Nanowires for Electrochemical Energy Storage

Chemical Reviews 119, 11042-11109 DOI: 10.1021/acs.chemrev.9b00326

Citation Report

#	Article	IF	CITATIONS
1	Copper Silicide Nanowires as Hosts for Amorphous Si Deposition as a Route to Produce High Capacity Lithium-Ion Battery Anodes. Nano Letters, 2019, 19, 8829-8835.	4.5	32
2	Metal–Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Letters, 2020, 5, 520-532.	8.8	312
3	Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li–S Batteries. Nano Letters, 2020, 20, 1252-1261.	4.5	394
4	Ultrasensitive aptamer-based protein assays based on one-dimensional core-shell nanozymes. Biosensors and Bioelectronics, 2020, 150, 111881.	5.3	84
5	Interwoven Nanowire Based On hip Asymmetric Microsupercapacitor with High Integrability, Areal Energy, and Power Density. Advanced Energy Materials, 2020, 10, 2001873.	10.2	40
6	Sulfiphilic FeP/rGO as a highly efficient sulfur host for propelling redox kinetics toward stable lithium-sulfur battery. Electrochimica Acta, 2020, 364, 137117.	2.6	58
7	High-performance all-inorganic portable electrochromic Li-ion hybrid supercapacitors toward safe and smart energy storage. Energy Storage Materials, 2020, 33, 258-267.	9.5	45
8	Durable Supercapattery Film with Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets for Flexible Power Sources. ACS Applied Energy Materials, 2020, 3, 10653-10659.	2.5	8
9	Atomic Layer Deposition-Derived Nanomaterials: Oxides, Transition Metal Dichalcogenides, and Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 9056-9077.	3.2	25
10	Self-assembled materials for electrochemical energy storage. MRS Bulletin, 2020, 45, 815-822.	1.7	7
11	Status and prospects of porous graphene networks for lithium–sulfur batteries. Materials Horizons, 2020, 7, 2487-2518.	6.4	63
12	Construction of an Electron Bridge in Polyoxometalates/Graphene Oxide Ultrathin Nanosheets To Boost the Lithium Storage Performance. Energy & Fuels, 2020, 34, 16968-16977.	2.5	11
13	Advanced energy materials for flexible batteries in energy storage: A review. SmartMat, 2020, 1, .	6.4	186
14	A Copper Silicide Nanofoam Current Collector for Directly Grown Si Nanowire Networks and their Application as Lithiumâ€lon Anodes. Advanced Functional Materials, 2020, 30, 2003278.	7.8	57
15	Interface Engineering of Hierarchical MoS ₂ /ZnS/C Heterostructures as Anode Materials for Highly Improved Lithium Storage Capability. ACS Applied Energy Materials, 2020, 3, 7856-7864.	2.5	11
16	Towards high energy density Li–S batteries with high sulfur loading: From key issues to advanced strategies. Energy Storage Materials, 2020, 32, 320-355.	9.5	64
17	Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Applied Surface Science, 2020, 531, 147222.	3.1	27
18	Ru and Ni—Privileged Metal Combination for Environmental Nanocatalysis. Catalysts, 2020, 10, 992.	1.6	10

#	Article	IF	CITATIONS
19	Revival of Zeoliteâ€Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Advanced Science, 2020, 7, 2001335.	5.6	42
20	3D Graphene Materials: From Understanding to Design and Synthesis Control. Chemical Reviews, 2020, 120, 10336-10453.	23.0	319
21	Wood nanotechnology: a more promising solution toward energy issues: a mini-review. Cellulose, 2020, 27, 8513-8526.	2.4	14
22	Fabrication of One-Dimensional Organic Nanofiber Networks <i>via</i> Electrophoretic Deposition for a Nonvolatile Memory Device. ACS Applied Materials & amp; Interfaces, 2020, 12, 57254-57263.	4.0	9
23	<i>In Situ</i> Construction of the Coral-like Polyaniline on the Aligned Silicon Nanowire Arrays for Silicon Substrate On-chip Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11792-11802.	2.5	15
24	Microwave-assisted synthesis of Cr3C2@C core shell structure anchored on hierarchical porous carbon foam for enhanced polysulfide adsorption in Li-S batteries. Nano Research, 2021, 14, 2345.	5.8	5
25	CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for Battery Full-Lifespan Management. Matter, 2020, 3, 27-41.	5.0	110
26	Nanostructure Design Strategies for Aqueous Zincâ€lon Batteries. ChemElectroChem, 2020, 7, 2957-2978.	1.7	44
27	Machine-Learning-Enabled Exploration of Morphology Influence on Wire-Array Electrodes for Electrochemical Nitrogen Fixation. Journal of Physical Chemistry Letters, 2020, 11, 4625-4630.	2.1	23
28	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
29	Promises of the "Nano-World―for electrochemical sensing and energy devices. Journal of Solid State Electrochemistry, 2020, 24, 2189-2191.	1.2	1
30	A bimetallic alloy anchored on biomass-derived porous N-doped carbon fibers as a self-supporting bifunctional oxygen electrocatalyst for flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 13725-13734.	5.2	98
31	Silicon-nanoparticle-based composites for advanced lithium-ion battery anodes. Nanoscale, 2020, 12, 7461-7484.	2.8	60
32	Spontaneous deposition of Ir nanoparticles on 2D siloxene as a high-performance HER electrocatalyst with ultra-low Ir loading. Chemical Communications, 2020, 56, 4824-4827.	2.2	39
33	Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Composites Part B: Engineering, 2020, 193, 108004.	5.9	25
34	Co2B2O5 as an anode material with high capacity for sodium ion batteries. Rare Metals, 2020, 39, 1045-1052.	3.6	22
35	Electrochemical lithiation/delithiation activities of the random SiO2/Mn nanowires in-situ synthesized by an instantaneous arc-plasma. Journal of Alloys and Compounds, 2020, 844, 156207.	2.8	8
36	1D semiconductor nanowires for energy conversion, harvesting and storage applications. Nano Energy, 2020, 76, 104991.	8.2	70

