The Lord of the Lungs: The essential role of pulmonary nanoparticles

European Journal of Pharmaceutics and Biopharmaceutics 144, 230-243

DOI: 10.1016/j.ejpb.2019.09.020

Citation Report

#	Article	IF	CITATIONS
1	Electrical characterization of circulation weather types in Northern Spain based on atmospheric nanoparticles measurements: A pilot study. Science of the Total Environment, 2020, 704, 135320.	3.9	5
2	Interactions of particulate matter and pulmonary surfactant: Implications for human health. Advances in Colloid and Interface Science, 2020, 284, 102244.	7.0	56
3	Lyophilization and nebulization of pulmonary surfactant-coated nanogels for siRNA inhalation therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 157, 191-199.	2.0	25
4	Inhaled RNA Therapy: From Promise to Reality. Trends in Pharmacological Sciences, 2020, 41, 715-729.	4.0	58
5	Airborne Transmission of COVID-19: Aerosol Dispersion, Lung Deposition, and Virus-Receptor Interactions. ACS Nano, 2020, 14, 16502-16524.	7.3	109
6	Atomic Force Microscopy Imaging of Adsorbed Pulmonary Surfactant Films. Biophysical Journal, 2020, 119, 756-766.	0.2	30
7	Disease Models: Lung Models for Testing Drugs Against Inflammation and Infection. Handbook of Experimental Pharmacology, 2020, 265, 157-186.	0.9	5
8	Simulation of nanoparticle transport and adsorption in a microfluidic lung-on-a-chip device. Biomicrofluidics, 2020, 14, 044117.	1.2	18
9	Exploring the influence of inhaled liposome membrane fluidity on its interaction with pulmonary physiological barriers. Biomaterials Science, 2020, 8, 6786-6797.	2.6	24
10	Molecular and cellular cues governing nanomaterial–mucosae interactions: from nanomedicine to nanotoxicology. Chemical Society Reviews, 2020, 49, 5058-5100.	18.7	39
11	Interaction of Particles with Langmuir Monolayers of 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphocholine: A Matter of Chemistry?. Coatings, 2020, 10, 469.	1.2	19
12	Protective effects of pulmonary surfactant on decompression sickness in rats. Journal of Applied Physiology, 2021, 130, 400-407.	1.2	5
13	Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 292-307.	1.4	39
14	Albumin-Based LL37 Peptide Nanoparticles as a Sustained Release System against <i>Pseudomonas aeruginosa</i> Lung Infection. ACS Biomaterials Science and Engineering, 2021, 7, 1817-1826.	2.6	13
15	Fluid Interfaces with Physiological Relevance. SSRN Electronic Journal, 0, , .	0.4	0
16	A nano perspective behind the COVID-19 pandemic. Nanoscale Horizons, 2021, 6, 842-855.	4.1	1
17	Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. Journal of Nanobiotechnology, 2021, 19, 19.	4.2	23
18	Surfactant Protein B Promotes Cytosolic SiRNA Delivery by Adopting a Virus-like Mechanism of Action. ACS Nano, 2021, 15, 8095-8109.	7.3	24

CITATION REPORT

#	Article	IF	CITATIONS
19	Polyhydroxyalkanoate Nanoparticles for Pulmonary Drug Delivery: Interaction with Lung Surfactant. Nanomaterials, 2021, 11, 1482.	1.9	20
20	Particle-laden fluid/fluid interfaces: physico-chemical foundations. Journal of Physics Condensed Matter, 2021, 33, 333001.	0.7	21
21	Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomaterialia, 2021, 130, 32-53.	4.1	24
22	Inhaled aerosols: Their role in COVID-19 transmission, including biophysical interactions in the lungs. Current Opinion in Colloid and Interface Science, 2021, 54, 101451.	3.4	33
23	Pulmonary Surfactant: A Unique Biomaterial with Life-saving Therapeutic Applications. Current Medicinal Chemistry, 2022, 29, 526-590.	1.2	9
24	Nanomaterials as Source of Environmental Contaminants: From Exposure to Preventive Interventions. Emerging Contaminants and Associated Treatment Technologies, 2021, , 355-400.	0.4	2
25	Shape matters—the interaction of gold nanoparticles with model lung surfactant monolayers. Journal of the Royal Society Interface, 2021, 18, 20210402.	1.5	5
26	Nanomaterial-based biosensors for COVID-19 detection. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 955-978.	6.8	5
27	Porous particulate platforms for enhanced pulmonary delivery of bioactives. , 2020, , 359-373.		0
28	Systematic Analysis of Composition, Interfacial Performance and Effects of Pulmonary Surfactant Preparations on Cellular Uptake and Cytotoxicity of Aerosolized Nanomaterials. Small Science, 2021, 1, 2100067.	5.8	6
29	Nanoparticles for local delivery of siRNA in lung therapy. Advanced Drug Delivery Reviews, 2021, 179, 114038.	6.6	23
30	Inhaled curcumin mesoporous polydopamine nanoparticles against radiation pneumonitis. Acta Pharmaceutica Sinica B, 2022, 12, 2522-2532.	5.7	29
31	Evaluation of the impact of carbonaceous particles in the mechanical performance of lipid Langmuir monolayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127974.	2.3	6
32	Physicochemical properties of nanoparticles affecting their fate and the physiological function of pulmonary surfactants. Acta Biomaterialia, 2022, 140, 76-87.	4.1	26
33	Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. Environmental Science & Technology, 2022, 56, 7308-7318.	4.6	8
34	The Influence of Polysaccharides/TiO2 on the Model Membranes of Dipalmitoylphosphatidylglycerol and Bacterial Lipids. Molecules, 2022, 27, 343.	1.7	7
35	Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Advanced Drug Delivery Reviews, 2022, 183, 114141.	6.6	17
36	Elucidating inhaled liposome surface charge on its interaction with biological barriers in the lung. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 101-111.	2.0	27

