Spatiotemporal immune zonation of the human kidney

Science 365, 1461-1466 DOI: 10.1126/science.aat5031

Citation Report

#	Article	IF	CITATIONS
1	Immune topology of the human kidney. Nature Reviews Nephrology, 2019, 15, 729-729.	4.1	2
2	Spatiotemporal immune zonation of the human kidney. Science, 2019, 365, 1461-1466.	6.0	281
3	Using single-cell technologies to map the human immune system — implications for nephrology. Nature Reviews Nephrology, 2020, 16, 112-128.	4.1	39
4	The power of one: advances in single-cell genomics in the kidney. Nature Reviews Nephrology, 2020, 16, 73-74.	4.1	15
5	Profiling the Resident and Infiltrating Monocyte/Macrophages during Rejection following Kidney Transplantation. Journal of Immunology Research, 2020, 2020, 1-14.	0.9	7
6	Immune cell composition in normal human kidneys. Scientific Reports, 2020, 10, 15678.	1.6	28
7	Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2020, 31, 2833-2854.	3.0	113
8	Does SARS-CoV-2 Infect the Kidney?. Journal of the American Society of Nephrology: JASN, 2020, 31, 2746-2748.	3.0	43
9	Zonation of Pancreatic Acinar Cells in Diabetic Mice. Cell Reports, 2020, 32, 108043.	2.9	16
10	An era of single-cell genomics consortia. Experimental and Molecular Medicine, 2020, 52, 1409-1418.	3.2	12
11	The Whole Body as the System in Systems Immunology. IScience, 2020, 23, 101509.	1.9	24
12	Cells of the adult human heart. Nature, 2020, 588, 466-472.	13.7	852
13	In Situ Classification of Cell Types in Human Kidney Tissue Using 3D Nuclear Staining. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 99, 707-721.	1.1	15
14	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
15	Deletion of the myeloid endothelin-B receptor confers long-term protection from angiotensin II-mediated kidney, eye and vessel injury. Kidney International, 2020, 98, 1193-1209.	2.6	8
16	Bilateral primary renal diffuse large B-cell lymphoma: a rare presentation of paediatric renal disease mimicking juvenile nephronophthisis. BMJ Case Reports, 2020, 13, e234810.	0.2	4
17	Organ immune responses — don't forget the structural cells. Nature Reviews Nephrology, 2020, 16, 570-571.	4.1	1
18	Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrology Dialysis Transplantation, 2022, 37, 628-637.	0.4	6

TION RE

#	Article	IF	CITATIONS
19	Drawing a single-cell landscape of the human kidney in (pseudo)-space and time. Kidney International, 2020, 97, 842-844.	2.6	2
20	Kidney dendritic cells: fundamental biology and functional roles in health and disease. Nature Reviews Nephrology, 2020, 16, 391-407.	4.1	60
21	Reconstructing human DC, monocyte and macrophage development in utero using single cell technologies. Molecular Immunology, 2020, 123, 1-6.	1.0	3
22	Developmental loss, but not pharmacological suppression, of renal carbonic anhydrase 2 results in pyelonephritis susceptibility. American Journal of Physiology - Renal Physiology, 2020, 318, F1441-F1453.	1.3	7
23	Quantitative Proteomics of All 14 Renal Tubule Segments in Rat. Journal of the American Society of Nephrology: JASN, 2020, 31, 1255-1266.	3.0	99
24	Human CNS barrier-forming organoids with cerebrospinal fluid production. Science, 2020, 369, .	6.0	244
25	Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15874-15883.	3.3	300
26	Kidney Perfusion as an Organ Quality Assessment Tool—Are We Counting Our Chickens Before They Have Hatched?. Journal of Clinical Medicine, 2020, 9, 879.	1.0	34
27	Applying singleâ€eell technologies to clinical pathology: progress in nephropathology. Journal of Pathology, 2020, 250, 693-704.	2.1	15
28	Long Term Culture of Human Kidney Proximal Tubule Epithelial Cells Maintains Lineage Functions and Serves as an Ex vivo Model for Coronavirus Associated Kidney Injury. Virologica Sinica, 2020, 35, 311-320.	1.2	32
29	Immunology in the Era of Single-Cell Technologies. Annual Review of Immunology, 2020, 38, 727-757.	9.5	57
30	CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nature Protocols, 2020, 15, 1484-1506.	5.5	1,768
31	Role of chemokines, innate and adaptive immunity. Cellular Signalling, 2020, 73, 109647.	1.7	36
32	SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 2020, 26, 681-687.	15.2	2,182
33	Systems Biology and Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 695-703.	2.2	15
34	Deciphering cell–cell interactions and communication from gene expression. Nature Reviews Genetics, 2021, 22, 71-88.	7.7	575
35	CD28 is expressed by macrophages with antiâ€inflammatory potential and limits their Tâ€cell activating capacity. European Journal of Immunology, 2021, 51, 824-834.	1.6	4
36	Beyond genomics—technological advances improving the molecular characterization and precision treatment of heart failure. Heart Failure Reviews, 2021, 26, 405-415.	1.7	7