#	Article	IF	CITATIONS
37	Effect of anisotropic electron transfer on the reactive nucleation of oxide nanowires. Chemical Physics Letters, 2020, 750, 137505.	1.2	2
38	Recent advances in carbon-based supercapacitors. Materials Advances, 2020, 1, 945-966.	2.6	207
39	Effect of size and shape dependent of synthesized copper nanoparticle using natural honey. IOP Conference Series: Materials Science and Engineering, 2020, 808, 012033.	0.3	0
40	2â€nmâ€Thick NiCo LDH@NiSe Singleâ€Crystal Nanorods Grown on Ni Foam as Integrated Electrode with Enhanced Areal Capacity for Supercapacitors. Batteries and Supercaps, 2020, 3, 534-540.	2.4	33
41	Principle of progressively and strongly immobilizing polysulfides on polyoxovanadate clusters for excellent Li–S batteries application. Nano Energy, 2020, 71, 104596.	8.2	15
42	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	23.0	255
43	Towards high-performance microscale batteries: Configurations and optimization of electrode materials by in-situ analytical platforms. Energy Storage Materials, 2020, 29, 17-41.	9.5	25
44	Confining sulfur in intact freestanding scaffold of yolk-shell nanofibers with high sulfur content for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 51, 378-387.	7.1	20
45	Semiconductor Nanocrystal Heterostructures: Near-Infrared Emitting PbSe-Tipped CdSe Tetrapods. Chemistry of Materials, 2020, 32, 4045-4053.	3.2	8
46	Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism. Journal of Energy Chemistry, 2021, 53, 124-131.	7.1	23
47	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie, 2021, 133, 5672-5684.	1.6	45
48	Fe-Nx Sites enriched microporous carbon nanoflower planted with tangled bamboo-like carbon nanotube as a strong polysulfides anchor for lithium–sulfur batteries. Green Energy and Environment, 2021, 6, 506-516.	4.7	21
49	Tunable agglomeration of Co3O4 nanowires as the growing core for in-situ formation of Co2NiO4 assembled with polyaniline-derived carbonaceous fibers as the high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853, 157210.	2.8	47
50	Highly Active and Stable Palladium Catalysts Supported on Surfaceâ€modified Ceria Nanowires for Lean Methane Combustion. ChemCatChem, 2021, 13, 664-673.	1.8	13
51	Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries. Energy Storage Materials, 2021, 34, 582-628.	9.5	73
52	Core-shell structured porous carbon nanofibers integrated with ultra-small SnO2 nanocrystals for fast and stable lithium storage. Chemical Engineering Journal, 2021, 420, 127705.	6.6	10
53	Synergetic effect of spatially separated dual co-catalyst for accelerating multiple conversion reaction in advanced lithium sulfur batteries. Nano Energy, 2021, 81, 105621.	8.2	123
54	Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. Journal of Power Sources, 2021, 483, 229140.	4.0	5

