Mechanisms of 3D cell migration

Nature Reviews Molecular Cell Biology 20, 738-752 DOI: 10.1038/s41580-019-0172-9

Citation Report

#	Article	IF	CITATIONS
1	Invertebrate Retinal Progenitors as Regenerative Models in a Microfluidic System. Cells, 2019, 8, 1301.	1.8	12
2	Collective cancer cell invasion requires RNA accumulation at the invasive front. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27423-27434.	3.3	35
3	In invasion assays, the breast cancer cell nucleus leads the way. BMC Research Notes, 2020, 13, 480.	0.6	0
4	All Roads Lead to Directional Cell Migration. Trends in Cell Biology, 2020, 30, 852-868.	3.6	101
5	Progress in the mechanical modulation of cell functions in tissue engineering. Biomaterials Science, 2020, 8, 7033-7081.	2.6	36
6	Macropinocytosis-mediated membrane recycling drives neural crest migration by delivering F-actin to the lamellipodium. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27400-27411.	3.3	17
7	Unraveling the mechanobiology of immune cells. Current Opinion in Biotechnology, 2020, 66, 236-245.	3.3	55
8	Cytoskeletal Crosstalk in Cell Migration. Trends in Cell Biology, 2020, 30, 720-735.	3.6	225
9	Mechanobiology of leader–follower dynamics in epithelial cell migration. Current Opinion in Cell Biology, 2020, 66, 97-103.	2.6	17
10	Principles of Leukocyte Migration Strategies. Trends in Cell Biology, 2020, 30, 818-832.	3.6	64
11	Direct comparison of five different 3D extracellular matrix model systems for characterization of cancer cell migration. Cancer Reports, 2020, 3, e1257.	0.6	24
12	Cytoskeletal Remodeling in Cancer. Biology, 2020, 9, 385.	1.3	77
13	Computational models of migration modes improve our understanding of metastasis. APL Bioengineering, 2020, 4, 041505.	3.3	10
14	Quantitative Imaging of pN Intercellular Force and Energetic Costs during Collective Cell Migration in Epithelial Wound Healing. Analytical Chemistry, 2020, 92, 16180-16187.	3.2	12
15	Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells. International Review of Cell and Molecular Biology, 2020, 356, 197-256.	1.6	22
16	Using migrating cells as probes to illuminate features in live embryonic tissues. Science Advances, 2020, 6, .	4.7	6
17	In vitro 3D Systems to Model Tumor Angiogenesis and Interactions With Stromal Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 594903.	1.8	34
18	Vascular surveillance by haptotactic blood platelets in inflammation and infection. Nature Communications, 2020, 11, 5778.	5.8	48

TATION REPO

#	Article	IF	CITATIONS
19	Advances in single cell technologies in immunology. BioTechniques, 2020, 69, 226-236.	0.8	9
20	Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. Small GTPases, 2021, 12, 358-371.	0.7	26
21	A 3D Microfabricated Scaffold System for Unidirectional Cell Migration. Advanced Biology, 2020, 4, e2000113.	3.0	4
22	Melt Electrowritten In Vitro Radial Device to Study Cell Growth and Migration. Advanced Biology, 2020, 4, e2000077.	3.0	18
23	Remodeling of Three-Dimensional Collagen I Matrices by Human Bone Marrow Stromal Cells during Osteogenic Differentiation <i>In Vitro</i> . ACS Applied Bio Materials, 2020, 3, 6967-6978.	2.3	10
24	T Cell Motility─How Is It Regulated?. Frontiers in Immunology, 2020, 11, 588642.	2.2	4
26	Molecular Regulators of Cellular Mechanoadaptation at Cell–Material Interfaces. Frontiers in Bioengineering and Biotechnology, 2020, 8, 608569.	2.0	12
27	Study on Development of Composite Hydrogels With Tunable Structures and Properties for Tumor-on-a-Chip Research. Frontiers in Bioengineering and Biotechnology, 2020, 8, 611796.	2.0	9
28	Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. International Review of Cell and Molecular Biology, 2020, 355, 1-52.	1.6	28
29	Compression Bioreactor-Based Mechanical Loading Induces Mobilization of Human Bone Marrow-Derived Mesenchymal Stromal Cells into Collagen Scaffolds In Vitro. International Journal of Molecular Sciences, 2020, 21, 8249.	1.8	2
30	Soy Isoflavones Accelerate Glial Cell Migration via GPER-Mediated Signal Transduction Pathway. Frontiers in Endocrinology, 2020, 11, 554941.	1.5	18
31	Autophagy in fibroblasts induced by cigarette smoke extract promotes invasion in lung cancer cells. International Journal of Cancer, 2020, 147, 2587-2596.	2.3	15
32	A flexible network of vimentin intermediate filaments promotes migration of amoeboid cancer cells through confined environments. Journal of Biological Chemistry, 2020, 295, 6700-6709.	1.6	38
33	Generation of 3D Tumor Spheroids with Encapsulating Basement Membranes for Invasion Studies. Current Protocols in Cell Biology, 2020, 87, e105.	2.3	17
34	Coupling Polar Adhesion with Traction, Spring, and Torque Forces Allows High-Speed Helical Migration of the Protozoan Parasite <i>Toxoplasma</i> . ACS Nano, 2020, 14, 7121-7139.	7.3	30
35	The extracellular matrix in development. Development (Cambridge), 2020, 147, .	1.2	210
36	Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation. PLoS Computational Biology, 2020, 16, e1007890.	1.5	33
37	Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model. Cancers, 2020, 12, 1305.	1.7	21

