Optimized CRISPR guide RNA design for two high-fidel

Nature Communications 10, 4284

DOI: 10.1038/s41467-019-12281-8

Citation Report

#	Article	IF	CITATIONS
1	CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science Advances, 2020, 6, .	4.7	270
2	Genome-scale CRISPR screening at high sensitivity with an empirically designed sgRNA library. BMC Biology, 2020, 18, 174.	1.7	24
3	Base Editing in Human Cells to Produce Singleâ€Nucleotideâ€Variant Clonal Cell Lines. Current Protocols in Molecular Biology, 2020, 133, e129.	2.9	4
4	CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials. Genes, 2020, 11, 921.	1.0	27
5	CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biology, 2020, 21, 204.	3.8	14
6	CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning. BMC Bioinformatics, 2020, 21, 223.	1.2	22
7	Prediction of the sequence-specific cleavage activity of Cas9 variants. Nature Biotechnology, 2020, 38, 1328-1336.	9.4	133
8	A Generative Neural Network for Maximizing Fitness and Diversity of Synthetic DNA and Protein Sequences. Cell Systems, 2020, 11, 49-62.e16.	2.9	71
9	Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification. Nature Communications, 2020, 11, 3311.	5.8	25
10	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	1.7	37
11	Versatile 3′ Functionalization of CRISPR Single Guide RNA. ChemBioChem, 2020, 21, 1633-1640.	1.3	10
12	Genome Editing for the Understanding and Treatment of Inherited Cardiomyopathies. International Journal of Molecular Sciences, 2020, 21, 733.	1.8	18
13	Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases. Theranostics, 2020, 10, 4374-4382.	4.6	80
14	CGD: Comprehensive guide designer for CRISPR-Cas systems. Computational and Structural Biotechnology Journal, 2020, 18, 814-820.	1.9	6
15	A Tandem Guide RNA-Based Strategy for Efficient CRISPR Gene Editing of Cell Populations with Low Heterogeneity of Edited Alleles. CRISPR Journal, 2020, 3, 123-134.	1.4	10
16	Retinal gene therapy: an eye-opener of the 21st century. Gene Therapy, 2021, 28, 209-216.	2.3	21
17	dbGuide: a database of functionally validated guide RNAs for genome editing in human and mouse cells. Nucleic Acids Research, 2021, 49, D871-D876.	6.5	20
18	Predicting the efficiency of prime editing guide RNAs in human cells. Nature Biotechnology, 2021, 39, 198-206.	9.4	160

#	Article	IF	CITATIONS
19	Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks. Computational and Structural Biotechnology Journal, 2021, 19, 1445-1457.	1.9	20
20	GuidePro: a multi-source ensemble predictor for prioritizing sgRNAs in CRISPR/Cas9 protein knockouts. Bioinformatics, 2021, 37, 134-136.	1.8	7
21	Mutagenomics for Functional Analysis of Plant Genome using CRISPR Library Screen. Concepts and Strategies in Plant Sciences, 2021, , 339-367.	0.6	0
22	Recording of elapsed time and temporal information about biological events using Cas9. Cell, 2021, 184, 1047-1063.e23.	13.5	29
23	Highly efficient neuronal gene knockout in vivo by CRISPR-Cas9 via neonatal intracerebroventricular injection of AAV in mice. Gene Therapy, 2021, 28, 646-658.	2.3	30
24	Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biology, 2021, 22, 86.	3.8	33
25	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	2.7	11
26	Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biology, 2021, 22, 80.	3.8	23
27	Genetic Approaches for the Treatment of Facioscapulohumeral Muscular Dystrophy. Frontiers in Pharmacology, 2021, 12, 642858.	1.6	5
30	Systematic <i>in vitro</i> specificity profiling reveals nicking defects in natural and engineered CRISPR–Cas9 variants. Nucleic Acids Research, 2021, 49, 4037-4053.	6.5	10
31	CRISPR screens in plants: approaches, guidelines, and future prospects. Plant Cell, 2021, 33, 794-813.	3.1	54
32	Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nature Communications, 2021, 12, 3238.	5.8	81
35	Synthetic biology as driver for the biologization of materials sciences. Materials Today Bio, 2021, 11, 100115.	2.6	31
36	Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. Molecular Therapy - Nucleic Acids, 2021, 24, 403-415.	2.3	17
37	Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Molecular Therapy, 2022, 30, 105-118.	3.7	31
38	Generation of locus-specific degradable tag knock-ins in mouse and human cell lines. STAR Protocols, 2021, 2, 100575.	0.5	4
39	Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene and Genome Editing, 2021, 1, 100004.	1.3	6
40	Effective Crop Management and Modern Breeding Strategies to Ensure Higher Crop Productivity under Direct Seeded Rice Cultivation System: A Review. Agronomy, 2021, 11, 1264.	1.3	12