#	Article	IF	CITATIONS
55	Polymerization inspired synthesis of MnO@carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance. Dalton Transactions, 2021, 50, 535-545.	1.6	18
56	Flexible Transparent Supercapacitors: Materials and Devices. Advanced Functional Materials, 2021, 31, 2009136.	7.8	141
57	Curvature-induced effects in semiconducting alkaline-earth metal silicide nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114582.	1.3	4
58	Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angewandte Chemie - International Edition, 2021, 60, 17314-17336.	7.2	124
59	One-dimensional nitrogen-doped carbon frameworks embedded with zinc-cobalt nanoparticles for efficient overall water splitting. Journal of Colloid and Interface Science, 2021, 585, 800-807.	5.0	23
60	Pristine Hollow Metal–Organic Frameworks: Design, Synthesis and Application. Angewandte Chemie, 2021, 133, 17455-17477.	1.6	9
61	Necklace-like ultrathin silver telluride nanowire films and their reversible structural phase transition. Chemical Communications, 2021, 57, 6887-6890.	2.2	3
62	The Development of Si Anode Materials by Nanotechnology for Lithium-ion Battery. E3S Web of Conferences, 2021, 308, 01007.	0.2	0
63	The Role of Polymer and Inorganic Coatings to Enhance Interparticle Connections Diagnosed by <i>In Situ</i> Techniques. Nano Letters, 2021, 21, 1530-1537.	4.5	9
64	Orderly aligned manganese-based nanotube arrays with controllable secondary structures. RSC Advances, 2021, 11, 8277-8281.	1.7	3
65	Hierarchical copper cobalt sulfide nanobelt arrays for high performance asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2021, 8, 3025-3036.	3.0	30
66	Reagent-assisted hydrothermal synthesis of NiCo ₂ O ₄ nanomaterials as electrodes for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2021, 45, 9230-9242.	1.4	16
67	Melamine Foam Derived 2H/1T MoS ₂ as Flexible Interlayer with Efficient Polysulfides Trapping and Fast Li ⁺ Diffusion to Stabilize Li–S Batteries. ACS Applied Materials & Interfaces, 2021, 13, 6229-6240.	4.0	49
68	Segmented Ag–Au–Ag Heterojunction Nanorods: Pressure-Assisted Aqueous-Phase Synthesis and Engineered Femtosecond-to-Nanosecond Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 989-996.	2.1	9
69	Co _{1–<i>x</i>–<i>y</i>} Ni <i>_x</i> Zn <i>_y</i> (CO ₃) <sub Nanoneedles–NiCo-Layered Double Hydroxide Nanosheet Composites on Vulcanized Ni Foams for Supercapacitors. ACS Applied Nano Materials, 2021, 4, 1743-1753.</sub 	>0.52.4	>(OH)·0.11 10
70	Preparation of Copper Nanoparticles by Green Biosynthesis Method: A Short Review. IOP Conference Series: Materials Science and Engineering, 2021, 1051, 012084.	0.3	2
71	Nano SnO2 and Sb2O3 combined with CNTs as a high-capacity lithium storage material. Applied Surface Science, 2021, 543, 148870.	3.1	17
72	Long-Life Dendrite-Free Lithium Metal Electrode Achieved by Constructing a Single Metal Atom Anchored in a Diffusion Modulator Layer. Nano Letters, 2021, 21, 3245-3253.	4.5	64

#	Article	IF	CITATIONS
73	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	10.2	86
74	Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. Advanced Materials, 2021, 33, e2005922.	11.1	49
75	Electrochemical Behavior Promotion of Polysulfides by Cobalt Selenide/Carbon Cloth Interlayer in Lithiumâ^'Sulfur Batteries. ChemElectroChem, 2021, 8, 1531-1536.	1.7	15
76	Water oxidation at photoanodes based on hematite films and nanowire arrays. Thin Solid Films, 2021, 724, 138626.	0.8	5
77	Strongly Coupled 2D Transition Metal Chalcogenide-MXene-Carbonaceous Nanoribbon Heterostructures with Ultrafast Ion Transport for Boosting Sodium/Potassium Ions Storage. Nano-Micro Letters, 2021, 13, 113.	14.4	100
78	Recent Advances in Nanoparticles Confined in Twoâ€Dimensional Materials as Highâ€Performance Electrocatalysts for Energyâ€Conversion Technologies. ChemCatChem, 2021, 13, 2541-2558.	1.8	4
79	Effects of Electrolyte Additives and Nanowire Diameter on the Electrochemical Performance of Lithiumâ€lon Battery Anodes based on Interconnected Nickel–Tin Nanowire Networks. Energy Technology, 2021, 9, 2100062.	1.8	5
80	Flexible All-Solid-State Supercapacitor Fabricated with Nitrogen-Doped Carbon Nanofiber Electrode Material Derived from Polyacrylonitrile Copolymer. ACS Applied Energy Materials, 2021, 4, 5830-5839.	2.5	4
81	N-Doped Carbon-Coated Cu ₇ S ₄ Nanowires on Cu Foam Supports for Water Disinfection. ACS Applied Nano Materials, 2021, 4, 6124-6134.	2.4	10
82	One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials, 2021, 14, 2609.	1.3	47
83	Fabrication of energy storage EDLC device based on self-synthesized TiO2 nanowire dispersed polymer nanocomposite films. Polymer Bulletin, 2022, 79, 4701-4719.	1.7	11
84	Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today, 2021, 38, 101201.	6.2	86
85	Large-scale production of highly stable silicon monoxide nanowires by radio-frequency thermal plasma as anodes for high-performance Li-ion batteries. Journal of Power Sources, 2021, 497, 229906.	4.0	25
86	Molybdenum dioxide supported carbon nanotubes@carbon constructs disordered nanocluster particles as anodes for lithium-ion capacitors with long-term cycling stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 18912-18930.	1.1	5
87	Enhanced Electrochemical Performance and Safety of Silicon by a Negative Thermal Expansion Material of ZrW ₂ O ₈ . ACS Applied Materials & Interfaces, 2021, 13, 30468-30478.	4.0	11
88	Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO ₃ in Molten Salt. ACS Applied Materials & Interfaces, 2021, 13, 30668-30677.	4.0	18
89	Composite Separators for Robust High Rate Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2101420.	7.8	87
90	Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coordination Chemistry Reviews, 2021, 436, 213782	9.5	52