#	ARTICLE	IF	Citations
38	Effect of three-dimensional ECM stiffness on cancer cell migration through regulating cell volume homeostasis. Biochemical and Biophysical Research Communications, 2020, 528, 459-465.	1.0	20
39	The Emerging Roles of Heterochromatin in Cell Migration. Frontiers in Cell and Developmental Biology, 2020, 8, 394.	1.8	26
40	The WAVE Regulatory Complex Is Required to Balance Protrusion and Adhesion in Migration. Cells, 2020, 9, 1635.	1.8	17
41	Isolation of Highly Migratory and Invasive Cells in Threeâ€Đimensional Gels. Current Protocols in Cell Biology, 2020, 86, e103.	2.3	4
42	Extracellular nanofiber-orchestrated cytoskeletal reorganization and mediated directional migration of cancer cells. Nanoscale, 2020, 12, 3183-3193.	2.8	18
43	Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers, 2020, 12, 161.	2.0	84
44	Engineering clinically-relevant human fibroblastic cell-derived extracellular matrices. Methods in Cell Biology, 2020, 156, 109-160.	0.5	24
45	Macromolecular gelatin properties affect fibrin microarchitecture and tumor spheroid behavior in fibrin-gelatin gels. Biomaterials, 2020, 250, 120035.	5.7	6
46	Targeting Rho GTPase Signaling Networks in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 222.	1.8	109
47	Membrane blebs play a critical role in a hybrid mode of cancer cell invasion in three-dimensional environments. Journal of Cell Science, 2020, 133, .	1.2	15
48	Development of an Enhanced-Throughput Radial Cell Migration Device. SLAS Technology, 2021, 26, 200-208.	1.0	0
49	Crosstalk between mechanotransduction and metabolism. Nature Reviews Molecular Cell Biology, 2021, 22, 22-38.	16.1	193
50	The impact of culture dimensionality on behavioral epigenetic memory contributing to pluripotent state of iPS cells. Journal of Cellular Physiology, 2021, 236, 4985-4996.	2.0	11
51	Durotaxis: The Hard Path from InÂVitro to InÂVivo. Developmental Cell, 2021, 56, 227-239.	3.1	63
52	Association between Cell Microenvironment Altered by Gold Nanowire Array and Regulation of Partial Epithelialâ€Mesenchymal Transition. Advanced Functional Materials, 2021, 31, 2008758.	7.8	6
53	Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomaterials Science, 2021, 9, 1547-1573.	2.6	17
54	Lowâ€intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration. Journal of Biomedical Materials Research - Part A, 2021, 109, 1101-1112.	2.1	17
55	Bioimage Analysis and Cell Motility. Patterns, 2021, 2, 100170.	3.1	12

#	Article	IF	CITATIONS
56	The basics of collective cell migration: unity makes strength. , 2021, , 1-19.		0
57	Redox Regulation of the Actin Cytoskeleton in Cell Migration and Adhesion: On the Way to a Spatiotemporal View. Frontiers in Cell and Developmental Biology, 2020, 8, 618261.	1.8	34
58	Supramolecular Biopolymers for Tissue Engineering. Advances in Polymer Technology, 2021, 2021, 1-23.	0.8	13
59	The cell surface hyaluronidase TMEM2 regulates cell adhesion and migration via degradation of hyaluronan at focal adhesion sites. Journal of Biological Chemistry, 2021, 296, 100481.	1.6	24
60	Understanding the Role of Plasticity in Glioblastoma. , 2021, , .		0
61	Tracking the movement of individual avian neural crest cells in vitro. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 53-65.	0.7	0
62	Guest–host interlinked PEG-MAL granular hydrogels as an engineered cellular microenvironment. Biomaterials Science, 2021, 9, 2480-2493.	2.6	25
63	Extracellular Cell Migration Within Three-Dimensional Matrices. , 2021, , 289-300.		0
64	Extracellular Cell Migration. , 2021, , 274-288.		0
65	Generation of stress fibers through myosin-driven reorganization of the actin cortex. ELife, 2021, 10, .	2.8	60
66	Spheroid mechanics and implications for cell invasion. Advances in Physics: X, 2021, 6, .	1.5	4
67	Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels. Biomaterials Science, 2021, 9, 4329-4342.	2.6	16
69	Filopodia-based contact stimulation of cell migration drives tissue morphogenesis. Nature Communications, 2021, 12, 791.	5.8	28
70	Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures. International Journal of Molecular Sciences, 2021, 22, 1821.	1.8	22
71	Control of Podocyte and Glomerular Capillary Wall Structure and Elasticity by WNK1 Kinase. Frontiers in Cell and Developmental Biology, 2020, 8, 618898.	1.8	5
72	Characterization of immune cell migration using microfabrication. Biophysical Reviews, 2021, 13, 185-202.	1.5	20
73	Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels, 2021, 7, 17.	2.1	23
74	Perfusion Flow Enhances Viability and Migratory Phenotype in 3D-Cultured Breast Cancer Cells. Annals of Biomedical Engineering, 2021, 49, 2103-2113.	1.3	18

# 75	ARTICLE The spatio-temporal control of effector T cell migration. Nature Reviews Immunology, 2021, 21, 582-596.	IF 10.6	CITATIONS
77	Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. IScience, 2021, 24, 102113.	1.9	68
78	The matrix in cancer. Nature Reviews Cancer, 2021, 21, 217-238.	12.8	441
79	Intermediate adhesion maximizes migration velocity of multicellular clusters. Physical Review E, 2021, 103, 032410.	0.8	5
81	Modeling the tumor immune microenvironment for drug discovery using 3D culture. APL Bioengineering, 2021, 5, 010903.	3.3	14
82	3D mesenchymal cell migration is driven by anterior cellular contraction that generates an extracellular matrix prestrain. Developmental Cell, 2021, 56, 826-841.e4.	3.1	59
83	Pericyte mechanics and mechanobiology. Journal of Cell Science, 2021, 134, .	1.2	28
84	The mechanics and dynamics of cancer cells sensing noisy 3D contact guidance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
86	Dynamic Endothelial Stalk Cell–Matrix Interactions Regulate Angiogenic Sprout Diameter. Frontiers in Bioengineering and Biotechnology, 2021, 9, 620128.	2.0	14
87	A constriction channel analysis of astrocytoma stiffness and disease progression. Biomicrofluidics, 2021, 15, 024103.	1.2	11
88	Integrated analysis of cell shape and movement in moving frame. Biology Open, 2021, 10, .	0.6	4
90	Endothelial cell invasion is controlled by dactylopodia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	26
92	Durotaxis: the mechanical control of directed cell migration. FEBS Journal, 2022, 289, 2736-2754.	2.2	43
93	Is there a universal mechanism of cell alignment in response to substrate topography?. Cytoskeleton, 2021, 78, 284-292.	1.0	25
94	AQP3 Increases Intercellular Cohesion in NSCLC A549 Cell Spheroids through Exploratory Cell Protrusions. International Journal of Molecular Sciences, 2021, 22, 4287.	1.8	3
95	Self-organized cell migration across scales – from single cell movement to tissue formation. Development (Cambridge), 2021, 148, .	1.2	22
96	Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nature Materials, 2021, 20, 1290-1299.	13.3	111
97	Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opinion on Drug Discovery, 2021, 16, 841-850.	2.5	16

