent PolyBodipy Delivering Cationic Ptâ€NHC with Type II Immunogenic Cell Death for Combined Chemotherapy and Photodynamic Immunotherapy. Advanced Functional Materials, 2023, 33, .	14.9	20

#	Article	IF	CITATIONS
366	Supramolecularly Engineered Reporters with Superoxide Anionâ€Triggered Chemiluminescence for Early Diagnosis and Efficient Amelioration of Acute Kidney Injury. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
367	Supramolecularly Engineered Reporters with Superoxide Anionâ€Triggered Chemiluminescence for Early Diagnosis and Efficient Amelioration of Acute Kidney Injury. Angewandte Chemie, 0, , .	2.0	0
368	Biomaterials Facilitating Dendritic Cellâ€Mediated Cancer Immunotherapy. Advanced Science, 2023, 10, .	11.2	13
369	Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. Nanoscale, 2023, 15, 9457-9476.	5.6	5
370	A transformable nanoplatform with multiple therapeutic and immunostimulatory properties for treatment of advanced cancers. Biomaterials, 2023, 299, 122145.	11.4	8
371	Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers, 2023, 15, 2219.	4.5	0
372	Tellurium-driven maple leaf-shaped manganese nanotherapeutics reshape tumor microenvironment via chemical transition in situ to achieve highly efficient radioimmunotherapy of triple negative breast cancer. Bioactive Materials, 2023, 27, 560-573.	15.6	3
373	Xâ€rayâ€Induced Release of Nitric Oxide from Hafniumâ€Based Nanoradiosensitizers for Enhanced Radioâ€Immunotherapy. Advanced Materials, 2023, 35, .	21.0	17
374	Activatable Semiconducting Polymer Proâ€nanomodulators for Deepâ€Tissue Sonoâ€immunotherapy of Orthotopic Pancreatic Cancer. Angewandte Chemie - International Edition, 2023, 62, .	13.8	18
375	Activatable Semiconducting Polymer Proâ€nanomodulators for Deepâ€Tissue Sonoâ€immunotherapy of Orthotopic Pancreatic Cancer. Angewandte Chemie, 0, , .	2.0	1
376	Breaking Spatiotemporal Barriers of Immunogenic Chemotherapy <i>via</i> an Endoplasmic Reticulum Membrane-Assisted Liposomal Drug Delivery. ACS Nano, 2023, 17, 10521-10534.	14.6	2
377	Precise Engineering of a Se/Te Nanochaperone for Reinvigorating Cancer Radioâ€Immunotherapy. Advanced Materials, 2023, 35, .	21.0	9
378	NIR-II imaging-guided photothermal cancer therapy combined with enhanced immunogenic death. Biomaterials Science, 2023, 11, 5177-5185.	5.4	1
379	A Mitochondriaâ€Targeted NIRâ€II AlEgen Induced Pyroptosis for Enhanced Tumor Immunotherapy. Advanced Healthcare Materials, 2023, 12, .	7.6	4
380	Enhanced radiosensitivity and chemoradiation efficacy in nasopharyngeal carcinoma via a dual-targeted SPION@polymer hybrid nanosensitizer. NPG Asia Materials, 2023, 15, .	7.9	0
381	Pluronic F127 coating performance on PLGA nanoparticles: Enhanced flocculation and instability. Colloids and Surfaces B: Biointerfaces, 2023, 226, 113328.	5.0	2
382	Promotion of ICD via Nanotechnology. Macromolecular Bioscience, 0, , .	4.1	0
383	Oxygenâ€Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. Advanced Materials, 2023, 35, .	21.0	4