	Сітатіо	n Report	
#	Article	IF	CITATIONS
37	Studying Kidney Diseases at the Single-Cell Level. Kidney Diseases (Basel, Switzerland), 2021, 7, 335-342.	1.2	3
38	Nanodelivery vehicles induce remote biochemical changes in vivo. Nanoscale, 2021, 13, 12623-12633.	2.8	6
39	Profiling immune cells in the kidney using tissue cytometry and machine learning. Kidney360, 0, , 10.34067/KID.0006802020.	0.9	5
42	Rare genetic variants affecting urine metabolite levels link population variation to inborn errors of metabolism. Nature Communications, 2021, 12, 964.	5.8	20
43	Phenotypic diversity and metabolic specialization of renal endothelial cells. Nature Reviews Nephrology, 2021, 17, 441-464.	4.1	60
46	Local cyclic adenosine monophosphate signalling cascades—Roles and targets in chronic kidney disease. Acta Physiologica, 2021, 232, e13641.	1.8	10
48	Multiomics uncovers developing immunological lineages in human. European Journal of Immunology, 2021, 51, 764-772.	1.6	8
49	Identification of a foetal epigenetic compartment in adult human kidney. Epigenetics, 2021, , 1-21.	1.3	0
52	How will artificial intelligence and bioinformatics change our understanding of IgA Nephropathy in the next decade?. Seminars in Immunopathology, 2021, 43, 739-752.	2.8	17
54	Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nature Communications, 2021, 12, 2141.	5.8	55
55	Targeting immune cell metabolism in kidney diseases. Nature Reviews Nephrology, 2021, 17, 465-480.	4.1	31
56	Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nature Immunology, 2021, 22, 639-653.	7.0	169
59	Separating measurement and expression models clarifies confusion in single-cell RNA sequencing analysis. Nature Genetics, 2021, 53, 770-777.	9.4	112
60	Single-cell transcriptomics: a novel precision medicine technique in nephrology. Korean Journal of Internal Medicine, 2021, 36, 479-490.	0.7	5
61	Renal Normothermic Machine Perfusion: The Road Toward Clinical Implementation of a Promising Pretransplant Organ Assessment Tool. Transplantation, 2022, 106, 268-279.	0.5	29
62	Macrophage Heterogeneity in Kidney Injury and Fibrosis. Frontiers in Immunology, 2021, 12, 681748.	2.2	47
63	<scp>LGR6</scp> marks nephron progenitor cells. Developmental Dynamics, 2021, 250, 1568-1583.	0.8	3
65	Expression and function of human ribonuclease 4 in the kidney and urinary tract. American Journal of Physiology - Renal Physiology, 2021, 320, F972-F983.	1.3	13

#	Article	IF	CITATIONS
66	SARS-CoV-2 Causes Acute Kidney Injury by Directly Infecting Renal Tubules. Frontiers in Cell and Developmental Biology, 2021, 9, 664868.	1.8	24
67	PPARs in liver physiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166097.	1.8	33
68	Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell and Tissue Research, 2021, 385, 335-344.	1.5	28
69	Single cell derived mRNA signals across human kidney tumors. Nature Communications, 2021, 12, 3896.	5.8	27
70	Single-cell biology to decode the immune cellular composition of kidney inflammation. Cell and Tissue Research, 2021, 385, 435-443.	1.5	5
72	Current Methodological Challenges of Single-Cell and Single-Nucleus RNA-Sequencing in Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 1838-1852.	3.0	21
74	A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets. Genes, 2021, 12, 898.	1.0	5
75	Single-cell analyses of renal cell cancers reveal insights into tumor microenvironment, cell of origin, and therapy response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	136
77	Single-Nucleus RNA Sequencing Identifies New Classes of Proximal Tubular Epithelial Cells in Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2021, 32, 2501-2516.	3.0	38
78	Progressive Cellular Senescence Mediates Renal Dysfunction in Ischemic Nephropathy. Journal of the American Society of Nephrology: JASN, 2021, 32, 1987-2004.	3.0	42
79	Deconvolution of Focal Segmental Glomerulosclerosis Pathophysiology Using Transcriptomics Techniques. Glomerular Diseases, 2021, 1, 265-276.	0.2	0
80	Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NanoImpact, 2021, 23, 100330.	2.4	8
81	Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. ELife, 2021, 10, .	2.8	67
82	Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biology, 2021, 19, 135.	1.7	20
84	Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nature Communications, 2021, 12, 4350.	5.8	125
86	Sfaira accelerates data and model reuse in single cell genomics. Genome Biology, 2021, 22, 248.	3.8	18
87	Kidney resident macrophages in the rat have minimal turnover and replacement by blood monocytes. American Journal of Physiology - Renal Physiology, 2021, 321, F162-F169.	1.3	7
89	Single-cell transcriptome analysis reveals the dynamics of human immune cells during early fetal skin development. Cell Reports, 2021, 36, 109524.	2.9	16