#	Article	IF	CITATIONS
98	Rapid Prototyping of 3D Biochips for Cell Motility Studies Using Two-Photon Polymerization. Frontiers in Bioengineering and Biotechnology, 2021, 9, 664094.	2.0	10
100	Myosin II and Arp2/3 cross-talk governs intracellular hydraulic pressure and lamellipodia formation. Molecular Biology of the Cell, 2021, 32, 579-589.	0.9	8
102	Matrix-driven changes in metabolism support cytoskeletal activity to promote cell migration. Biophysical Journal, 2021, 120, 1705-1717.	0.2	23
103	Automated evaluation of tumor spheroid behavior in 3D culture using deep learning-based recognition. Biomaterials, 2021, 272, 120770.	5.7	40
104	The principles of directed cell migration. Nature Reviews Molecular Cell Biology, 2021, 22, 529-547.	16.1	252
105	BAD regulates mammary gland morphogenesis by 4E-BP1-mediated control of localized translation in mouse and human models. Nature Communications, 2021, 12, 2939.	5.8	5
106	3D Spheroids Versus 3D Tumorâ€Like Microcapsules: Confinement and Mechanical Stress May Lead to the Expression of Malignant Responses in Cancer Cells. Advanced Biology, 2021, 5, e2000349.	1.4	7
107	Effect of vimentin on cell migration in collagen-coated microchannels: A mimetic physiological confined environment. Biomicrofluidics, 2021, 15, 034105.	1.2	5
108	Zebrafish Primordial Germ Cell Migration. Frontiers in Cell and Developmental Biology, 2021, 9, 684460.	1.8	18
109	$HIF2\hat{I}_{\pm}$ is a direct regulator of neutrophil motility. Blood, 2021, 137, 3416-3427.	0.6	13
111	The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II. Nature Communications, 2021, 12, 3333.	5.8	12
112	Engineering fiber anisotropy within natural collagen hydrogels. American Journal of Physiology - Cell Physiology, 2021, 320, C1112-C1124.	2.1	24
114	Spatiotemporal Regulation of Cell–Cell Adhesions. Biochemistry, 0, , .	0.8	0
115	Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells, 2021, 10, 1592.	1.8	11
116	In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers, 2021, 13, 2970.	1.7	40
117	Mechanosensitive ion channels in cell migration. Cells and Development, 2021, 166, 203683.	0.7	28
118	The role of nonlinear mechanical properties of biomimetic hydrogels for organoid growth. Biophysics Reviews, 2021, 2, .	1.0	7
119	Correlative 3D microscopy of single cells using super-resolution and scanning ion-conductance microscopy. Nature Communications, 2021, 12, 4565.	5.8	25

#	Article	IF	CITATIONS
120	Probing invadosomes: technologies for the analysis of invadosomes. FEBS Journal, 2021, , .	2.2	2
121	Syndecan-4 in Tumor Cell Motility. Cancers, 2021, 13, 3322.	1.7	21
122	Cancer Physical Hallmarks as New Targets for Improved Immunotherapy. Trends in Cell Biology, 2021, 31, 520-524.	3.6	16
123	Liver extracellular matrix hydrogel-based three-dimensional culture system of HepG2 cells to enhance cancer stem cell properties. Materials Science and Engineering C, 2021, 126, 112119.	3.8	7
124	Extracellular vesicles: Critical players during cell migration. Developmental Cell, 2021, 56, 1861-1874.	3.1	62
125	Cell contact guidance via sensing anisotropy of network mechanical resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
126	Mechanics of developmental migration. Seminars in Cell and Developmental Biology, 2021, 120, 66-74.	2.3	5
127	Collective metastasis: coordinating the multicellular voyage. Clinical and Experimental Metastasis, 2021, 38, 373-399.	1.7	24
128	Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. Science Advances, 2021, 7, .	4.7	4
129	Random Walks of a Cell With Correlated Speed and Persistence Influenced by the Extracellular Topography. Frontiers in Physics, 2021, 9, .	1.0	7
130	The Extracellular Matrix in Skin Inflammation and Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 682414.	1.8	84
131	Roles of leader and follower cells in collective cell migration. Molecular Biology of the Cell, 2021, 32, 1267-1272.	0.9	47
134	Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb–based migration. Molecular Biology of the Cell, 2021, 32, 1772-1791.	0.9	10
135	Development of a model for fibroblast-led collective migration from breast cancer cell spheroids to study radiation effects on invasiveness. Radiation Oncology, 2021, 16, 159.	1.2	5
136	Hybrid interpenetrating hydrogel network favoring the bidirectional migration of tenocytes for rotator cuff tendon regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 467-477.	1.6	7
137	Cancer Stem Cells in Tumor Modeling: Challenges and Future Directions. Advanced NanoBiomed Research, 2021, 1, 2100017.	1.7	13
138	Cellular feedback dynamics and multilevel regulation driven by the hippo pathway. Biochemical Society Transactions, 2021, 49, 1515-1527.	1.6	11
139	Promoting Longâ€Term Cultivation of Motor Neurons for 3D Neuromuscular Junction Formation of 3D In Vitro Using Centralâ€Nervousâ€Tissueâ€Derived Bioink. Advanced Healthcare Materials, 2021, 10, e2100581.	3.9	14

#	Article	IF	CITATIONS
141	Tyrosine phosphorylation of lamin A by Src promotes disassembly of nuclear lamina in interphase. Life Science Alliance, 2021, 4, e202101120.	1.3	5
142	Cell-matrix reciprocity in 3D culture models with nonlinear elasticity. Bioactive Materials, 2022, 9, 316-331.	8.6	36
143	Reprint of: Mechanosensitive ion channels in cell migration. Cells and Development, 2021, , 203730.	0.7	1
144	Dynamin 2 and BAR domain protein pacsin 2 cooperatively regulate formation and maturation of podosomes. Biochemical and Biophysical Research Communications, 2021, 571, 145-151.	1.0	4
145	The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cellular and Molecular Bioengineering, 2021, 14, 381-396.	1.0	6
146	Criticality in Cell Adhesion. Physical Review X, 2021, 11, .	2.8	9
147	Analysis of Actin and Focal Adhesion Organisation in U2OS Cells on Polymer Nanostructures. Nanoscale Research Letters, 2021, 16, 143.	3.1	6
148	Collective cell migration driven by filopodia—New insights from the social behavior of myotubes. BioEssays, 2021, 43, e2100124.	1.2	8
149	Endothelial-Mesenchymal Transition in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2357-2369.	1.1	69
151	Mechanisms of vascular smooth muscle cell investment and phenotypic diversification in vascular diseases. Biochemical Society Transactions, 2021, 49, 2101-2111.	1.6	25
152	Protein friction and filament bending facilitate contraction of disordered actomyosin networks. Biophysical Journal, 2021, 120, 4029-4040.	0.2	4
153	Mechanics of 3D Cell–Hydrogel Interactions: Experiments, Models, and Mechanisms. Chemical Reviews, 2021, 121, 11085-11148.	23.0	62
154	Differences in cortical contractile properties between healthy epithelial and cancerous mesenchymal breast cells. New Journal of Physics, 2021, 23, 103020.	1.2	10
155	Barotaxis: How cells live and move under pressure. Current Opinion in Cell Biology, 2021, 72, 131-136.	2.6	3
156	The extracellular matrix viscoelasticity as a regulator of cell and tissue dynamics. Current Opinion in Cell Biology, 2021, 72, 10-18.	2.6	79
157	Imaging of Human Cancer Cells in 3D Collagen Matrices. Bio-protocol, 2021, 11, e3889.	0.2	2
166	Phosphoinositide-3-Kinase Î ³ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity. ENeuro, 2020, 7, ENEURO.0311-20.2020.	0.9	10
167	Cellular dynamics of myogenic cell migration: molecular mechanisms and implications for skeletal muscle cell therapies. EMBO Molecular Medicine, 2020, 12, e12357.	3.3	27

