Construction of Dually Responsive Nanotransformers v Nanosphere–Nanofiber–Nanosphere Transition for Anticancer Nanodrugs

ACS Nano 13, 11781-11792 DOI: 10.1021/acsnano.9b05749

Citation Report

#	Article	IF	CITATIONS
1	Recent advances of morphology adaptive nanomaterials for anti-cancer drug delivery. Progress in Natural Science: Materials International, 2020, 30, 555-566.	1.8	11
2	Selfâ€Reporting Gold Nanourchins for Tumorâ€Targeted Chemoâ€Photothermal Therapy Integrated with Multimodal Imaging. Advanced Therapeutics, 2020, 3, 2000114.	1.6	6
3	Recent Developments in Pathological pH-Responsive Polymeric Nanobiosensors for Cancer Theranostics. Frontiers in Bioengineering and Biotechnology, 2020, 8, 601586.	2.0	7
4	Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie - International Edition, 2020, 59, 20371-20375.	7.2	72
5	Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie, 2020, 132, 20551-20555.	1.6	6
6	High-Yielding Water-Soluble Asymmetric Cyanine Dyes for Labeling Applications. Journal of Organic Chemistry, 2020, 85, 9751-9760.	1.7	11
7	Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS Applied Bio Materials, 2020, 3, 5529-5551.	2.3	21
8	A Self-Evaluating Photothermal Therapeutic Nanoparticle. ACS Nano, 2020, 14, 9585-9593.	7.3	61
9	Extract Derived From Black Rice Functions as a Photothermal Agent for Suppressing Tumor Growth and Metastasis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 904.	2.0	3
10	Sizeâ€Transformable Nanostructures: From Design to Biomedical Applications. Advanced Materials, 2020, 32, e2003752.	11.1	52
11	Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug Delivery, 2020, 27, 1474-1490.	2.5	71
12	Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics, 2020, 12, 837.	2.0	99
13	Colorectal Tumor Microenvironmentâ€Activated Bioâ€Decomposable and Metabolizable Cu ₂ O@CaCO ₃ Nanocomposites for Synergistic Oncotherapy. Advanced Materials, 2020, 32, e2004647.	11.1	157
14	Retooling Cancer Nanotherapeutics' Entry into Tumors to Alleviate Tumoral Hypoxia. Small, 2020, 16, e2003000.	5.2	36
15	Pd@Pt-GOx/HA as a Novel Enzymatic Cascade Nanoreactor for High-Efficiency Starving-Enhanced Chemodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2020, 12, 51249-51262.	4.0	116
16	Self-assembly of pentapeptides into morphology-adaptable nanomedicines for enhanced combinatorial chemo-photodynamic therapy. Nano Today, 2020, 33, 100878.	6.2	45
17	A nano-integrated diagnostic and therapeutic platform with oxidation–reduction reactions in tumor microenvironments. Nanoscale Advances, 2020, 2, 2192-2202.	2.2	2
18	Mitochondrion- and nucleus-acting polymeric nanoagents for chemo-photothermal combination therapy. Science China Materials, 2020, 63, 851-863.	3.5	17