#	Article	IF	CITATIONS
91	Energy Storage Mechanism, Challenge and Design Strategies of Metal Sulfides for Rechargeable Sodium/Potassiumâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2103912.	7.8	108
92	The Measurement of the Elastic Modulus and Kinetic Friction Coefficient of Long Nanowires by the Micro-force Probe in the SEM Combined with Finite Element Simulation. , 2021, , .		2
93	Strategies for Improving the Catalytic Performance of 2D Covalent Organic Frameworks for Hydrogen Evolution and Oxygen Evolution Reactions. Chemistry - an Asian Journal, 2021, 16, 1851-1863.	1.7	12
94	Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries. Nano Energy, 2021, 84, 105928.	8.2	115
95	Tailoring Mo-Doped NiCoP Grown on (Ni,Co)Se ₂ Nanoarrays for Asymmetric Supercapacitor with Enhanced Electrochemical Performance. ACS Applied Energy Materials, 2021, 4, 6667-6677.	2.5	41
96	Future directions of material chemistry and energy chemistry. Pure and Applied Chemistry, 2021, 93, 1435-1451.	0.9	0
97	A MoS ₂ and Graphene Alternately Stacking van der Waals Heterostructure for Li ⁺ /Mg ²⁺ Coâ€intercalation. Advanced Functional Materials, 2021, 31, 2103214.	7.8	35
98	Low-Crystalline Akhtenskite MnO ₂ -Based Aqueous Magnesium-Ion Hybrid Supercapacitors with a Superior Energy Density Boosted by Redox Bromide-Ion Additive Electrolytes. ACS Sustainable Chemistry and Engineering, 2021, 9, 9165-9176.	3.2	21
99	Ultrathin Ti3C2 nanowires derived from multi-layered bulks for high-performance hydrogen evolution reaction. Chinese Chemical Letters, 2022, 33, 557-561.	4.8	18
100	Atomic Simulation of the Melting and Mechanical Behaviors of Silicon Nanowires. Crystals, 2021, 11, 1010.	1.0	4
101	Instantaneous vapor-liquid-solid growth of amorphous SiO2 nanowires within a local-equilibrium plasma and the optimized lithiation/delithiation activity. Applied Surface Science, 2021, 557, 149848.	3.1	23
102	Tuning electronic structure of ultrathin V6O13 nanobelts via nickel doping for aqueous zinc-ion battery cathodes. Chemical Engineering Journal, 2022, 428, 132538.	6.6	41
103	Criterion for Identifying Anodes for Practically Accessible High-Energy-Density Lithium-Ion Batteries. ACS Energy Letters, 2021, 6, 3719-3724.	8.8	55
104	Manipulating metal oxidation state over ultrastable metal-organic frameworks for boosting photocatalysis. Applied Catalysis B: Environmental, 2021, 292, 120156.	10.8	55
105	Millisecond Conversion of Photovoltaic Silicon Waste to Binderâ€Free High Silicon Content Nanowires Electrodes. Advanced Energy Materials, 2021, 11, 2102103.	10.2	48
106	Effect of ferroelectric poling on the photoelectrochemical activity of hematite-BaTiO3 nanowire arrays. International Journal of Hydrogen Energy, 2021, 46, 36232-36232.	3.8	7
107	Van der Waals heterostructures with one-dimensional atomic crystals. Progress in Materials Science, 2021, 122, 100856.	16.0	29
108	Synthesis and Surface Coating of LiMn ₂ O ₄ Nanorods for the Cathode of the Lithium-Ion Battery. Journal of Nanoscience and Nanotechnology, 2021, 21, 5289-5295.	0.9	1

#	Article	IF	CITATIONS
109	Clarification of particle size dependence on the rate capabilities of Li[Ni1/2Mn3/2]O4 materials and electrodes by the dilute electrode method. Journal of Power Sources, 2021, 509, 230349.	4.0	7
110	Single step auto-igniting combustion technique grown CeO2 and Ni-doped CeO2 nanostructures for multifunctional applications. Journal of Alloys and Compounds, 2021, 882, 160409.	2.8	25
111	A pre-oxidation strategy to improve architecture stability and electrochemical performance of Na2MnPO4F particles-embedded carbon nanofibers. Journal of Colloid and Interface Science, 2021, 603, 430-439.	5.0	8
112	Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539.	8.2	19
113	Interlayer-expanded MoS2 nanoflowers anchored on the graphene: A high-performance Li+/Mg2+ co-intercalation cathode material. Chemical Engineering Journal, 2022, 428, 131214.	6.6	23
114	Polyoxotungstate-based nanocomposite films with multi-color change and high volumetric capacitance toward electrochromic energy-storage applications. New Journal of Chemistry, 2021, 45, 19977-19985.	1.4	4
115	N-Doped Hierarchically Porous CNT@C Membranes for Accelerating Polysulfide Redox Conversion for High-Energy Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 2521-2529.	4.0	20
116	Microbe-Assisted Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS Nano, 2021, 15, 3423-3433.	7.3	158
117	2D Conductive Metal–Organic Frameworks: An Emerging Platform for Electrochemical Energy Storage. Angewandte Chemie - International Edition, 2021, 60, 5612-5624.	7.2	198
118	Editors' Choice—Review—Conductive Forms of MoS ₂ and Their Applications in Energy Storage and Conversion. Journal of the Electrochemical Society, 2020, 167, 126517.	1.3	46
119	An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200796.	0.3	5
120	Designing core–shell metal–organic framework hybrids: toward high-efficiency electrochemical potassium storage. Journal of Materials Chemistry A, 2021, 9, 26181-26188.	5.2	10
121	Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews, 2021, 121, 14349-14429.	23.0	151
122	Engineering Nanostructured Antimony-Based Anode Materials for Sodium Ion Batteries. Coatings, 2021, 11, 1233.	1.2	10
123	Co-Ni Basic Carbonate Nanowire/Carbon Nanotube Network With High Electrochemical Capacitive Performance via Electrochemical Conversion. Frontiers in Chemistry, 2021, 9, 655025.	1.8	3
124	Noble Metal Nanoparticles Decorated Metal Oxide Semiconducting Nanowire Arrays Interwoven into 3D Mesoporous Superstructures for Low-Temperature Gas Sensing. ACS Central Science, 2021, 7, 1885-1897.	5.3	45
125	Dense Silicon Nanowire Networks Grown on a Stainless‣teel Fiber Cloth: A Flexible and Robust Anode for Lithiumâ€lon Batteries. Advanced Materials, 2021, 33, e2105917.	11.1	46
126	Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coordination Chemistry Reviews, 2022, 450, 214244.	9.5	84