#	Article	IF	CITATIONS
168	Endothelial cells on the move: dynamics in vascular morphogenesis and disease. Vascular Biology (Bristol, England), 2020, 2, H29-H43.	1.2	42
169	Gene expression-based clinical predictions in lung adenocarcinoma. Aging, 2020, 12, 15492-15503.	1.4	4
170	Brain and Breast Cancer Cells with PTEN Loss of Function Reveal Enhanced Durotaxis and RHOB Dependent Amoeboid Migration Utilizing 3D Scaffolds and Aligned Microfiber Tracts. Cancers, 2021, 13, 5144.	1.7	4
171	Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers, 2021, 13, 4985.	1.7	145
172	Cell polarity regulators, multifunctional organizers of lymphocyte activation and function. Biomedical Journal, 2022, 45, 299-309.	1.4	12
173	Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Advanced Healthcare Materials, 2021, 10, e2100625.	3.9	12
174	Enhanced cellular migration and prolonged chondrogenic differentiation in decellularized cartilage scaffolds under dynamic culture conditions. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 36-50.	1.3	5
176	Transendothelial migration induces differential migration dynamics of leukocytes in tissue matrix. Journal of Cell Science, 2021, 134, .	1.2	10
178	Role of RhoC in cancer cell migration. Cancer Cell International, 2021, 21, 527.	1.8	14
180	In Vitro Disease Models of the Endocrine Pancreas. Biomedicines, 2021, 9, 1415.	1.4	2
181	Using Live-Cell Imaging and Synthetic Biology to Probe Directed Migration in Dictyostelium. Frontiers in Cell and Developmental Biology, 2021, 9, 740205.	1.8	9
182	A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS Journal, 2022, 289, 7907-7917.	2.2	7
186	Bone Marrow-Derived Mesenchymal Stem Cells Migrate toward Hormone-Insensitive Prostate Tumor Cells Expressing TGF-β via N-Cadherin. Biomedicines, 2021, 9, 1572.	1.4	4
189	Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using <i>In Situ</i> Freezing and Preprint CaCl ₂ Cross-Linking. ACS Omega, 2021, 6, 569-578.	1.6	13
193	Modeling Metastatic Colonization in a Decellularized Organ Scaffoldâ€Based Perfusion Bioreactor. Advanced Healthcare Materials, 2022, 11, e2100684.	3.9	7
193 197	Modeling Metastatic Colonization in a Decellularized Organ Scaffoldâ€Based Perfusion Bioreactor. Advanced Healthcare Materials, 2022, 11, e2100684. Threeâ€dimensional migration of human amniotic fluid stem cells involves mesenchymal and amoeboid modes and is regulated by mTORC1. Stem Cells, 2021, 39, 1718-1732.	3.9 1.4	7 2
	Advanced Healthcare Materials, 2022, 11, e2100684. Threeâ€dimensional migration of human amniotic fluid stem cells involves mesenchymal and amoeboid		

ARTICLE IF CITATIONS Molecular Tuning of Actin Dynamics in Leukocyte Migration as Revealed by Immune-Related 200 2.2 11 Actinopathies. Frontiers in Immunology, 2021, 12, 750537. Spatial and temporal dynamics of RhoA activities of single breast tumor cells in a 3D environment 1.2 revealed by a machine learning-assisted FRET technique. Experimental Cell Research, 2022, 410, 112939. Cartilaginous Extracellular Matrix Enriched with Human Gingival Mesenchymal Stem Cells Derived "Matrix Bound Extracellular Vesicles†Enabled Functional Reconstruction of Tracheal Defect. 202 5.6 14 Advanced Science, 2022, 9, e2102735. 25-hydroxycholesterol–induced cell death via activation of ROCK/LIMK/cofilin axis in colorectal 204 1.2 cancer cell spheroids. Journal of Steroid Biochemistry and Molecular Biology, 2022, 216, 106037. Controlled Glioma Cell Migration and Confinement Using Biomimeticâ€Patterned Hydrogels. Advanced 205 1.7 2 NanoBiomed Research, 2022, 2, 2100131. The mechanosensitive channel Piezo1 cooperates with semaphorins to control neural crest migration. 1.2 Development (Cambridge), 2021, 148, . 208 Lose the Stress: Viscoelastic Materials for Cell Engineering. SSRN Electronic Journal, 0, , . 0.4 2 Cell Adhesion and Migration on Thickness Gradient Bilayer Polymer Brush Surfaces: Effects of Properties of Polymeric Materials of the Underlayer. ACS Applied Materials & amp; Interfaces, 2022, 14, 209 4.0 2605-2617. Comparison of direct and inverse methods for 2.5D traction force microscopy. PLoS ONE, 2022, 17, 210 2 1.1 e0262773. Behavioural immune landscapes of inflammation. Nature, 2022, 601, 415-421. 13.7 Stem Cell-Induced Cell Motility: A Removable Obstacle on the Way to Safe Therapies?. Stem Cells 212 1.6 1 Translational Medicine, 2022, 11, 26-34. Analysis of Three-Dimensional Cell Migration in Dopamine-Modified Poly(aspartic acid)-Based 2.1 Hydrogels. Gels, 2022, 8, 65. Nanoengineered myogenic scaffolds for skeletal muscle tissue engineering. Nanoscale, 2022, 14, 214 2.8 23 797-814. Push or pull: how cytoskeletal crosstalk facilitates nuclear movement through 3D environments. Physical Biology, 2022, 19, 021003. 0.8 Exhausted mature dendritic cells exhibit a slower and less persistent random motility but retain 216 10 3.1chemotaxis against CCL19. Lab on A Chip, 2022, 22, 377-386. Controlled Fabrication of Bioactive Microtubes for Screening Anti-Tongue Squamous Cell Migration 1.8 Drugs. Frontiers in Chemistry, 2022, 10, 771027. Stress relaxation amplitude of hydrogels determines migration, proliferation, and morphology of 220 2.6 17 cells in 3-D culture. Biomaterials Science, 2021, 10, 270-280. Self-sorting double network hydrogels with photo-definable biochemical cues as artificial synthetic

CITATION REPORT

5.8

extracellular matrix. Nano Research, 2022, 15, 4294-4301.