#	Article	IF	CITATIONS
90	Local antifungal immunity in the kidney in disseminated candidiasis. Current Opinion in Microbiology, 2021, 62, 1-7.	2.3	11
91	Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. Npj Regenerative Medicine, 2021, 6, 45.	2.5	23
92	Cross-tissue single-cell landscape of human monocytes and macrophages in health and disease. Immunity, 2021, 54, 1883-1900.e5.	6.6	233
93	Monocytes and Macrophages in Kidney Transplantation and Insights from Single Cell RNA-Seq Studies. Kidney360, 2021, 2, 1654-1659.	0.9	13
94	Myeloid Heterogeneity in Kidney Disease as Revealed through Single-Cell RNA Sequencing. Kidney360, 2021, 2, 1844-1851.	0.9	4
95	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	2.8	31
96	A roadmap for the Human Developmental Cell Atlas. Nature, 2021, 597, 196-205.	13.7	114
97	The Myeloid-Kidney Interface in Health and Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2022, 17, 323-331.	2.2	5
98	Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. Journal of Experimental Medicine, 2021, 218, .	4.2	98
99	Dissecting the human kidney allograft transcriptome: single-cell RNA sequencing. Current Opinion in Organ Transplantation, 2021, 26, 43-51.	0.8	10
108	Kidney-induced systemic tolerance of heart allografts in mice. JCI Insight, 2020, 5, .	2.3	10
109	Single cell transcriptomics of mouse kidney transplants reveals a myeloid cell pathway for transplant rejection. JCI Insight, 2020, 5, .	2.3	30
110	Blood Flow Restriction Training Blunts Chronic Kidney Disease Progression in Humans. Medicine and Science in Sports and Exercise, 2021, 53, 249-257.	0.2	23
111	Contactin-1 Antibodies Link Autoimmune Neuropathies to Nephrotic Syndrome. SSRN Electronic Journal, 0, , .	0.4	8
112	Knowledge synthesis of 100 million biomedical documents augments the deep expression profiling of coronavirus receptors. ELife, 2020, 9, .	2.8	61
113	The Advances of Single-Cell RNA-Seq in Kidney Immunology. Frontiers in Physiology, 2021, 12, 752679.	1.3	4
114	Single-Cell RNA Sequencing in Multiple Pathologic Types of Renal Cell Carcinoma Revealed Novel Potential Tumor-Specific Markers. Frontiers in Oncology, 2021, 11, 719564.	1.3	47
115	Multiplex Immunofluorescence for Detection of Spatial Distributions of Infiltrating T Cells Within Different Regions of Hepatic Lobules During Liver Transplantation Rejection. Inflammation, 2022, 45, 651-664.	1.7	6

