Optimization design of steam ejector primary nozzle fo

Desalination 471, 114070 DOI: 10.1016/j.desal.2019.07.010

Citation Report

#	Article	IF	CITATIONS
1	Steam ejector performance considering phase transition for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Applied Energy, 2020, 279, 115831.	10.1	31
2	Performance of steam ejector with nonequilibrium condensation for multi-effect distillation with thermal vapour compression (MED-TVC) seawater desalination system. Desalination, 2020, 489, 114531.	8.2	41
3	Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector. Energy, 2021, 215, 119128.	8.8	22
4	Energy Efficient Seawater Desalination: Strategies and Opportunities. Energy Technology, 2021, 9, 2100008.	3.8	8
5	Performance improvement of ejector refrigerator–based water chiller working with different mixing chamber profiles. AEJ - Alexandria Engineering Journal, 2021, 60, 3693-3707.	6.4	7
6	Effects of surface roughness and temperature on non-equilibrium condensation and entrainment performance in a desalination-oriented steam ejector. Applied Thermal Engineering, 2021, 196, 117264.	6.0	17
7	Experimental investigation of a double-slider adjustable ejector under off-design conditions. Applied Thermal Engineering, 2021, 196, 117343.	6.0	6
8	Numerical investigation of the nozzle expansion state and its effect on the performance of the steam ejector based on ideal gas model. Applied Thermal Engineering, 2021, 199, 117509.	6.0	17
9	Simulation investigation on performance of a power–water cogeneration system coupled with a two-stage thermal vapor compressor. Case Studies in Thermal Engineering, 2021, 28, 101435.	5.7	1
10	Effect of area ratio of the primary nozzle on steam ejector performance considering nonequilibrium condensations. Energy, 2021, 237, 121483.	8.8	35
11	Commercial Thermal Technologies for Desalination of Water from Renewable Energies: A State of the Art Review. Processes, 2021, 9, 262.	2.8	42
12	Study on evolution laws of two-phase choking flow and entrainment performance of steam ejector oriented towards MED-TVC desalination system. Energy, 2022, 242, 122967.	8.8	9
13	Application of Ejector in Solid Oxide Fuel Cell Anode Circulation System. Journal of Thermal Science, 2022, 31, 634-649.	1.9	3
14	A visual mass transfer study in the ejector considering phase change for multi-effect distillation with thermal vapour compression (MED-TVC) desalination system. Desalination, 2022, 532, 115722.	8.2	5
15	Geometry dimension optimization of a liquid–gas vacuum ejector for MED-TVC system. Applied Thermal Engineering, 2022, 214, 118907.	6.0	4
16	Numerical study on the effect of superheat on the steam ejector internal flow and entropy generation for MED-TVC desalination system. Desalination, 2022, 537, 115874.	8.2	7
17	A comprehensive studies on constant area mixing (CAM) and constant pressure mixing (CPM) Ejectors: A review. Materials Today: Proceedings, 2022, 69, 513-518.	1.8	6
18	Optimization Design and Performance Evaluation of R1234yf Ejectors for Ejector-Based Refrigeration Systems. Entropy, 2022, 24, 1632.	2.2	3

IF ARTICLE CITATIONS # An extended mechanism model of gaseous ejectors. Energy, 2023, 264, 126094. 19 8.8 3 High performance ejector enhanced by heat exchanger in solid oxide fuel cell anode recirculation system. Applied Thermal Engineering, 2023, 221, 119856. 6.0 Design and Investigation of a Dynamic Auto-Adjusting Ejector for the MED-TVC Desalination System 21 2.2 1 Driven by Solar Energy. Entropy, 2022, 24, 1815. Experimental investigation on the performance of a novel resonance-assisted ejector under low pressurization. Energy Conversion and Management, 2023, 280, 116778. Study on compound parabolic concentrating vaporized desalination system with preheating and heat 23 8.8 6 recovery. Energy, 2023, 276, 127619. Parametric investigation and performance optimization of a MED-TVC desalination system based on 1-D ejector modeling. Energy Conversion and Management, 2023, 288, 117131. 9.2 Working condition expansion and performance optimization of two-stage ejector based on optimal 25 8.8 3 switching strategy. Energy, 2023, 282, 128376. Analysis of the internal flow features of a CO2 transonic nozzle and optimization of the nozzle shape 6.0 profile. Applied Thermal Engineering, 2024, 238, 121945. Performance enhancement of compound parabolic concentrating vaporized desalination system by 27 8.9 0 spraying and steam heat recovery. Renewable Energy, 2024, 220, 119709. Thermo-economic evaluation of a solar desalination equipped with Phase change material and 8.2 spraying unit. Desalination, 2023, , 117197. Research progress on the integration and optimal design of desalination process. Separation and 30 7.9 0 Purification Technology, 2024, 337, 126423.

CITATION REPORT