#

#	Article	IF	CITATIONS
222	Cell–extracellular matrix dynamics. Physical Biology, 2022, 19, 021002.	0.8	37
223	A lysine-rich cluster in the N-BAR domain of ARF GTPase-activating protein ASAP1 is necessary for binding and bundling actin filaments. Journal of Biological Chemistry, 2022, 298, 101700.	1.6	3
224	Collective durotaxis along a self-generated stiffness gradient in vivo. Nature, 2021, 600, 690-694.	13.7	110
225	Non-monotonic fluidization generated by fluctuating edge tensions in confluent tissues. Soft Matter, 2022, 18, 2168-2175.	1.2	7
226	The Shape of a Microfabricated Scaffold can Control Cell Migration Direction. Seibutsu Butsuri, 2022, 62, 62-65.	0.0	1
227	A thermo-sensitive and injectable hydrogel derived from a decellularized amniotic membrane to prevent intrauterine adhesion by accelerating endometrium regeneration. Biomaterials Science, 2022, 10, 2275-2286.	2.6	10
228	Molecular neuropathology of brainâ€invasive meningiomas. Brain Pathology, 2022, 32, e13048.	2.1	11
229	In Situ Single-Molecule Imaging of MicroRNAs in Switchable Migrating Cells under Biomimetic Confinement. Analytical Chemistry, 2022, 94, 4030-4038.	3.2	8
230	Early passage of Toxoplasma gondii across the blood–brain barrier. Trends in Parasitology, 2022, 38, 450-461.	1.5	17
231	Rear traction forces drive adherent tissue migration in vivo. Nature Cell Biology, 2022, 24, 194-204.	4.6	30
232	Mechanical transmission enables EMT cancer cells to drive epithelial cancer cell migration to guide tumor spheroid disaggregation. Science China Life Sciences, 2022, 65, 2031-2049.	2.3	13
233	Rapid Stem Cell Extraction and Culture Device for Regenerative Therapy Using Biodegradable Nonwoven Fabrics with Strongly Oriented Fibers. Advanced Materials Interfaces, 0, , 2101776.	1.9	0
234	Engineered barriers regulate osteoblast cell migration in vertical direction. Scientific Reports, 2022, 12, 4459.	1.6	2
236	Cytoskeletal dynamics regulates stromal invasion behavior of distinct liver cancer subtypes. Communications Biology, 2022, 5, 202.	2.0	8
237	A Programmable Multifunctional 3D Cancer Cell Invasion Micro Platform. Small, 2022, 18, e2107757.	5.2	4
239	Integrin Regulated Autoimmune Disorders: Understanding the Role of Mechanical Force in Autoimmunity. Frontiers in Cell and Developmental Biology, 2022, 10, 852878.	1.8	3
241	Stochastic pursuit-evasion curves for foraging dynamics. Physica A: Statistical Mechanics and Its Applications, 2022, 597, 127324.	1.2	1
242	A primer to traction force microscopy. Journal of Biological Chemistry, 2022, 298, 101867.	1.6	18

#	Article	IF	CITATIONS
243	Exploring Integrin-Mediated Force Transmission during Confined Cell Migration by DNA-Based Tension Probes. Analytical Chemistry, 2022, 94, 4570-4575.	3.2	5
244	Macrophage network dynamics depend on haptokinesis for optimal local surveillance. ELife, 2022, 11, .	2.8	19
245	Individual cells generate their own self-reinforcing contact guidance cues through local matrix fiber remodeling. PLoS ONE, 2022, 17, e0265403.	1.1	1
246	Emerin regulation of nuclear stiffness is required for fast amoeboid migration in confined environments. Journal of Cell Science, 2022, 135, .	1.2	12
248	Cell–3D matrix interactions: recent advances and opportunities. Trends in Cell Biology, 2022, 32, 883-895.	3.6	51
249	Cell Trafficking at the Intersection of the Tumor–Immune Compartments. Annual Review of Biomedical Engineering, 2022, 24, 275-305.	5.7	9
250	Lose the stress: Viscoelastic materials for cell engineering. Acta Biomaterialia, 2023, 163, 146-157.	4.1	10
251	Quantifying the Probing and Selection of Microenvironmental Pores by Motile Immune Cells. Current Protocols, 2022, 2, e407.	1.3	4
252	Local Wnt signalling in the asymmetric migrating vertebrate cells. Seminars in Cell and Developmental Biology, 2022, 125, 26-36.	2.3	5
253	Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma―in dental and other permanent implants. Bioactive Materials, 2022, 18, 178-198.	8.6	19
258	Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success?. Cancers, 2022, 14, 83.	1.7	3
259	Pannexin Channel Regulation of Cell Migration: Focus on Immune Cells. Frontiers in Immunology, 2021, 12, 750480.	2.2	10
260	Fundamental mechanics of cell shape and cell movement. , 2022, , 85-100.		1
261	Cellular substructures, actin dynamics, and actin-binding proteins regulating cell migration. , 2022, , 25-50.		0
262	Cell migration. , 2022, , 67-82.		0
263	Extracellular matrix–dependent mechanosensing and mechanotransduction. , 2022, , 101-127.		4
264	The tumor suppressor adenomatous polyposis coli regulates T lymphocyte migration. Science Advances, 2022, 8, eabl5942.	4.7	11
265	Defect size and cross-linker properties controlled fracture of biopolymer networks. Extreme Mechanics Letters, 2022, 54, 101743.	2.0	0