#	Article	IF	CITATIONS
116	Efficient and precise single-cell reference atlas mapping with Symphony. Nature Communications, 2021, 12, 5890.	5.8	100
122	Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nature Methods, 2021, 18, 1352-1362.	9.0	276
123	Resident Macrophages in Cystic Kidney Disease. Kidney360, 2021, 2, 167-175.	0.9	16
124	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	4.6	68
125	Cell type ontologies of the Human Cell Atlas. Nature Cell Biology, 2021, 23, 1129-1135.	4.6	71
129	Kidney VISTA prevents IFN-γ/IL-9 axis–mediated tubulointerstitial fibrosis after acute glomerular injury. Journal of Clinical Investigation, 2022, 132, .	3.9	10
130	Epigenetics and tissue immunity—Translating environmental cues into functional adaptations*. Immunological Reviews, 2022, 305, 111-136.	2.8	6
131	Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. , 2022, 234, 108031.		17
132	The innate immune system in human kidney inflammaging. Journal of Nephrology, 2022, 35, 381-395.	0.9	21
133	How Many Cell Types Are in the Kidney and What Do They Do?. Annual Review of Physiology, 2022, 84, 507-531.	5.6	69
135	Accurate and fast cell marker gene identification with COSG. Briefings in Bioinformatics, 2022, 23, .	3.2	39
136	Advances in mixed cell deconvolution enable quantification of cell types in spatial transcriptomic data. Nature Communications, 2022, 13, 385.	5.8	100
138	System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell Reports Medicine, 2022, 3, 100522.	3.3	24
139	Single Cell RNA Sequencing Identifies a Unique Inflammatory Macrophage Subset as a Druggable Target for Alleviating Acute Kidney Injury. Advanced Science, 2022, 9, e2103675.	5.6	37
140	A Comprehensive Immune Cell Atlas of Cystic Kidney Disease Reveals the Involvement of Adaptive Immune Cells in Injury-Mediated Cyst Progression in Mice. Journal of the American Society of Nephrology: JASN, 2022, 33, 747-768.	3.0	8
141	Disruption of Kidney–Immune System Crosstalk in Sepsis with Acute Kidney Injury: Lessons Learned from Animal Models and Their Application to Human Health. International Journal of Molecular Sciences, 2022, 23, 1702.	1.8	16
142	Early prediction of preeclampsia in pregnancy with cell-free RNA. Nature, 2022, 602, 689-694.	13.7	86
143	Cell types of origin of the cell-free transcriptome. Nature Biotechnology, 2022, 40, 855-861.	9.4	41

#	Article	IF	CITATIONS
144	SARS-CoV-2 Entry Genes Are Most Highly Expressed in Nasal Goblet and Ciliated Cells within Human Airways. ArXiv Org, 2020, , .	1.2	1
145	Macrophages in the kidney in health, injury and repair. International Review of Cell and Molecular Biology, 2022, 367, 101-147.	1.6	6
146	Human Kidney Organoids and Tubuloids as Models of Complex Kidney Disease. American Journal of Pathology, 2022, 192, 738-749.	1.9	10
147	Insights Gained and Future Outlook From scRNAseq Studies in Autoimmune Rheumatic Diseases. Frontiers in Immunology, 2022, 13, 849050.	2.2	2
148	Single-cell atlases: shared and tissue-specific cell types across human organs. Nature Reviews Genetics, 2022, 23, 395-410.	7.7	71
149	Decoding the multicellular ecosystem of vena caval tumor thrombus in clear cellÂrenal cell carcinoma by single-cell RNA sequencing. Genome Biology, 2022, 23, 87.	3.8	24
151	Kidney Decellularized Extracellular Matrix Enhanced the Vascularization and Maturation of Human Kidney Organoids. Advanced Science, 2022, 9, e2103526.	5.6	47
152	Tissue Cytometry With Machine Learning in Kidney: From Small Specimens to Big Data. Frontiers in Physiology, 2022, 13, 832457.	1.3	3
153	Kidney Development: Recent Insights from Technological Advances. Physiology, 2022, 37, 207-215.	1.6	2
154	High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. IScience, 2022, 25, 104097.	1.9	32
156	Resolving the immune landscape of human prostate at a single-cell level in health and cancer. Cell Reports, 2021, 37, 110132.	2.9	40
157	Molecular Characterization of Membranous Nephropathy. Journal of the American Society of Nephrology: JASN, 2022, 33, 1208-1221.	3.0	12
159	Tissue Immunity in the Bladder. Annual Review of Immunology, 2022, 40, 499-523.	9.5	7
160	Expression-based species deconvolution and realignment removes misalignment error in multispecies single-cell data. BMC Bioinformatics, 2022, 23, 157.	1.2	0
161	Establishment of tissue-resident immune populations in the fetus. Seminars in Immunopathology, 2022, 44, 747-766.	2.8	5
162	Single-cell profiling of human dura and meningioma reveals cellular meningeal landscape and insights into meningioma immune response. Genome Medicine, 2022, 14, 49.	3.6	37
163	Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. European Journal of Immunology, 2022, 52, 1258-1272.	1.6	1
164	Mapping the developing human immune system across organs. Science, 2022, 376, eabo0510.	6.0	126