#	Article	IF	CITATIONS
19	Near-Infrared Laser-Triggered <i>In Situ</i> Dimorphic Transformation of BF ₂ -Azadipyrromethene Nanoaggregates for Enhanced Solid Tumor Penetration. ACS Nano, 2020, 14, 3640-3650.	7.3	72
20	Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Advanced Healthcare Materials, 2020, 9, e1901665.	3.9	76
21	Size-Transformable Hyaluronan Stacked Self-Assembling Peptide Nanoparticles for Improved Transcellular Tumor Penetration and Photo–Chemo Combination Therapy. ACS Nano, 2020, 14, 1958-1970.	7.3	101
22	Recent Advances in Hyperthermia Therapyâ€Based Synergistic Immunotherapy. Advanced Materials, 2021, 33, e2004788.	11.1	233
23	Smart materials for drug delivery and cancer therapy. View, 2021, 2, 20200042.	2.7	99
24	Silk Sericin-Based Nanoparticle as the Photosensitizer Chlorin e6 Carrier for Enhanced Cancer Photodynamic Therapy. ACS Sustainable Chemistry and Engineering, 2021, 9, 3213-3222.	3.2	7
25	Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chemical Reviews, 2021, 121, 11653-11698.	23.0	51
26	Nanomedicines for combating multidrug resistance of cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1715.	3.3	14
27	Polyphenol ontaining Nanoparticles: Synthesis, Properties, and Therapeutic Delivery. Advanced Materials, 2021, 33, e2007356.	11.1	216
28	Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 17158-17173.	4.0	30
29	Smart transformable nanomedicines for cancer therapy. Biomaterials, 2021, 271, 120737.	5.7	64
30	Low-Temperature Photothermal Therapy: Strategies and Applications. Research, 2021, 2021, 9816594.	2.8	92
31	Dual Gateâ€Controlled Therapeutics for Overcoming Bacteriumâ€Induced Drug Resistance and Potentiating Cancer Immunotherapy. Angewandte Chemie, 2021, 133, 14132-14140.	1.6	4
32	Dual Gate ontrolled Therapeutics for Overcoming Bacteriumâ€Induced Drug Resistance and Potentiating Cancer Immunotherapy. Angewandte Chemie - International Edition, 2021, 60, 14013-14021.	7.2	42
33	Metal Phenolic Networkâ€Integrated Multistage Nanosystem for Enhanced Drug Delivery to Solid Tumors. Small, 2021, 17, e2100789.	5.2	19
34	Construction of Novel Nanocomposites (Cu-MOF/GOD@HA) for Chemodynamic Therapy. Nanomaterials, 2021, 11, 1843.	1.9	24
35	Stimuli-Responsive Nanofibers Containing Gold Nanorods for On-Demand Drug Delivery Platforms. Pharmaceutics, 2021, 13, 1319.	2.0	27
36	Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnology Advances, 2021, 50, 107769.	6.0	13

#	Article	IF	CITATIONS
37	Enzyme-induced morphological transformation of drug carriers: Implications for cytotoxicity and the retention time of antitumor agents. Materials Science and Engineering C, 2021, 129, 112389.	3.8	10
38	Self-targeting nanotherapy based on functionalized graphene oxide for synergistic thermochemotherapy. Journal of Colloid and Interface Science, 2021, 603, 70-84.	5.0	7
39	Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 7318-7327.	2.9	29
40	Recent progress in functional peptides designed for tumor-targeted imaging and therapy. Journal of Materials Chemistry C, 2021, 9, 3749-3772.	2.7	8
41	Smart Nanogatekeepers for Tumor Theranostics. Small, 2021, 17, 2103712.	5.2	3
42	Recent Advances of Nanocarriers for Effective Delivery of Therapeutic Peptides. Precision Nanomedicine, 2020, 3, .	0.4	2
43	Enzyme-Induced Transformable Peptide Nanocarriers with Enhanced Drug Permeability and Retention to Improve Tumor Nanotherapy Efficacy. ACS Applied Materials & Interfaces, 2021, 13, 55913-55927.	4.0	27
44	FC-BBR/IND-induced glucose oxidase nanodrugs for targeted combination therapy. International Journal of Pharmaceutics, 2022, 611, 121349.	2.6	4
45	Melittin-Based Nano-Delivery Systems for Cancer Therapy. Biomolecules, 2022, 12, 118.	1.8	32
46	pH-Triggered Transition from Micellar Aggregation to a Host–Guest Complex Accompanied by a Color Change. Langmuir, 2022, 38, 2145-2152.	1.6	4
47	Research progress on self-assembled nanodrug delivery systems. Journal of Materials Chemistry B, 2022, 10, 1908-1922.	2.9	39
48	Programmed Stimuli-Responsive Carbon Dot-Nanogel Hybrids for Imaging-Guided Enhanced Tumor Phototherapy. ACS Applied Materials & Interfaces, 2022, 14, 10142-10153.	4.0	19
49	Transformation of Amorphous Nanobowls to Crystalline Ellipsoids Induced by <i>Transâ€Cis</i> Isomerization of Azobenzene. Macromolecular Rapid Communications, 2022, 43, e2200131.	2.0	9
50	Current Nano-Strategies to Target Tumor Microenvironment to Improve Anti-Tumor efficiency. OpenNano, 2022, , 100042.	1.8	1
51	Advances in intelligent-responsive nanocarriers for cancer therapy. Pharmacological Research, 2022, 178, 106184.	3.1	18
52	Bioorthogonal chemistry and illumination controlled programmed size-changeable nanomedicine for synergistic photodynamic and hypoxia-activated therapy. Biomaterials, 2022, 284, 121480.	5.7	13
54	Spanlastics a Novel Nanovesicular Carrier: Its Potential Application and Emerging Trends in Therapeutic Delivery. AAPS PharmSciTech, 2022, 23, 112.	1.5	15
55	pH-Responsive Self-Assembling Peptide-Based Biomaterials: Designs and Applications. ACS Applied Bio Materials, 2022, 5, 4635-4651.	2.3	17