#	Article	IF	CITATIONS
384	Biomimetic Cell-Derived Nanoparticles: Emerging Platforms for Cancer Immunotherapy. Pharmaceutics, 2023, 15, 1821.	4.5	2
385	3-Bromopyruvate-loaded bismuth sulfide nanospheres improve cancer treatment by synergizing radiotherapy with modulation of tumor metabolism. Journal of Nanobiotechnology, 2023, 21, .	9.1	0
386	Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. Journal of Nanobiotechnology, 2023, 21, .	9.1	4
387	Tumor Vascular Destruction and cGASâ€STING Activation Induced by Single Drugâ€Loaded Nanoâ€Micelles for Multiple Synergistic Therapies of Cancer. Small, 2023, 19, .	10.0	1
388	Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Frontiers in Immunology, 0, 14, .	4.8	5
389	Intelligent Ti3C2–Pt heterojunction with oxygen self-supply for augmented chemo-sonodynamic/immune tumor therapy. Materials Today Nano, 2023, 24, 100386.	4.6	0
390	Application of targeted drug delivery based on nano platform in diagnosis and treatment of bladder cancer. Journal of Drug Delivery Science and Technology, 2023, 87, 104873.	3.0	0
391	Recent strategies of carbon dot-based nanodrugs for enhanced emerging antitumor modalities. Journal of Materials Chemistry B, 2023, 11, 9128-9154.	5.8	3
392	Nanotechnology-Assisted Immunogenic Cell Death for Effective Cancer Immunotherapy. Vaccines, 2023, 11, 1440.	4.4	0
393	Radiolabeled Human Serum Albumin Nanoparticles Co-Loaded with Methotrexate and Decorated with Trastuzumab for Breast Cancer Diagnosis. Journal of Functional Biomaterials, 2023, 14, 477.	4.4	0
394	Recent theranostic applications of hydrogen peroxide-responsive nanomaterials for multiple diseases. RSC Advances, 2023, 13, 27333-27358.	3.6	0
395	Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomaterials Science, 2023, 11, 6942-6976.	5.4	2
396	Multifaceted role of redox pattern in the tumor immune microenvironment regarding autophagy and apoptosis. Molecular Cancer, 2023, 22, .	19.2	5
397	Nano-enabled colorectal cancer therapy. Journal of Controlled Release, 2023, 362, 548-564.	9.9	1
398	New trends in brain tumor immunity with the opportunities of lymph nodes targeted drug delivery. Journal of Nanobiotechnology, 2023, 21, .	9.1	0
399	Nearâ€infrared laserâ€activated aggregationâ€induced emission nanoparticles boost tumor carbonyl stress and immunotherapy of breast cancer. Aggregate, 0, , .	9.9	4
400	Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397, 1311-1326.	3.0	0
401	Nanomaterials relieving hypoxia for enhanced tumor therapy. Coordination Chemistry Reviews, 2024, 499, 215482.	18.8	3

#	Article	IF	CITATIONS
402	Combination of bacterial-targeted delivery of gold-based AlEgen radiosensitizer for fluorescence-image-guided enhanced radio-immunotherapy against advanced cancer. Bioactive Materials, 2023, 30, 200-213.	15.6	3
403	Nanotechnologyâ€enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterialâ€based radioâ€immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2024, 16, .	6.1	2
404	Multifunctional Au@AgBiS ₂ Nanoparticles as Highâ€Efficiency Radiosensitizers to Induce Pyroptosis for Cancer Radioimmunotherapy. Advanced Science, 2023, 10, .	11.2	3
405	Catalase-gold nanoaggregates manipulate the tumor microenvironment and enhance the effect of low-dose radiation therapy by reducing hypoxia. Biomedicine and Pharmacotherapy, 2023, 167, 115557.	5.6	1
406	Revolutionizing cancer treatment: nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers. Frontiers in Immunology, 0, 14, .	4.8	2
407	Bioinspired immuno-radio-enhancers toward synergistic nanomedicine through radiation-induced abscopal effects and immunocheckpoint blockade therapies. Biomaterials Science, 0, , .	5.4	0
408	Alphaâ€Emitter Radiumâ€223 Induces STINGâ€Dependent Pyroptosis to Trigger Robust Antitumor Immunity. Small, 2024, 20, .	10.0	0
409	Radiotherapy combined with nano-biomaterials for cancer radio-immunotherapy. Journal of Nanobiotechnology, 2023, 21, .	9.1	2
410	Stimuliâ€Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. Small Methods, 2024, 8, .	8.6	1
411	Radiotherapy-activated tumor immune microenvironment: Realizing radiotherapy-immunity combination therapy strategies. Nano Today, 2023, 53, 102042.	11.9	1
412	Enhancing nasopharyngeal carcinoma cell radiosensitivity by suppressing AKT/mTOR via CENP-N knockdown. Journal of Translational Medicine, 2023, 21, .	4.4	0
413	Advanced nanomaterials for enhanced immunotherapy via metabolic regulation. Coordination Chemistry Reviews, 2024, 500, 215540.	18.8	1
414	The Emerging Landscape for Combating Resistance Associated with Energyâ€Based Therapies via Nanomedicine. Advanced Materials, 0, , .	21.0	0
415	Toward Type I/II ROS Generation Photoimmunotherapy by Molecular Engineering of Semiconducting Perylene Diimide. Advanced Healthcare Materials, 0, , .	7.6	0
416	Engineered exosomes-based theranostic strategy for tumor metastasis and recurrence. Asian Journal of Pharmaceutical Sciences, 2023, 18, 100870.	9.1	0
417	TH-302-loaded nanodrug reshapes the hypoxic tumour microenvironment and enhances PD-1 blockade efficacy in gastric cancer. Journal of Nanobiotechnology, 2023, 21, .	9.1	1
418	Self-assembled nanoplatforms for chemodynamic therapy. Chemical Engineering Journal, 2024, 479, 147702.	12.7	0
419	Engineered antler stem cells derived exosomes potentiate anti-tumor efficacy of immune checkpoint inhibitor by reprogramming immunosuppressive tumor microenvironment. Chemical Engineering Journal, 2024, 479, 147421.	12.7	0