#	Article	IF	CITATIONS
266	Chlamydia pneumoniae Infection Induces Vascular Smooth Muscle Cell Migration and Atherosclerosis Through Mitochondrial Reactive Oxygen Species-Mediated JunB-Fra-1 Activation. Frontiers in Cell and Developmental Biology, 2022, 10, 879023.	1.8	3
267	Three-dimensional cancer cell migration directed by dual mechanochemical guidance. Physical Review Research, 2022, 4, .	1.3	7
273	Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Bioactive Materials, 2023, 19, 88-102.	8.6	17
274	A novel Fiji/ImageJ plugin for the rapid analysis of blebbing cells. PLoS ONE, 2022, 17, e0267740.	1.1	2
275	Molecular and Colloidal Transport in Bacterial Cellulose Hydrogels. Biomacromolecules, 2022, 23, 2404-2414.	2.6	8
276	Bidirectional Regulation of Cell Mechanical Motion via a Gold Nanorods-Acoustic Streaming System. ACS Nano, 2022, 16, 8427-8439.	7.3	9
277	Non-destructive monitoring of 3D cell cultures: new technologies and applications. PeerJ, 2022, 10, e13338.	0.9	4
278	Mechanics and functional consequences of nuclear deformations. Nature Reviews Molecular Cell Biology, 2022, 23, 583-602.	16.1	123
279	Visualizing Cell Motility in Mouse Ear Explants. Current Protocols, 2022, 2, e434.	1.3	0
280	Implications of Three-Dimensional Cell Culture in Cancer Therapeutic Research. Frontiers in Oncology, 2022, 12, .	1.3	15
281	T cell morphodynamics reveal periodic shape oscillations in three-dimensional migration. Journal of the Royal Society Interface, 2022, 19, 20220081.	1.5	3
282	Microfluidics meets 3D cancer cell migration. Trends in Cancer, 2022, 8, 683-697.	3.8	26
283	Polarized interfacial tension induces collective migration of cells, as a cluster, in a 3D tissue. Biophysical Journal, 2022, 121, 1856-1867.	0.2	10
284	Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Advanced Drug Delivery Reviews, 2022, 186, 114319.	6.6	35
285	Unravelling cell migration: defining movement from the cell surface. Cell Adhesion and Migration, 2022, 16, 25-64.	1.1	29
286	Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Seminars in Cell and Developmental Biology, 2022, 129, 63-74.	2.3	5
287	GIANI – open-source software for automated analysis of 3D microscopy images. Journal of Cell Science, 2022, 135, .	1.2	4
288	The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology?. Annual Review of Biomedical Data Science, 2022, 5, 341-366.	2.8	4

#	Article	IF	CITATIONS
289	Focal adhesion-mediated cell anchoring and migration: from <i>in vitro</i> to <i>in vivo</i> . Development (Cambridge), 2022, 149, .	1.2	13
290	Dancing to a somewhat different rhythm: Cell migration along the natural basement membrane. Biocell, 2022, 46, 2059-2063.	0.4	0
291	Guidance by followers ensures long-range coordination of cell migration through $\hat{l}\pm$ -catenin mechanoperception. Developmental Cell, 2022, 57, 1529-1544.e5.	3.1	18
292	Amoeboid-like migration ensures correct horizontal cell layer formation in the developing vertebrate retina. ELife, 0, 11, .	2.8	9
293	Centrosome Positioning in Migrating Dictyostelium Cells. Cells, 2022, 11, 1776.	1.8	5
295	Triboelectric Nanogenerators for Cellular Bioelectrical Stimulation. Advanced Functional Materials, 2022, 32, .	7.8	17
296	Immune Checkpoint Proteins, Metabolism and Adhesion Molecules: Overlooked Determinants of CAR T-Cell Migration?. Cells, 2022, 11, 1854.	1.8	7
298	The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma Cells. International Journal of Molecular Sciences, 2022, 23, 6520.	1.8	4
299	CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells, 2022, 11, 1974.	1.8	15
300	Microtubule Detyrosination Drives Symmetry-Breaking to Polarize Cells for Directed Cell Migration. SSRN Electronic Journal, 0, , .	0.4	0
301	Mechanical stress-induced Hippo signaling in respect to primordial follicle development and polycystic ovary syndrome pathogenesis. Reproductive and Developmental Medicine, 2022, 6, 121-128.	0.2	0
302	Development of Immunotherapy Strategies Targeting Tumor Microenvironment Is Fiercely Ongoing. Frontiers in Immunology, 0, 13, .	2.2	7
303	Influence of Culture Conditions on Ex Vivo Expansion of T Lymphocytes and Their Function for Therapy: Current Insights and Open Questions. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
304	Force Estimation during Cell Migration Using Mathematical Modelling. Journal of Imaging, 2022, 8, 199.	1.7	1
305	Driver Gene Alterations in Malignant Progression of Gastric Cancer. Frontiers in Oncology, 0, 12, .	1.3	5
306	Moving through the crowd. Where are we at understanding physiological axon growth?. Seminars in Cell and Developmental Biology, 2023, 140, 63-71.	2.3	5
307	Macrophage invasion: here, there and everywhere. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	0
308	F-actin bending facilitates net actomyosin contraction By inhibiting expansion with plus-end-located myosin motors. Journal of Mathematical Biology, 2022, 85, .	0.8	0

#	Article	IF	CITATIONS
309	A mechanistic protrusive-based model for 3D cell migration. European Journal of Cell Biology, 2022, 101, 151255.	1.6	5
310	Materials and extracellular matrix rigidity highlighted in tissue damages and diseases: Implication for biomaterials design and therapeutic targets. Bioactive Materials, 2023, 20, 381-403.	8.6	11
312	Natural Soybean Milk-Derived Bioactive Coatings for Enhanced Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 34480-34487.	4.0	18
313	The need for speed: Migratory cells in tight spaces boost their molecular clock. Cell Systems, 2022, 13, 509-511.	2.9	0
314	Porous yet dense matrices: using ice to shape collagen 3D cell culture systems with increased physiological relevance. Biomaterials Science, 2022, 10, 6939-6950.	2.6	3
315	3D single cell migration driven by temporal correlation between oscillating force dipoles. ELife, 0, 11, .	2.8	5
316	Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
318	Roles of the nucleus in leukocyte migration. Journal of Leukocyte Biology, 0, , .	1.5	2
321	Cell clusters softening triggers collective cell migration in vivo. Nature Materials, 2022, 21, 1314-1323.	13.3	28
322	Gut immune cell trafficking: inter-organ communication and immune-mediated inflammation. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 50-64.	8.2	27
323	An evolutionary and physiological perspective on cell-substrate adhesion machinery for cell migration. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	9
324	Isothiocyanates (ITCs) 1-(Isothiocyanatomethyl)-4-phenylbenzene and 1-Isothiocyanato-3,5-bis(trifluoromethyl)benzene—Aldehyde Dehydrogenase (ALDH) Inhibitors, Decreases Cisplatin Tolerance and Migratory Ability of NSCLC. International Journal of Molecular Sciences. 2022. 23. 8644.	1.8	2
326	Physical organogenesis of the gut. Development (Cambridge), 2022, 149, .	1.2	4
327	Multiâ€Responsive Jammed Microâ€Gels Ink: Toward Control over the Resolution and the Stability of 3D Printed Scaffolds. Advanced Functional Materials, 2022, 32, .	7.8	11
328	The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
329	Plectin linkages are mechanosensitive and required for the nuclear piston mechanism of three-dimensional cell migration. Molecular Biology of the Cell, 2022, 33, .	0.9	3
330	Biophysics of cellular membrane shaping on fiber networks. , 2023, , 307-331.		0
331	Surface activity of cancer cells: The fusion of two cell aggregates. Biocell, 2023, 47, 15-25.	0.4	7