CITATION REPORT

#	Article	IF	CITATIONS
56	pH-responsive co-loaded sulfated hyaluronic acid nanoparticles for treatment of breast cancer via co-targeting tumor cells and CAFs. Recent Patents on Anti-Cancer Drug Discovery, 2022, 17, .	0.8	4
57	External Stimuli Responsive Nanofibers in Biomedical Engineering. Advances in Polymer Science, 2022, ,	0.4	0
58	Inducible endothelial leakiness in nanotherapeutic applications. Biomaterials, 2022, 287, 121640.	5.7	25
59	Lighting up Self-Quenching Nanoaggregates with Protein Corona for Simultaneous Intraoperative Imaging and Photothermal Theranostics of Metastatic Cancer. Analytical Chemistry, 2022, 94, 9775-9784.	3.2	4
60	Delivery process and effective design of vectors for cancer therapy. Journal of Materials Chemistry B, 2022, 10, 6896-6921.	2.9	8
61	An inflammation-targeted nanoparticle with bacteria forced release of polymyxin B for pneumonia therapy. Nanoscale, 2022, 14, 15291-15304.	2.8	12
62	Nanomodulation and nanotherapeutics of tumor-microenvironment. OpenNano, 2022, 8, 100099.	1.8	0
63	Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. Journal of Controlled Release, 2022, 352, 600-618.	4.8	10
64	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	31
65	Selfâ€Assembled Peptideâ€Based Nanodrugs: Molecular Design, Synthesis, Functionalization, and Targeted Tumor Bioimaging and Biotherapy. Small, 2023, 19, .	5.2	16
66	Metal–Phenolic Network-Facilitated "Foe-to-Friend―Conversion of Melittin for Cancer Immunotherapy with Boosted Abscopal Effect. Research, 2023, 6, .	2.8	6
67	A simple self-assembling system of melittin for hepatoma treatment. Cancer Nanotechnology, 2023, 14, .	1.9	3
68	Recent progress in nanocarrier-based drug delivery systems for antitumour metastasis. European Journal of Medicinal Chemistry, 2023, 252, 115259.	2.6	8
69	Research Progress of Nanomedicine-Based Mild Photothermal Therapy in Tumor. International Journal of Nanomedicine, 0, Volume 18, 1433-1468.	3.3	9
70	Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. Small, 2023, 19, .	5.2	4
71	Activatable Graphene Quantumâ€Dotâ€Based Nanotransformers for Longâ€Period Tumor Imaging and Repeated Photodynamic Therapy. Advanced Materials, 2023, 35, .	11.1	9
72	Transformable nanodrugs for overcoming the biological barriers in the tumor environment during drug delivery. Nanoscale, 2023, 15, 8532-8547.	2.8	3
73	Molecularly Stimuli-Responsive Self-Assembled Peptide Nanoparticles for Targeted Imaging and Therapy. ACS Nano, 2023, 17, 8004-8025.	7.3	28

CITATION REPORT

ARTICLE

IF CITATIONS