#	Article	IF	CITATIONS
420	PEI-Based Nanoparticles for Tumor Immunotherapy via In Situ Antigen-Capture Triggered by Photothermal Therapy. ACS Applied Materials & Interfaces, 2023, 15, 55433-55446.	8.0	0
421	Intelligent Nanoplatform Integrating Macrophage and Cancer Cell Membrane for Synergistic Chemodynamic/Immunotherapy/Photothermal Therapy of Breast Cancer. ACS Applied Materials & Interfaces, 0, , .	8.0	0
422	Hydrogel-immobilized nanotherapeutics: Inhibition of protective autophagy to amplify STING signals for postsurgical tumor immunotherapy. Chemical Engineering Journal, 2024, 480, 148211.	12.7	1
423	Circumventing challenges in mitochondrial targeting for cancer treatment: leveraging nanoplatforms for effective solutions. Materials Advances, 2024, 5, 409-431.	5.4	0
424	Noninvasive Needleâ€Free Cancer Vaccine Cream Patch Based on Fluorinated Chitosan. Advanced Functional Materials, 0, , .	14.9	0
425	Assembling Au8 clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor. Journal of Nanobiotechnology, 2024, 22, .	9.1	1
426	Research progress of nanomedicine for tumor immunotherapy. , 2024, 3, 37-48.		0
427	Advanced strategies for combinational immunotherapy of cancer based on polymeric nanomedicines. , 0, , .		2
428	Cancer Nano-Immunotherapy: The Novel and Promising Weapon to Fight Cancer. International Journal of Molecular Sciences, 2024, 25, 1195.	4.1	0
429	Macrophage-derived biomimetic nanoparticles enhanced SDT combined with immunotherapy inhibited tumor growth and metastasis. Biomaterials, 2024, 305, 122456.	11.4	0
430	Nanocatalytic Antiâ€Tumor Immune Regulation. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
431	Nanocatalytic Antiâ€Tumor Immune Regulation. Angewandte Chemie, 2024, 136, .	2.0	0
432	A tumorâ€ŧargeting nanoâ€adjuvant for in situ vaccine based on ultrasound therapy. Aggregate, 0, , .	9.9	0
433	Lipid- and Polymer-Based Nanocarrier Platforms for Cancer Vaccine Delivery. ACS Applied Bio Materials, 0, , .	4.6	0
434	An Activatable Dual Polymer Nanosystem for Photoimmunotherapy and Metabolic Modulation of Deepâ \in Seated Tumors. Advanced Healthcare Materials, 2024, 13, .	7.6	0
435	Advances in Nanodelivery Systems Based on Metabolism Reprogramming Strategies for Enhanced Tumor Therapy. ACS Applied Materials & Interfaces, 2024, 16, 6689-6708.	8.0	0
436	Single-Site Nanozymes with a Highly Conjugated Coordination Structure for Antitumor Immunotherapy via Cuproptosis and Cascade-Enhanced T Lymphocyte Activity. Journal of the American Chemical Society, 2024, 146, 3675-3688.	13.7	1
437	Boosting Checkpoint Immunotherapy with Biomimetic Nanodrug Delivery Systems. Advanced Healthcare Materials, 0, , .	7.6	0

#	Article	IF	CITATIONS
439	Microfluidics-derived hierarchical microparticles for the delivery of dienogest for localized endometriosis therapy. Acta Biomaterialia, 2024, 178, 257-264.	8.3	0
440	Chondrocyte membrane–coated nanoparticles promote drug retention and halt cartilage damage in rat and canine osteoarthritis. Science Translational Medicine, 2024, 16, .	12.4	0
441	Cuproptotic nanoinducer-driven proteotoxic stress potentiates cancer immunotherapy by activating the mtDNA–cGAS–STING signaling. Biomaterials, 2024, 307, 122512.	11.4	0
442	HepG2 exosomes coated luteolin nanoparticles remodeling hepatic stellate cells and combination with sorafenib for the treatment of hepatocellular carcinoma. Cancer Nanotechnology, 2024, 15, .	3.7	Ο
443	Recent advances in mitochondria $\hat{a} {\in} t$ argeting theranostic agents. Exploration, 0, , .	11.0	0
444	Design of a single-center, phase II trial to explore the efficacy and safety of â€~R-ISV-RO'Âtreatment in advanced tumors. Future Oncology, 0, , .	2.4	0
445	Erythrocyte Membrane Camouflaged Nanotheranostics for Optical Molecular Imagingâ€Escorted Selfâ€Oxygenation Photodynamic Therapy. Small, 0, , .	10.0	0
446	Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer. International Journal of Nanomedicine, 0, Volume 19, 2823-2849.	6.7	0
447	Advances and applications of nanoparticles in cancer therapy. , 2024, 3, .		0
448	Biosynthesis of NIRâ€II Ag ₂ Se Quantum Dots with Bacterial Catalase for Photoacoustic Imaging and Alleviatingâ€Hypoxia Photothermal Therapy. Small, 0, , .	10.0	0