		CITATION REPORT		
#	Article	IF	,	Citations
332	Non-equilibrium shapes and dynamics of active vesicles. Soft Matter, 2022, 18, 6868-6881.	1.	2	6
333	3D printing of conch-like scaffolds for guiding cell migration and directional bone growth. Bioac Materials, 2023, 22, 127-140.	tive 8.	.6	15
335	Spontaneous transitions between amoeboid and keratocyte-like modes of migration. Frontiers and Developmental Biology, 0, 10, .	in Cell 1.	.8	4
337	Fiber density and matrix stiffness modulate distinct cell migration modes in a 3D stroma mimet composite hydrogel. Acta Biomaterialia, 2023, 163, 378-391.	ic 4.	.1	7
338	Transferâ€Tattoo‣ike Cellâ€Sheet Delivery Induced by Interfacial Cell Migration. Advanced M 35, .	aterials, 2023, 11	1.1	3
340	Emerging concepts on the mechanical interplay between migrating cells and microenvironment vivo. Frontiers in Cell and Developmental Biology, 0, 10, .	: in 1.	.8	2
341	Cell clusters adopt a collective amoeboid mode of migration in confined nonadhesive environm Science Advances, 2022, 8, .	ents. 4.	.7	20
342	Distinct speed and direction memories of migrating dendritic cells diversify their search strategi Biophysical Journal, 2022, 121, 4099-4108.	es. 0	.2	6
343	Migration and 3D Traction Force Measurements inside Compliant Microchannels. Nano Letters, 22, 7318-7327.	2022, 4.	.5	8
345	How cell migration helps immune sentinels. Frontiers in Cell and Developmental Biology, 0, 10,	. 1.	.8	4
346	Multimodal microscale mechanical mapping of cancer cells in complex microenvironments. Biophysical Journal, 2022, 121, 3586-3599.	0	.2	13
347	How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators a potential markers. Frontiers in Pharmacology, 0, 13, .	1d 1.	.6	2
348	Collective cell migration during optic cup formation features changing cell-matrix interactions linked to matrix topology. Current Biology, 2022, 32, 4817-4831.e9.	1.	.8	14
349	Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Advanced Drug Delivery Reviews, 2022, 190, 114554.	6.	.6	4
350	New insights into FAK structure and function in focal adhesions. Journal of Cell Science, 2022, 1	135,. 1.	2	20
351	Quantitative Analysis of Collective Migration by Single-Cell Tracking Aimed at Understanding Ca Metastasis. International Journal of Molecular Sciences, 2022, 23, 12372.	ancer 1.	.8	1
352	Substrate adhesion determines migration during mesenchymal cell condensation in chondroger Journal of Cell Science, 0, , .	nesis. 1.	2	1
353	A meta-analysis indicates that the regulation of cell motility is a non-intrinsic function of chemoattractant receptors that is governed independently of directional sensing. Frontiers in Immunology, 0, 13, .	2.	.2	1

#	Article	IF	CITATIONS
354	TRIM67 drives tumorigenesis in oligodendrogliomas through Rho GTPase-dependent membrane blebbing. Neuro-Oncology, 2023, 25, 1031-1043.	0.6	7
355	Ameboid cell migration through regular arrays of micropillars under confinement. Biophysical Journal, 2022, 121, 4615-4623.	0.2	3
356	Plasticity of cancer invasion and energy metabolism. Trends in Cell Biology, 2023, 33, 388-402.	3.6	14
358	Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Frontiers in Pharmacology, 0, 13, .	1.6	6
360	Non-muscle myosin II and the plasticity of 3D cell migration. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
361	Androgen-regulated MafB drives cell migration via MMP11-dependent extracellular matrix remodeling in mice. IScience, 2022, 25, 105609.	1.9	3
362	RHO GTPase family in hepatocellular carcinoma. Experimental Hematology and Oncology, 2022, 11, .	2.0	13
363	Role of Endothelial Regeneration and Overloading of Enterocytes with Lipids in Capturing of Lipoproteins by Basement Membrane of Rat Aortic Endothelium. Biomedicines, 2022, 10, 2858.	1.4	5
364	Combined Scattering, Interferometric, and Fluorescence Oblique Illumination for Live Cell Nanoscale Imaging. ACS Photonics, 2022, 9, 3876-3887.	3.2	1
365	Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Physical Biology, 2023, 20, 015001.	0.8	2
366	Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers, 2022, 14, 5442.	1.7	10
368	Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. Journal of Materials Chemistry B, 2022, 11, 99-108.	2.9	1
369	Precise spatial imaging of microRNAs distribution from single living cells. Sensors and Actuators B: Chemical, 2023, 378, 133132.	4.0	2
370	Eukaryotic CRFK Cells Motion Characterized with Atomic Force Microscopy. International Journal of Molecular Sciences, 2022, 23, 14369.	1.8	0
371	Uncoordinated protein coordinates cell migration. Nature, 2022, 612, 38-39.	13.7	0
372	Clinical Applications of Low-Intensity Pulsed Ultrasound and Its Underlying Mechanisms in Dentistry. Applied Sciences (Switzerland), 2022, 12, 11898.	1.3	3
375	Collective cell migration during human mammary gland organoid morphogenesis. Biophysics Reviews, 2022, 3, .	1.0	0
376	Matrix mechanophysical factor: pore size governs the cell behavior in cancer. Advances in Physics: X, 2023, 8, .	1.5	1