# 165	ARTICLE Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	IF 13.5	CITATIONS 88
166	Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science, 2022, 376, eabl5197.	6.0	265
167	GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. Journal of Experimental Medicine, 2022, 219, .	4.2	4
168	Integrating spatial transcriptomics with single-cell transcriptomics reveals a spatiotemporal gene landscape of the human developing kidney. Cell and Bioscience, 2022, 12, .	2.1	5
169	Detection of infiltrating fibroblasts by single-cell transcriptomics in human kidney allografts. PLoS ONE, 2022, 17, e0267704.	1.1	14
171	Transcriptional profile changes after treatment of ischemia reperfusion injury-induced kidney fibrosis with 1812-glycyrrhetinic acid. Renal Failure, 2022, 44, 660-671.	0.8	5
172	A reference tissue atlas for the human kidney. Science Advances, 2022, 8, .	4.7	67
173	Molecular Characterization of the Tumor Microenvironment in Renal Medullary Carcinoma. Frontiers in Oncology, 0, 12, .	1.3	4
175	Spatially Resolved Transcriptomes of Mammalian Kidneys Illustrate the Molecular Complexity and Interactions of Functional Nephron Segments. Frontiers in Medicine, 0, 9, .	1.2	6
176	Systematic identification of cell-fate regulatory programs using a single-cell atlas of mouse development. Nature Genetics, 2022, 54, 1051-1061.	9.4	29
177	Intrarenal Single-Cell Sequencing of Hepatitis B Virus Associated Membranous Nephropathy. Frontiers in Medicine, 0, 9, .	1.2	2
178	Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease. MBio, 0, , .	1.8	3
179	Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney International, 2022, 102, 708-719.	2.6	0
180	Cellular recovery after prolonged warm ischaemia of the whole body. Nature, 2022, 608, 405-412.	13.7	34
182	Integrated single-cell transcriptomics and proteomics reveal cellular-specific responses and microenvironment remodeling in aristolochic acid nephropathy. JCI Insight, 2022, 7, .	2.3	10
185	Inverted direct allorecognition triggers early donor-specific antibody responses after transplantation. Science Translational Medicine, 2022, 14, .	5.8	8
186	HTCA: a database with an in-depth characterization of the single-cell human transcriptome. Nucleic Acids Research, 2023, 51, D1019-D1028.	6.5	11
187	Identifying disease-critical cell types and cellular processes by integrating single-cell RNA-sequencing and human genetics. Nature Genetics, 2022, 54, 1479-1492.	9.4	73

#	Article	IF	CITATIONS
188	Immune repertoire and evolutionary trajectory analysis in the development of diabetic nephropathy. Frontiers in Immunology, 0, 13, .	2.2	0
189	Approaches to benchmark and characterize <i>in vitro</i> human model systems. Development (Cambridge), 2022, 149, .	1.2	5
191	Metabolic signatures of immune cells in chronic kidney disease. Expert Reviews in Molecular Medicine, 2022, 24, .	1.6	6
192	Distinct pathogenic roles for resident and monocyte-derived macrophages in lupus nephritis. JCI Insight, 2022, 7, .	2.3	10
193	Differential Cytokine Levels during Normothermic Kidney Perfusion with Whole Blood- or Red Blood Cell-Based Perfusates—Results of a Scoping Review and Experimental Study. Journal of Clinical Medicine, 2022, 11, 6618.	1.0	3
195	Single-Cell Gene Expression Analysis in Patients with Medullary Sponge Kidney and a Retrospective Study. BioMed Research International, 2022, 2022, 1-11.	0.9	0
196	A macrophage-endothelial immunoregulatory axis ameliorates septic acute kidney injury. Kidney International, 2023, 103, 514-528.	2.6	11
197	Where Are They Now: Spatial and Molecular Diversity of Tissue-Resident Macrophages in the Kidney. Seminars in Nephrology, 2022, , 151276.	0.6	3
198	Caspase-8 activation in neutrophils facilitates autoimmune kidney vasculitis through regulating CD4+ effector memory T cells. Frontiers in Immunology, 0, 13, .	2.2	3
199	Novel aspects in the pathophysiology and diagnosis of glomerular diseases. Annals of the Rheumatic Diseases, 2023, 82, 585-593.	0.5	7
200	Defining protein expression in the kidney at large scale: from antibody validation to cytometry analysis. American Journal of Physiology - Renal Physiology, 0, , .	1.3	0
201	Mapping single-cell transcriptomes in the intra-tumoral and associated territories of kidney cancer. Cancer Cell, 2022, 40, 1583-1599.e10.	7.7	39
202	A kidney resident macrophage subset is a candidate biomarker for renal cystic disease in preclinical models. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6
203	T Cells Contribute to Pathological Responses in the Non-Targeted Rat Heart following Irradiation of the Kidneys. Toxics, 2022, 10, 797.	1.6	4
204	Acute Kidney Injury in Cancer Immunotherapy Recipients. Cells, 2022, 11, 3991.	1.8	4
205	Single-cell profiling of healthy human kidney reveals features of sex-based transcriptional programs and tissue-specific immunity. Nature Communications, 2022, 13, .	5.8	17
206	Renal interstitial cells promote nephron regeneration by secreting prostaglandin E2. ELife, 0, 12, .	2.8	8
207	Challenges of defining renal response in ANCA-associated vasculitis: call to action?. CKJ: Clinical Kidney Journal, 2023, 16, 965-975.	1.4	3