#	ARTICLE	IF	CITATIONS
41	TSA Promotes CRISPR/Cas9 Editing Efficiency and Expression of Cell Division-Related Genes from Plant Protoplasts. International Journal of Molecular Sciences, 2021, 22, 7817.	1.8	10
42	Machine Learning in Healthcare. Current Genomics, 2021, 22, 291-300.	0.7	64
43	Genome dependent Cas9/gRNA search time underlies sequence dependent gRNA activity. Nature Communications, 2021, 12, 5034.	5.8	28
45	Understanding the Potential of Genome Editing in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 9241.	1.8	3
46	CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR Journal, 2021, 4, 634-655.	1.4	5
47	Neuronal Cell-type Engineering by Transcriptional Activation. Frontiers in Genome Editing, 2021, 3, 715697.	2.7	5
48	CRISPR/Cas9 small promoter deletion in H19 lncRNA is associated with altered cell morphology and proliferation. Scientific Reports, 2021, 11, 18380.	1.6	7
49	A method for characterizing Cas9 variants via a one-million target sequence library of self-targeting sgRNAs. Nucleic Acids Research, 2021, 49, e31-e31.	6.5	12
50	CRISPR-Cas "Non-Target―Sites Inhibit On-Target Cutting Rates. CRISPR Journal, 2020, 3, 550-561.	1.4	17
52	CRISPR-based strategies for targeted transgene knock-in and gene correction. Faculty Reviews, 2020, 9, 20.	1.7	8
53	DeepTrio: a ternary prediction system for protein–protein interaction using mask multiple parallel convolutional neural networks. Bioinformatics, 2022, 38, 694-702.	1.8	27
54	An easy-to-use CRISPRi plasmid tool for inducible knockdown in E. coli. Biotechnology Reports (Amsterdam, Netherlands), 2021, 32, e00680.	2.1	1
57	Desarrollo de nuevos diseños vegetales: Mejora genética vs transformación genética y edición génica. Magna Scientia UCEVA, 2021, 1, 89-103.	0.1	0
58	Role of the CRISPR Technique in Decoding the Principles of Quorum Sensing. ACS Symposium Series, 2020, , 49-63.	0.5	0
63	Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Frontiers in Bioengineering and Biotechnology, 2021, 9, 775309.	2.0	11
64	Uncertainty-aware and interpretable evaluation of Cas9–gRNA and Cas12a–gRNA specificity for fully matched and partially mismatched targets with Deep Kernel Learning. Nucleic Acids Research, 2022, 50, e11-e11.	6.5	5
65	Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nature Communications, 2022, 13, 489.	5.8	35
66	High-throughput methods for genome editing: the more the better. Plant Physiology, 2022, 188, 1731-1745.	2.3	10

#	Article	IF	CITATIONS
67	Synthetic biology enables field-deployable biosensors for water contaminants. TrAC - Trends in Analytical Chemistry, 2022, 146, 116507.	5.8	12
68	Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9. Nucleic Acids Research, 2022, 50, 2854-2871.	6.5	2
69	AI in health and medicine. Nature Medicine, 2022, 28, 31-38.	15.2	638
70	Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nature Communications, 2022, 13, 474.	5.8	23
71	Protein–RNA interaction prediction with deep learning: structure matters. Briefings in Bioinformatics, 2022, 23, .	3.2	37
73	Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica. Nature Communications, 2022, 13, 922.	5.8	25
74	A Meta-Analysis of gRNA Library Screens Enables an Improved Understanding of the Impact of gRNA Folding and Structural Stability on CRISPR-Cas9 Activity. CRISPR Journal, 2022, 5, 146-154.	1.4	7
75	CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Research, 2022, 50, 3616-3637.	6.5	69
76	Computational Tools and Resources for CRISPR/Cas Genome Editing. Genomics, Proteomics and Bioinformatics, 2023, 21, 108-126.	3.0	51
78	CNN-XG: A Hybrid Framework for sgRNA On-Target Prediction. Biomolecules, 2022, 12, 409.	1.8	6
79	Current progress and open challenges for applying deep learning across the biosciences. Nature Communications, 2022, 13, 1728.	5.8	105
80	AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity. BMC Bioinformatics, 2021, 22, 589.	1.2	11
82	Methods for the directed evolution of biomolecular interactions. Trends in Biochemical Sciences, 2022, 47, 403-416.	3.7	3
83	High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. Journal of Experimental Medicine, 2022, 219, .	4.2	30
84	ExsgRNA: reduce off-target efficiency by on-target mismatched sgRNA. Briefings in Bioinformatics, 2022, 23, .	3.2	2
85	Optimized Tools and Methods for Methanotroph Genome Editing. Methods in Molecular Biology, 2022, 2489, 421-434.	0.4	2
86	Current and future direction in treatment of HPV-related cervical disease. Journal of Molecular Medicine, 2022, 100, 829-845.	1.7	20
87	Engineered Cas9 extracellular vesicles as a novel gene editing tool. Journal of Extracellular Vesicles, 2022, 11, e12225.	5 . 5	47