#	Article	IF	CITATIONS
377	Primordial germ cells adjust their protrusion type while migrating in different tissue contexts <i>in vivo</i> . Development (Cambridge), 2023, 150, .	1.2	5
378	Paxillin Tunes the Relationship between Cell–Matrix and Cell–Cell Adhesions to Regulate Stiffness-Dependent Dentinogenesis. International Journal of Energy Production and Management, 0, ,	1.9	3
380	Amoeboid migration in health and disease: Immune responses versus cancer dissemination. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
381	Selective Eradication of Colon Cancer Cells Harboring PI3K and/or MAPK Pathway Mutations in 3D Culture by Combined PI3K/AKT/mTOR Pathway and MEK Inhibition. International Journal of Molecular Sciences, 2023, 24, 1668.	1.8	3
383	Triple negative breast tumors contain heterogeneous cancer cells expressing distinct KRAS-dependent collective and disseminative invasion programs. Oncogene, 0, , .	2.6	4
384	A Stand-Alone Microfluidic Chip for Long-Term Cell Culture. Micromachines, 2023, 14, 207.	1.4	0
386	Culturing and Imaging Glioma Stem Cells in 3D Collagen Matrices. Current Protocols, 2023, 3, .	1.3	0
387	Cell Migration in Three Dimensions. Methods in Molecular Biology, 2023, , 1-14.	0.4	2
388	Visualization of Exosome Release and Uptake During Cell Migration Using the Live Imaging Reporter pHluorin_M153R-CD63. Methods in Molecular Biology, 2023, , 83-96.	0.4	2
389	Assessing cell migration in hydrogels: An overview of relevant materials and methods. Materials Today Bio, 2023, 18, 100537.	2.6	8
390	Hydrogel viscoelasticity modulates migration and fusion of mesenchymal stem cell spheroids. Bioengineering and Translational Medicine, 2023, 8, .	3.9	8
391	Visualizing and Quantifying mRNA Localization at the Invasive Front of 3D Cancer Spheroids. Methods in Molecular Biology, 2023, , 263-280.	0.4	0
392	Actin Filaments Couple the Protrusive Tips to the Nucleus through the lâ€BAR Domain Protein IRSp53 during the Migration of Cells on 1D Fibers. Advanced Science, 2023, 10, .	5.6	5
393	Recent advances in tumors-on-chips. , 2023, , 79-117.		0
394	Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomaterialia, 2023, 159, 1-20.	4.1	16
395	Tracking unlabeled cancer cells imaged with low resolution in wide migration chambers via U-NET class-1 probability (pseudofluorescence). Journal of Biological Engineering, 2023, 17, .	2.0	0
396	Mechanobiology of Collective Cell Migration in 3D Microenvironments. Current Cancer Research, 2023, , 1-32.	0.2	0
397	Biophysical and Biochemical Mechanisms Underlying Collective Cell Migration in Cancer Metastasis. Current Cancer Research, 2023, , 77-112.	0.2	Ο

#	Article	IF	CITATIONS
398	Physical Sciences in Cancer: Recent Advances and Insights at the Interface. Current Cancer Research, 2023, , 301-328.	0.2	0
399	Positive, negative and controlled durotaxis. Soft Matter, 2023, 19, 2993-3001.	1.2	4
400	Ultrasonic-controlled "explosive―hydrogels to precisely regulate spatiotemporal osteoimmune disturbance. Biomaterials, 2023, 295, 122057.	5.7	7
401	Molecular mechanisms of endothelial remodeling under doxorubicin treatment. Biomedicine and Pharmacotherapy, 2023, 162, 114576.	2.5	6
402	Lack of Paxillin phosphorylation promotes single-cell migration in vivo. Journal of Cell Biology, 2023, 222, .	2.3	5
403	Potassium Dehydroandrograpolide Succinate Targets NRP1 Mediated VEGFR2/VE-Cadherin Signaling Pathway to Promote Endothelial Barrier Repair. International Journal of Molecular Sciences, 2023, 24, 3096.	1.8	0
404	Single-Cell Analysis of Unidirectional Migration of Glioblastoma Cells Using a Fiber-Based Scaffold. ACS Applied Bio Materials, 2023, 6, 765-773.	2.3	0
405	Differential contractility regulates cancer stem cell migration. Biophysical Journal, 2023, 122, 1198-1210.	0.2	2
406	A machine learning based approach for quantitative evaluation of cell migration in Transwell assays based on deformation characteristics. Analyst, The, 2023, 148, 1371-1382.	1.7	0
407	Programmed Cell Death Protein 1 (PD-1) in relation to PANoptosis: Immune Pharmacological Targets for Management of Breast Adenocarcinoma. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2023, 23, .	0.6	2
408	Engine shutdown: migrastatic strategies and prevention of metastases. Trends in Cancer, 2023, 9, 293-308.	3.8	9
409	An in vivo phosphoregulation paradox for focal adhesions. Journal of Cell Biology, 2023, 222, .	2.3	0
411	The extracellular matrix and the immune system: A mutually dependent relationship. Science, 2023, 379,	6.0	73
413	Mathematical model of mechano-sensing and mechanically induced collective motility of cells on planar elastic substrates. Biomechanics and Modeling in Mechanobiology, 0, , .	1.4	0
416	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72
417	Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Advanced Drug Delivery Reviews, 2023, 196, 114771.	6.6	2
419	Bioconjugation of COL1 protein on liquid-like solid surfaces to study tumor invasion dynamics. Biointerphases, 2023, 18, .	0.6	4
420	Sandwich Culture Platforms to Investigate the Roles of Stiffness Gradients and Cell–Matrix Adhesions in Cancer Cell Migration. Cancers, 2023, 15, 1729.	1.7	0

#	Article	IF	CITATIONS
421	Active Transport in Complex Environments. , 2023, , 151-218.		2
422	Single Living Cell Analysis Decodes Dynamical Signaling Patterns Triggering Different Phenotypes of Cell Migration. Analytical Chemistry, 2023, 95, 6080-6089.	3.2	1
424	Bioengineering and Bioinformatic Approaches to Study Extracellular Matrix Remodeling and Cancer–Macrophage Crosstalk in the Breast Tumor Microenvironment. Current Cancer Research, 2023, , 201-229.	0.2	0
425	Rapid cancer cell perineural invasion utilizes amoeboid migration. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0
427	Slow integrin-dependent migration organizes networks of tissue-resident mast cells. Nature Immunology, 2023, 24, 915-924.	7.0	12
434	Digital Holographic Microscopy to Assess Cell Behavior. Methods in Molecular Biology, 2023, , 247-266.	0.4	0
438	New genetic and epigenetic insights into the chemokine system: the latest discoveries aiding progression toward precision medicine. , 2023, 20, 739-776.		5
462	Criticality inÂCell Adhesion. Springer Theses, 2023, , 81-129.	0.0	0
484	Reprograming cancer cells by a BODIPY G-quadruplex stabiliser. Chemical Communications, 2023, 59, 12447-12450.	2.2	0
487	Piezoelectric materials for neuroregeneration: a review. Biomaterials Science, 2023, 11, 7296-7310.	2.6	4
503	Durotaxis and negative durotaxis: where should cells go?. Communications Biology, 2023, 6, .	2.0	0
526	Nanotechnological aspects and future perspective of nanocoatings for medical devices and implants. , 2024, , 251-281.		0