Restoring natural forests is the best way to remove atm

Nature

568, 25-28

DOI: 10.1038/d41586-019-01026-8

Citation Report

#	Article	IF	CITATIONS
1	Land Restoration in Latin America and the Caribbean: An Overview of Recent, Ongoing and Planned Restoration Initiatives and Their Potential for Climate Change Mitigation. Forests, 2019, 10, 510.	0.9	33
2	The global tree restoration potential. Science, 2019, 365, 76-79.	6.0	1,181
3	Restoring forests as a means to many ends. Science, 2019, 365, 24-25.	6.0	197
4	Response to Comments on "The global tree restoration potential― Science, 2019, 366, .	6.0	20
5	Comment on "The global tree restoration potential― Science, 2019, 366, .	6.0	55
6	The forest transformation: Planted tree cover and regional dynamics of tree gains and losses. Global Environmental Change, 2019, 59, 101988.	3.6	33
7	Intact Forests in the United States: Proforestation Mitigates Climate Change and Serves the Greatest Good. Frontiers in Forests and Global Change, 2019, 2, .	1.0	95
8	Can plants help us avoid seeding a humanâ€made climate catastrophe?. Plants People Planet, 2019, 1, 310-314.	1.6	1
9	The Trouble with Trees: Afforestation Plans for Africa. Trends in Ecology and Evolution, 2019, 34, 963-965.	4.2	164
10	Seeing Chile's forest for the tree plantations. Science, 2019, 365, 1388-1388.	6.0	13
10	Seeing Chile's forest for the tree plantations. Science, 2019, 365, 1388-1388. The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests, 2019, 10, 473.	0.9	13
11	The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests, 2019, 10, 473. Climate change: essential knowledge for developing holistic solutions to our climate crisis. Emerging	0.9	46
11	The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests, 2019, 10, 473. Climate change: essential knowledge for developing holistic solutions to our climate crisis. Emerging Topics in Life Sciences, 2019, 3, 245-256. Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived	0.9	46 5
11 12 13	The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests, 2019, 10, 473. Climate change: essential knowledge for developing holistic solutions to our climate crisis. Emerging Topics in Life Sciences, 2019, 3, 245-256. Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle. Remote Sensing, 2019, 11, 2914.	0.9	46 5 5
11 12 13	The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests, 2019, 10, 473. Climate change: essential knowledge for developing holistic solutions to our climate crisis. Emerging Topics in Life Sciences, 2019, 3, 245-256. Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle. Remote Sensing, 2019, 11, 2914. Response to Comment on "The global tree restoration potentialâ€. Science, 2019, 366, .	0.9 1.1 1.8	46554
11 12 13 14	The Impacts of Native Forests and Forest Plantations on Water Supply in Chile. Forests, 2019, 10, 473. Climate change: essential knowledge for developing holistic solutions to our climate crisis. Emerging Topics in Life Sciences, 2019, 3, 245-256. Quick Aboveground Carbon Stock Estimation of Densely Planted Shrubs by Using Point Cloud Derived from Unmanned Aerial Vehicle. Remote Sensing, 2019, 11, 2914. Response to Comment on "The global tree restoration potential†Science, 2019, 366, . A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests, 2019, 10, 980. Pervasive human-driven decline of life on Earth points to the need for transformative change.	0.9 1.1 1.8 6.0	46 5 5 4 29