#	Article	IF	CITATIONS
127	Recent research and issues. , 2022, , 273-290.		0
128	One-dimensional core–shell motif nanowires with chemically-bonded transition metal sulfide-carbon heterostructures for efficient sodium-ion storage. Chemical Science, 2021, 12, 15054-15060.	3.7	23
129	A mini-review on recent trends in prospective use of porous 1D nanomaterials for hydrogen storage. South African Journal of Chemical Engineering, 2022, 39, 52-61.	1.2	6
130	Graphene Oxide-Assisted Growth of Ultralong and Soft Single-Crystalline NaCl Ionic Nanowires for Potential Optical Nanodevices. ACS Applied Nano Materials, 2021, 4, 13495-13500.	2.4	1
131	Electrospinning super-assembly of ultrathin fibers from single- to multi-Taylor cone sites. Applied Materials Today, 2022, 26, 101272.	2.3	18
132	γ-Mo ₂ N Nanobelts with Controlled Grain and Mesopore Sizes as High-Performance Anodes for Lithium-Ion Capacitors. ACS Applied Nano Materials, 2021, 4, 12514-12526.	2.4	4
133	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46
134	BCNâ€Assisted Builtâ€In Electric Field in Heterostructure: An Innovative Path for Broadening the Voltage Window of Aqueous Supercapacitor. Advanced Functional Materials, 2022, 32, 2108843.	7.8	41
135	Construction of Moistureâ€Stable Lithium Diffusionâ€Controlling Layer toward High Performance Dendriteâ€Free Lithium Anode. Advanced Functional Materials, 2022, 32, 2110468.	7.8	32
136	Multidimensional Tungsten Oxides for Efficient Solar Energy Conversion. Small Structures, 2022, 3, 2100130.	6.9	21
138	Preparation of polycrystalline tungsten nanofibers by needleless electrospinning. Journal of Alloys and Compounds, 2022, 900, 163542.	2.8	9
139	One-pot synthesis of core@shell PdAuPt nanodendrite@Pd nanosheets for boosted visible light-driven methanol electrooxidation. Chemical Communications, 2021, 57, 13198-13201.	2.2	10
140	Insight into the Self-Assembled 3D Sandwich-Like Hollow-Silicon-Nanoarray/Graphene Lithium Storage Architecture by Sonication-Assisted Functionalization. SSRN Electronic Journal, 0, , .	0.4	0
141	Preparation and Characterization of PANI/MWCNT/RGO Ternary Composites as Electrode Materials for Supercapacitors. Journal of Electronic Materials, 2022, 51, 1409-1420.	1.0	16
142	Design of Flexible Films Based on Kinked Carbon Nanofibers for High Rate and Stable Potassium-Ion Storage. Nano-Micro Letters, 2022, 14, 47.	14.4	41
143	Highly Fluorinated Al-Centered Lithium Salt Boosting the Interfacial Compatibility of Li-Metal Batteries. ACS Energy Letters, 2022, 7, 591-598.	8.8	34
144	Functionalized Carbon-Based Composite Materials for Cathode Application of Lithium-Sulfur Batteries. Acta Chimica Sinica, 2022, 80, 89.	0.5	3
145	Direct surface functionalization with metal and metal oxide nanostructures. , 2023, , 318-336.		1