#	Article	IF	CITATIONS
88	CRISPR/Cas9 gRNA activity depends on $\hat{\rm A}$ free energy changes and on the target PAM context. Nature Communications, 2022, 13, .	5.8	31
89	Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. Frontiers in Plant Science, 2022, 13, .	1.7	4
91	Recent Advances in Cancer Drug Discovery Through the Use of Phenotypic Reporter Systems, Connectivity Mapping, and Pooled CRISPR Screening. Frontiers in Pharmacology, 0, 13, .	1.6	4
92	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
93	CRISPRedict: a CRISPR-Cas9 web tool for interpretable efficiency predictions. Nucleic Acids Research, 2022, 50, W191-W198.	6.5	4
94	Optimal LentiCRISPR-Based System for Sequential CRISPR/Cas9 Screens. ACS Synthetic Biology, 2022, 11, 2259-2266.	1.9	0
95	Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells, 2022, 11, 2186.	1.8	25
96	Integrated CRISPR-Cas9 System-Mediated Knockout of IFN- \hat{l}^3 and IFN- \hat{l}^3 Receptor 1 in the Vero Cell Line Promotes Viral Susceptibility. International Journal of Molecular Sciences, 2022, 23, 8217.	1.8	2
97	RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	10
99	The Prominent Characteristics of the Effective sgRNA for a Precise CRISPR Genome Editing. , 0, , .		3
100	Generation of dual-gRNA library for combinatorial CRISPR screening of synthetic lethal gene pairs. STAR Protocols, 2022, 3, 101556.	0.5	1
101	TransCrispr: Transformer Based Hybrid Model for Predicting CRISPR/Cas9 Single Guide RNA Cleavage Efficiency. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 1518-1528.	1.9	5
102	Optimized Guide RNA Selection Improves <i>Streptococcus pyogenes</i> Cas9 Gene Editing of Human Hematopoietic Stem and Progenitor Cells. CRISPR Journal, 2022, 5, 702-716.	1.4	4
103	A systematic mapping study on machine learning techniques for the prediction of CRISPR/Cas9 sgRNA target cleavage. Computational and Structural Biotechnology Journal, 2022, 20, 5813-5823.	1.9	4
104	Evaluation of efficiency prediction algorithms and development of ensemble model for CRISPR/Cas9 gRNA selection. Bioinformatics, 2022, 38, 5175-5181.	1.8	6
106	Engineering a precise adenine base editor with minimal bystander editing. Nature Chemical Biology, 2023, 19, 101-110.	3.9	52
107	BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models. BMC Bioinformatics, 2022, 23, .	1.2	3
108	Deep generative molecular design reshapes drug discovery. Cell Reports Medicine, 2022, 3, 100794.	3.3	33

#	Article	IF	CITATIONS
109	A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nature Communications, 2022, 13 , .	5.8	10
110	Genome editing and bioinformatics. Gene and Genome Editing, 2022, 3-4, 100018.	1.3	2
111	EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Computational and Structural Biotechnology Journal, 2023, 21, 202-211.	1.9	5
112	Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. Journal of Translational Medicine, 2022, 20, .	1.8	11
113	Guide-Guard: Off-Target Predicting inÂCRISPR Applications. Lecture Notes in Computer Science, 2022, , 423-431.	1.0	0
114	Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nature Protocols, 2023, 18, 831-853.	5.5	21
115	Identification of SaCas9 orthologs containing a conserved serine residue that determines simple NNGG PAM recognition. PLoS Biology, 2022, 20, e3001897.	2.6	6
116	Genome Editing and Pathological Cardiac Hypertrophy. Advances in Experimental Medicine and Biology, 2023, , 87-101.	0.8	0
117	Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics. Journal of Physical Chemistry B, 2023, 127, 45-51.	1.2	0
118	CRISPR genome editing using computational approaches: A survey. Frontiers in Bioinformatics, 0, 2, .	1.0	3
119	An efficient deep learning based predictor for identifying miRNA-triggered phasiRNA loci in plant. Mathematical Biosciences and Engineering, 2023, 20, 6853-6865.	1.0	0
120	Hybrid Multitask Learning Reveals Sequence Features Driving Specificity in the CRISPR/Cas9 System. Biomolecules, 2023, 13, 641.	1.8	3
121	CriSNPr, a single interface for the curated and de novo design of gRNAs for CRISPR diagnostics using diverse Cas systems. ELife, 0, 12, .	2.8	3
123	High-Density Guide RNA Tiling and Machine Learning for Designing CRISPR Interference in <i>Synechococcus</i> sp. PCC 7002. ACS Synthetic Biology, 2023, 12, 1175-1186.	1.9	1
125	Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications. Cancers, 2023, 15, 1958.	1.7	1
126	Machine learning for design of degenerate Cas13a crRNAs using lassa virus as a model of highly variable RNA target. Scientific Reports, 2023, 13 , .	1.6	1
127	Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Briefings in Bioinformatics, 2023, 24, .	3.2	8
137	Prospects and Future Questions. Compendium of Plant Genomes, 2023, , 167-171.	0.3	0

Article IF Citations

A Comparison of Machine Learning Models for Predicting CRISPR/Cas On-target Efficacy., 2023, , . 0