#	Article	IF	Citations
19	Net positive outcomes for nature. Nature Ecology and Evolution, 2020, 4, 4-7.	3.4	52
20	Which practices coâ€deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Global Change Biology, 2020, 26, 1532-1575.	4.2	164
21	Afforestation for climate change mitigation: Potentials, risks and tradeâ€offs. Global Change Biology, 2020, 26, 1576-1591.	4.2	162
22	Drivers of tropical forest cover increase: A systematic review. Land Degradation and Development, 2020, 31, 1366-1379.	1.8	32
23	Scientists call for renewed Paris pledges to transform agriculture. Lancet Planetary Health, The, 2020, 4, e9-e10.	5.1	15
24	Forest genomics: Advancing climate adaptation, forest health, productivity, and conservation. Evolutionary Applications, 2020, 13, 3-10.	1.5	108
25	Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 2020, 101, e02954.	1.5	51
26	Greater stability of carbon capture in species-rich natural forests compared to species-poor plantations. Environmental Research Letters, 2020, 15, 034011.	2.2	46
27	Putting the pieces together: Integration for forest landscape restoration implementation. Land Degradation and Development, 2020, 31, 419-429.	1.8	48
28	Environmental resources as †last resort' coping strategies following harvest failures in Zimbabwe. World Development, 2020, 127, 104741.	2.6	17
29	Evaluating ecosystem service trade-offs along a land-use intensification gradient in central Veracruz, Mexico. Ecosystem Services, 2020, 45, 101181.	2.3	19
30	Reversals of Reforestation Across Latin America Limit Climate Mitigation Potential of Tropical Forests. Frontiers in Forests and Global Change, 2020, 3, .	1.0	43
31	Global reforestation and biodiversity conservation. Conservation Biology, 2020, 34, 1221-1228.	2.4	34
32	Tree planting in organic soils does not result in net carbon sequestration on decadal timescales. Global Change Biology, 2020, 26, 5178-5188.	4.2	61
33	Old growth Afrotropical forests critical for maintaining forest carbon. Global Ecology and Biogeography, 2020, 29, 1785-1798.	2.7	19
34	Nostalgia for la monta $ ilde{A}\pm a$: The production of landscape at the frontier of chilean commercial forestry. Journal of Rural Studies, 2020, 80, 211-221.	2.1	1
35	Toward sustainable and just forest recovery: research gaps and potentials for knowledge integration. One Earth, 2020, 3, 680-690.	3.6	11
36	Carbon stock densities of semi-deciduous Atlantic forest and pine plantations in Argentina. Science of the Total Environment, 2020, 747, 141085.	3.9	15

#	Article	IF	Citations
37	Guidance for successful tree planting initiatives. Journal of Applied Ecology, 2020, 57, 2349-2361.	1.9	148
38	Detecting successional changes in tropical forest structure using GatorEye droneâ€borne lidar. Biotropica, 2020, 52, 1155-1167.	0.8	22
39	Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 972, 163965.	0.7	5
40	Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nature Climate Change, 2020, 10, 842-844.	8.1	54
41	Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545-550.	13.7	278
42	Advancing natureâ€based approaches to address the biodiversity and climate emergency. Ecology Letters, 2020, 23, 1729-1732.	3.0	31
43	Paris Climate Agreement: Promoting Interdisciplinary Science and Stakeholders' Approaches for Multi-Scale Implementation of Continental Carbon Sequestration. Sustainability, 2020, 12, 6715.	1.6	7
44	Global forest restoration and the importance of prioritizing local communities. Nature Ecology and Evolution, 2020, 4, 1472-1476.	3.4	125
45	Making Way for Trees? Changes in Land-Use, Habitats and Protected Areas in Great Britain under "Global Tree Restoration Potential― Sustainability, 2020, 12, 5845.	1.6	4
46	Negative emissions and the long history of carbon removal. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e671.	3.6	114
47	Pitfalls of Tree Planting Show Why We Need People-Centered Natural Climate Solutions. BioScience, 0,	2.2	49
48	Mapping the effectiveness of natureâ€based solutions for climate change adaptation. Global Change Biology, 2020, 26, 6134-6155.	4.2	249
49	Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment, 2020, 1, 500-515.	12.2	419
50	Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21968-21977.	3.3	110
51	Linkages among Soil Properties and Litter Quality in Agroforestry Systems of Southeastern Brazil. Sustainability, 2020, 12, 9752.	1.6	19
52	GHG displacement factors of harvested wood products: the myth of substitution. Scientific Reports, 2020, 10, 20752.	1.6	39
53	Structural Hurdles to Large-Scale Forest Restoration in the Brazilian Amazon. Frontiers in Ecology and Evolution, 2020, 8, .	1,1	3
54	Participatory Assessment of Ecosystem Services from Community-Managed Planted Forests in Bhutan. Forests, 2020, 11, 1062.	0.9	5