#	Article	IF	CITATIONS
146	Nanoâ€Sized Niobium Tungsten Oxide Anode for Advanced Fastâ€Charge Lithiumâ€lon Batteries. Small, 2022, 18, e2107365.	5.2	26
147	Upcycling of photovoltaic silicon waste into ultrahigh areal-loaded silicon nanowire electrodes through electrothermal shock. Energy Storage Materials, 2022, 46, 594-604.	9.5	17
148	Nitrogen and sulfur co-doped hierarchically mesoporous carbon derived from biomass as high-performance anode materials for superior sodium storage. Journal of Power Sources, 2022, 526, 231019.	4.0	20
149	A dual-confinement strategy to construct cobalt-based phosphide nanoclusters within carbon nanofibers for bifunctional water splitting electrocatalysts. Dalton Transactions, 2022, 51, 5168-5174.	1.6	6
150	Insight into the Self-Assembled Three-Dimensional Sandwich-Like Hollow Silicon Nanoarray/Graphene Lithium Storage Architecture by Sonication-Assisted Functionalization. Energy & Fuels, 2022, 36, 3283-3292.	2.5	2
151	Applications of Nonâ€precious Transition Metal Oxide Nanoparticles in Electrochemistry. Electroanalysis, 2022, 34, 1065-1091.	1.5	17
152	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
153	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
154	Hydrothermal Synthesis of NiCo2S4 Nanotube and Its Investigation as Electrode Material. International Journal of Electrochemical Science, 2022, 17, 220436.	0.5	3
155	A new strategy to quickly synthetize true nanoparticles of the spinel LiMn2O4 by using a microwave-assisted hydrothermal route. Journal of Alloys and Compounds, 2022, , 164856.	2.8	11
156	Hierarchical structure Ni3S2/Ni(OH)2 nanoarrays towards high-performance supercapacitors. Journal of Solid State Chemistry, 2022, 309, 122974.	1.4	8
157	Cobalt-molybdenum selenide double-shelled hollow nanocages derived from metal-organic frameworks as high performance electrodes for hybrid supercapacitor. Journal of Colloid and Interface Science, 2022, 616, 141-151.	5.0	16
158	Rational design of Cu based composite electrode materials for high-performance supercapacitors – A review. Journal of Energy Storage, 2022, 51, 104330.	3.9	19
159	Correlation between the Dielectric Response and Thickness of Vanadium Pentoxide Nanowires. ACS Applied Electronic Materials, 2022, 4, 124-129.	2.0	2
160	Fe3O4 Nanoparticles on 3D Porous Carbon Skeleton Derived from Rape Pollen for High-Performance Li-Ion Capacitors. Nanomaterials, 2021, 11, 3355.	1.9	3
161	Lithium Storage Mechanism and Application of Micronâ€Sized Latticeâ€Reversible Binary Intermetallic Compounds as Highâ€Performance Flexible Lithiumâ€Ion Battery Anodes. Small, 2022, 18, e2105172.	5.2	6
162	[Ru(N ^{â^§} N ^{â^§} N) ₂ -Ce]-based framework for photocatalytic sulfide oxidation and hydrogen production. CrystEngComm, 2022, 24, 3160-3164.	1.3	1
163	Interfacial engineering in amorphous/crystalline heterogeneous nanostructures as a highly effective battery-type electrode for hybrid supercapacitors. Journal of Materials Chemistry A, 2022, 10, 11186-11195.	5.2	14

#	Article	IF	CITATIONS
164	CuCo ₂ S ₄ –MoS ₂ nanocomposite: a novel electrode for high-performance supercapacitors. Journal of Materials Chemistry C, 2022, 10, 7980-7996.	2.7	27
165	Porous liquids $\hat{a} \in $ the future is looking emptier. Chemical Science, 2022, 13, 5042-5054.	3.7	22
166	Polypyrrole Nanotunnels with Luminal and Abluminal Layered Double Hydroxide Nanosheets Grown on a Carbon Cloth for Energy Storage Applications. ACS Applied Materials & Interfaces, 2022, 14, 23285-23296.	4.0	28
167	Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors. Journal of Materials Science: Materials in Electronics, 0, , 1.	1.1	4
168	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodiumâ€ion Batteries Operated at â^'40°C. Advanced Materials, 2022, 34, e2202873.	11.1	28
169	Multi-hierarchical earbuds-ball-like silicon suboxide-carbon hybrids design for high-performance lithium storage. Composites Part B: Engineering, 2022, 238, 109951.	5.9	4
170	Self-Assembly of Nanowires: From Dynamic Monitoring to Precision Control. Accounts of Chemical Research, 2022, 55, 1480-1491.	7.6	12
171	Synthesis of heterostructured dual metal sulfides by a high-temperature mixing hydrothermal method as an ultra-high rate anode for Li-ion batteries. CrystEngComm, 2022, 24, 4698-4704.	1.3	4
172	Prussian blue analogue fabricated one-dimensional hollow tube for high-performance detection of glucose. Polyhedron, 2022, 222, 115916.	1.0	4
173	Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Materials Today, 2022, 56, 114-134.	8.3	26
174	A N-Rich porous carbon nanocube anchored with Co/Fe dual atoms: an efficient bifunctional catalytic host for Li–S batteries. Materials Chemistry Frontiers, 2022, 6, 2095-2102.	3.2	11
175	Tuning the Mn Dopant To Boost the Hydrogen Evolution Performance of CoP Nanowire Arrays. Inorganic Chemistry, 2022, 61, 9832-9839.	1.9	13
176	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
177	Ferroelectric BaTiO ₃ Based Multiâ€Effects Coupled Materials and Devices. Advanced Electronic Materials, 2022, 8, .	2.6	10
178	A novel hierarchical core-shell structure of NiCo2O4@NiCo-LDH nanoarrays for higher-performance flexible all-solid-state supercapacitor electrode materials. Journal of Alloys and Compounds, 2022, 920, 165986.	2.8	35
179	Unveiling the nanoalloying modulation on hydrogen evolution activity of ruthenium-based electrocatalysts encapsulated by B/N co-doped graphitic nanotubes. Applied Catalysis B: Environmental, 2022, 316, 121626.	10.8	13
181	Catalytic effect in Li-S batteries: From band theory to practical application. Materials Today, 2022, 57, 84-120.	8.3	69
182	Rational Design of Woodâ€6tructured Thick Electrode for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	33