#	Article	IF	CITATIONS
208	Single-cell transcriptomics: A new tool for studying diabetic kidney disease. Frontiers in Physiology, 0, 13, .	1.3	5
209	Dietary Cholesterol Metabolite Regulation of Tissue Immune Cell Development and Function. Journal of Immunology, 2022, 209, 645-653.	0.4	5
211	Tissue-resident memory T cells in renal autoimmune diseases. Frontiers in Immunology, 0, 14, .	2.2	1
212	Locally sourced: site-specific immune barriers to metastasis. Nature Reviews Immunology, 2023, 23, 522-538.	10.6	9
214	Activation of Angiopoietin-Tie2 Signaling Protects the Kidney from Ischemic Injury by Modulation of Endothelial-Specific Pathways. Journal of the American Society of Nephrology: JASN, 2023, 34, 969-987.	3.0	5
215	Protecting the kidney in sepsis: resident macrophages to the rescue. Kidney International, 2023, 103, 461-463.	2.6	0
216	Conundrums of choice of â€ [~] normal' kidney tissue for single cell studies. Current Opinion in Nephrology and Hypertension, 2023, 32, 249-256.	1.0	1
217	How to Best Protect Kidneys for Transplantation—Mechanistic Target. Journal of Clinical Medicine, 2023, 12, 1787.	1.0	2
219	Contactin-1 links autoimmune neuropathy and membranous glomerulonephritis. PLoS ONE, 2023, 18, e0281156.	1.1	9
220	Imputation-powered whole-exome analysis identifies genes associated with kidney function and disease in the UK Biobank. Nature Communications, 2023, 14, .	5.8	3
221	Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia. Nature Biotechnology, 2023, 41, 1618-1632.	9.4	15
222	Rate thresholds in cell signaling have functional and phenotypic consequences in non-linear time-dependent environments. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	4
223	New Frontiers in Diagnosis and Prevention of Acute Kidney Injury (AKI): The Role of Dendritic Cells and Innovative High-Throughput Techniques. Applied Sciences (Switzerland), 2023, 13, 4276.	1.3	0
224	RAGE is a critical factor of sex-based differences in age-induced kidney damage. Frontiers in Physiology, 0, 14, .	1.3	0
225	Standardization and Interpretation of RNA-sequencing for Transplantation. Transplantation, 2023, 107, 2155-2167.	0.5	3
243	Isolation and Flow Cytometry Analysis of Macrophages from the Kidney. Methods in Molecular Biology, 2024, , 171-181.	0.4	1
246	Bioinformatics in urology $\hat{a} \in$ " molecular characterization of pathophysiology and response to treatment. Nature Reviews Urology, 0, , .	1.9	0
256	Clonal haematopoiesis, ageing and kidney disease. Nature Reviews Nephrology, 2024, 20, 161-174.	4.1	1

#	Article	IF	CITATIONS
257	The immunoregulatory roles of non-haematopoietic cells in the kidney. Nature Reviews Nephrology, 2024, 20, 206-217.	4.1	1
265	Single-cell genomics sheds light on kidney tissue immunity. Nature Reviews Nephrology, 0, , .	4.1	0
267	Intercalated cell function, kidney innate immunity, and urinary tract infections. Pflugers Archiv European Journal of Physiology, 2024, 476, 565-578.	1.3	1