#	Article	IF	CITATIONS
37	Role of surfactants in pulmonary drug delivery. , 2022, , 559-577.		9
38	Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. Coatings, 2022, 12, 277.	1.2	7
39	Aerosolizable Lipid-Nanovesicles Encapsulating Voriconazole Effectively Permeate Pulmonary Barriers and Target Lung Cells. Frontiers in Pharmacology, 2021, 12, 734913.	1.6	0
40	The lung surfactant activity probed with molecular dynamics simulations. Advances in Colloid and Interface Science, 2022, 304, 102659.	7.0	6
41	Aerosol–Cell Exposure System Applied to Semi-Adherent Cells for Aerosolization of Lung Surfactant and Nanoparticles Followed by High Quality RNA Extraction. Nanomaterials, 2022, 12, 1362.	1.9	6
42	Surface Modification of Lipid-Based Nanoparticles. ACS Nano, 2022, 16, 7168-7196.	7.3	49
43	3D Bioprinting of Human Hollow Organs. AAPS PharmSciTech, 2022, 23, 139.	1.5	15
44	The influence of a biomimetic pulmonary surfactant modification on the in vivo fate of nanoparticles in the lung. Acta Biomaterialia, 2022, 147, 391-402.	4.1	12
45	Molecular basis of transport of surface functionalised gold nanoparticles to pulmonary surfactant. RSC Advances, 2022, 12, 18012-18021.	1.7	1
46	Lung surfactant negatively affects the photodynamic inactivation of bacteria—inÂvitro and molecular dynamic simulation analyses. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
47	Lung Models to Evaluate Silver Nanoparticles' Toxicity and Their Impact on Human Health. Nanomaterials, 2022, 12, 2316.	1.9	13
48	A toxicological profile of silica nanoparticles. Toxicology Research, 2022, 11, 565-582.	0.9	22
49	The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity and anti-phyto-microbial activity. Biomedicine and Pharmacotherapy, 2022, 155, 113658.	2.5	45
50	Pulmonary Delivery of Messenger RNA (mRNA) Therapeutics for Respiratory Diseases. RNA Technologies, 2022, , 139-156.	0.2	1
51	Effect of 1-alkyl-1-methylpiperidinium bromides on lipids of fungal plasma membrane and lung surfactant. Chemistry and Physics of Lipids, 2022, 248, 105240.	1.5	2
52	Challenges and Strategies to Enhance the Systemic Absorption of Inhaled Peptides and Proteins. Pharmaceutical Research, 2023, 40, 1037-1055.	1.7	10
53	Optimization of Lung Surfactant Coating of siRNA Polyplexes for Pulmonary Delivery. Pharmaceutical Research, 2024, 41, 77-91.	1.7	3
54	Nanoparticles in Drug Delivery: From History to Therapeutic Applications. Nanomaterials, 2022, 12, 4494.	1.9	46

CITATION REPORT

#	Article	IF	CITATIONS
55	Pulmonary Administration of the Liposome-Based Adjuvant CAF01: Effect of Surface Charge on Mucosal Adjuvant Function. Molecular Pharmaceutics, 2023, 20, 953-970.	2.3	2
56	A Monoclonal Human Alveolar Epithelial Cell Line ("Arloâ€) with Pronounced Barrier Function for Studying Drug Permeability and Viral Infections. Advanced Science, 2023, 10, .	5.6	6
57	Inhaled Lipid Nanoparticles: A Feasible Tool for a Challenging Route. Current Drug Delivery, 2024, 21, 309-311.	0.8	0
59	Advances in Pulmonary Nanopharmacology. , 2023, , 1-27.		0
60	A recent overview of surfactant–drug interactions and their importance. RSC Advances, 2023, 13, 17685-17704.	1.7	16
73	Pulmonary Delivery of Nucleic Acids. AAPS Introductions in the Pharmaceutical Sciences, 2023, , 93-122.	0.1	0
77	Nanoparticles in Air and Their Impact on Air Quality. , 2024, , 183-202.		0
78	Human Health Implications of Environmental Nanoparticles. , 2024, , 235-266.		0

CITATION REPORT