#	Article	IF	CITATIONS
183	One-Step Calcination Process for the Construction of Oxygen Deficient Fe2O3/N, P Co-doped Carbon Composites for High-Performance Supercapacitors. Journal of Electronic Materials, 2022, 51, 5262-5272.	1.0	2
184	Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion. International Journal of Hydrogen Energy, 2022, 47, 26956-26977.	3.8	35
185	Uncovering the machining mechanism of polycrystalline gold nanowires by nanoskiving. International Journal of Mechanical Sciences, 2022, 230, 107545.	3.6	8
186	An effective one-step aqueous-phase synthesis of finely controllable Ag nanorods with tunable short aspect ratios and electronic dynamics properties. Materials Letters, 2022, 325, 132833.	1.3	0
187	Crosslinked Nanofiberâ€Reinforced Solid‣tate Electrolytes with Polysulfide Fixation Effect Towards High Safety Flexible Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	42
188	Lithium Atom Surface Diffusion and Delocalized Deposition Propelled by Atomic Metal Catalyst toward Ultrahigh-Capacity Dendrite-Free Lithium Anode. Nano Letters, 2022, 22, 8008-8017.	4.5	36
189	A comprehensive stateâ€ofâ€theâ€art review of electrochemical battery storage systems for power grids. International Journal of Energy Research, 2022, 46, 17786-17812.	2.2	13
190	Recent progress in ultrafine 3D Pd-based nanocubes with multiple structures for advanced fuel cells electrocatalysis. Coordination Chemistry Reviews, 2022, 472, 214775.	9.5	14
191	Morphology engineering of Co-MOF nanostructures to tune their electrochemical performances for electrocatalyst and energy-storage applications supported by DFT studies. Applied Surface Science, 2022, 605, 154691.	3.1	9
192	Carbon-Based Nanomaterials for Metal-Ion Batteries. Springer Series in Materials Science, 2022, , 209-226.	0.4	0
193	Capacitive Charge Storage Mechanism in Sanmartinite to Be Determined by Qualitative and Quantitative Electrochemical Analysis. SSRN Electronic Journal, 0, , .	0.4	0
194	Facile Synthesis of NixCo3â^'xS4 Microspheres for High-Performance Supercapacitors and Alkaline Aqueous Rechargeable NiCo-Zn Batteries. Nanomaterials, 2022, 12, 2994.	1.9	0
195	Advanced Batteries and Charge Storage Devices based on Nanowires. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 159-175.	0.1	1
196	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
197	Emerging surface strategies for porous materials-based phase change composites. Matter, 2022, 5, 3225-3259.	5.0	21
198	<i>In situ</i> electrochemical activation of Co(OH) ₂ @Ni(OH) ₂ heterostructures for efficient ethanol electrooxidation reforming and innovative zinc–ethanol–air batteries. Energy and Environmental Science, 2022, 15, 5300-5312.	15.6	54
199	Silicon nanostructures for solid-state hydrogen storage: A review. International Journal of Hydrogen Energy, 2023, 48, 1401-1439.	3.8	27
200	Electrospun Nanofiber Electrodes for Lithiumâ€lon Batteries. Macromolecular Rapid Communications, 2023, 44, .	2.0	10

#	Article	IF	Citations
201	Sub-10 nm Corrugated TiO ₂ Nanowire Arrays by Monomicelle-Directed Assembly for Efficient Hole Extraction. Journal of the American Chemical Society, 2022, 144, 20964-20974.	6.6	20
202	MXenes: An exotic material for hybrid supercapacitors and rechargeable batteries. Journal of Energy Storage, 2022, 56, 105914.	3.9	10
203	Multi-dimensional Ni(OH)2/(Ni(OH)2(NiOOH).167).857@Ni3S2 hierarchical structure for high-performance asymmetric supercapacitor. Applied Surface Science, 2023, 611, 155625.	3.1	4
204	Highly Efficient Organosulfur and Lithiumâ€Metal Hosts Enabled by C@Fe3N Sponge. Angewandte Chemie, 0, , .	1.6	0
205	Highly Efficient Organosulfur and Lithiumâ€Metal Hosts Enabled by C@Fe ₃ N Sponge. Angewandte Chemie - International Edition, 2023, 62, .	7.2	20
206	Capacitive charge storage mechanism in sanmartinite to be determined by qualitative and quantitative electrochemical analysis. Electrochimica Acta, 2023, 439, 141692.	2.6	2
207	Exploration, of magnetic sesquioxide nanocomposite as a potential electrode material for the fabrication of high energy density asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2023, 928, 117043.	1.9	6
208	Interconnected N-doped carbon network as high-performance anode material for superior lithium ion hybrid capacitor. Materials Today Communications, 2023, 34, 105142.	0.9	2
209	Lithium-ion insertion properties of one-dimensional layered rhenium phosphide. Journal of Alloys and Compounds, 2023, 936, 168331.	2.8	2
210	Solid polymer electrolytes with MOF-anchored sulfonated polyethersulfone nanofibers with high ionic conductivity and suppressed lithium dendrites for all-solid-state lithium metal batteries. Ionics, 2023, 29, 617-624.	1.2	2
213	Si/SiO ₂ @Graphene Superstructures for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	22
214	Oriented Assembled Prussian Blue Analogue Framework for Confined Catalytic Decomposition of Ammonium Perchlorate. Small, 2023, 19, .	5.2	8
215	Template-free synthesis of perovskite (PEA)2PbI4 nanowires by ion-intercalation processing for single-nanowire photodetectors. Journal of Alloys and Compounds, 2023, , 168894.	2.8	3
216	A Review of Transition Metal Compounds as Functional Separators for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2023, 8, .	0.7	5
217	MOF-Derived Urchin-like Co9S8-Ni3S2 Composites on Ni Foam as Efficient Self-Supported Electrocatalysts for Oxygen Evolution Reaction. Batteries, 2023, 9, 46.	2.1	1
218	Aqueous transition-metal ion batteries: Materials and electrochemistry. EnergyChem, 2023, 5, 100097.	10.1	6
219	Single-crystalline Mg-substituted Na ₄ Mn ₃ (PO ₄) ₂ P ₂ O ₇ nanoparticles as a high capacity and superior cycling cathode for sodium-ion batteries. Nanoscale, 2023, 15, 4830-4838.	2.8	1
220	Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano, 2023, 17, 1764-1802.	7.3	50

#	Article	IF	CITATIONS
221	Ultrafine ZnSe/CoSe nanodots encapsulated in core–shell MOF-derived hierarchically porous N-doped carbon nanotubes for superior lithium/sodium storage. Journal of Materials Chemistry A, 2023, 11, 5056-5066.	5.2	12
222	Recent advances in 3D printed electrode materials for electrochemical energy storage devices. Journal of Energy Chemistry, 2023, 81, 272-312.	7.1	16
223	Synergistic effect of 1D bismuth Nanowires/2D graphene composites for high performance flexible anodes in sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 8081-8090.	5.2	5
224	0D, 1D, 2D, and 3D Structured Chalcogenides for Supercapacitor Applications. , 2023, , 1-52.		0
225	Laser ablated uniform deposition of bismuth oxide film as efficient anode for zinc based flow battery. Electrochimica Acta, 2023, 451, 142287.	2.6	1
226	A thin Si nanowire network anode for high volumetric capacity and long-life lithium-ion batteries. Journal of Energy Chemistry, 2023, 81, 20-27.	7.1	5
227	Bifunctional Co ₃ S ₄ Nanowires for Robust Sulfion Oxidation and Hydrogen Generation with Low Power Consumption. Advanced Functional Materials, 2023, 33, .	7.8	25
228	Morphologically Tunable Fabrication of Hematite Nanostructures for Enhanced Photoelectrochemical Performance. ECS Journal of Solid State Science and Technology, 2023, 12, 021002.	0.9	1
229	A Robust Dualâ€Polymer@Inorganic Networks Composite Polymer Electrolyte Toward Ultraâ€Longâ€Life and Highâ€Voltage Li/Liâ€Rich Metal Battery. Advanced Functional Materials, 2023, 33, .	7.8	28
230	State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coordination Chemistry Reviews, 2023, 481, 215055.	9.5	9
231	Secondary ion mass spectrometry quantification of boron distribution in an array of silicon nanowires. Measurement: Journal of the International Measurement Confederation, 2023, 211, 112630.	2.5	3
232	Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 2023, 15, 1450.	2.0	12
233	Layered oxide cathodes for sodium-ion batteries: microstructure design, local chemistry and structural unit. Science China Chemistry, 2024, 67, 191-213.	4.2	10
242	Development and characterization of nano-MOFs. , 2023, , 107-138.		0
250	Review on modification routes for SnOx-based anodes for Li storage: morphological structure tuning and phase structure design. Rare Metals, 0, , .	3.6	0
263	Structure–performance relationship of nanomaterials. , 2024, , 43-92.		0
265	The reformation of catalyst: From a trial-and-error synthesis to rational design. Nano Research, 0, , .	5.8	16
273	Structure types and characteristics of nanomaterials. , 2024, , 15-41.		Ο

#	Article	IF	CITATIONS
285	Performance Optimization of Vanadium-Based Nanomaterials. , 2023, , 105-127.		0
300	Sustainable hydrothermal carbon for advanced electrochemical energy storage. Journal of Materials Chemistry A, 2024, 12, 4996-5039.	5.2	0