#	ARTICLE	IF	CITATIONS
55	"Natural―Climate Solutions Could Speed Up Mitigation, With Risks. Additional Options Are Needed Earth's Future, 2020, 8, e2019EF001310.	2.4	7
56	Seeing the Forests as well as the (Trillion) Trees in Corporate Climate Strategies. One Earth, 2020, 2, 390-393.	3.6	39
57	Global recognition of the importance of nature-based solutions to the impacts of climate change. Global Sustainability, 2020, 3, .	1.6	91
58	Large scale reforestation of farmlands on sloping hills in South China karst. Landscape Ecology, 2020, 35, 1445-1458.	1.9	47
59	The Role of Crop Production in the Forest Landscape Restoration Approach—Assessing the Potential Benefits of Meeting the Bonn Challenge. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	8
60	Land use change effects on catchment streamflow response in a humid tropical montane cloud forest region, central Veracruz, Mexico. Hydrological Processes, 2020, 34, 3555-3570.	1.1	15
61	Forgotten peatlands of eastern Australia: An unaccounted carbon capture and storage system. Science of the Total Environment, 2020, 730, 139067.	3.9	11
62	Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. Forest Ecology and Management, 2020, 472, 118236.	1.4	26
63	Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nature Sustainability, 2020, 3, 701-709.	11.5	113
64	Neighbourhoodâ€mediated shifts in tree biomass allocation drive overyielding in tropical species mixtures. New Phytologist, 2020, 228, 1256-1268.	3.5	37
65	The value of habitats of conservation importance to climate change mitigation in the UK. Biological Conservation, 2020, 248, 108619.	1.9	6
66	Equity in allocating carbon dioxide removal quotas. Nature Climate Change, 2020, 10, 640-646.	8.1	91
67	Fruit traits of pioneer trees structure seed dispersal across distances on tropical deforested landscapes: Implications for restoration. Journal of Applied Ecology, 2020, 57, 2329-2339.	1.9	38
68	Forests and Decarbonization – Roles of Natural and Planted Forests. Frontiers in Forests and Global Change, 2020, 3, .	1.0	63
69	A global production network for ecosystem services: The emergent governance of landscape restoration in the Brazilian Amazon. Global Environmental Change, 2020, 61, 102059.	3.6	26
70	Assessing intraspecific trait variability during seedling establishment to improve restoration of tropical dry forests. Ecosphere, 2020, 11, e03052.	1.0	3
71	Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 763-787.	1.0	109
72	Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography, 2020, 43, 848-859.	2.1	37

#	ARTICLE	IF	CITATIONS
73	Temporal and environmental correlates of carbon stocks in a regenerating tropical forest. Applied Vegetation Science, 2020, 23, 353-362.	0.9	15
74	Seed Networks for Upscaling Forest Landscape Restoration: Is It Possible to Expand Native Plant Sources in Brazil?. Forests, 2020, 11, 259.	0.9	19
75	Use It Sustainably or Lose It! The Land Stakes in SDGs for Sub-Saharan Africa. Land, 2020, 9, 63.	1.2	10
76	Tree restoration and ecosystem carbon storage in an acid and metal impacted landscape: Chronosequence and resampling approaches. Forest Ecology and Management, 2020, 463, 118012.	1.4	8
77	Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 2020, 579, 80-87.	13.7	439
78	Overstory Effects on the Understory of Aleppo Pine Plantationsâ€"Implications for Ecosystem Restoration. Forests, 2020, 11, 664.	0.9	3
79	Nature-based Solutions for Resilient Ecosystems and Societies. Disaster Resilience and Green Growth, 2020, , .	0.2	16
80	A regional assessment of landâ€based carbon mitigation potentials: Bioenergy, BECCS, reforestation, and forest management. GCB Bioenergy, 2020, 12, 346-360.	2.5	15
81	Worsening of tree-related public health issues under climate change. Nature Plants, 2020, 6, 48-48.	4.7	8
82	Similarities and Differences between International REDD+ and Transnational Deforestation-Free Supply Chain Initiatives—A Review. Sustainability, 2020, 12, 896.	1.6	5
83	Informal forest product harvesting in the Eastern Cape, South Africa: A recent assessment. Biological Conservation, 2020, 241, 108394.	1.9	11
84	Conservation must capitalise on climate's moment. Nature Communications, 2020, 11, 109.	5.8	21
85	How feasible are global forest restoration commitments?. Conservation Letters, 2020, 13, e12700.	2.8	91
86	Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190120.	1.8	686
87	National mitigation potential from natural climate solutions in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190126.	1.8	157
88	Alleviating forest degradation in the Lancang-Mekong Region requires closing managementâ€"measurement gaps. Journal of Forestry Research, 2020, 31, 2033-2051.	1.7	4
89	Climate-Smart Forestry: the missing link. Forest Policy and Economics, 2020, 115, 102164.	1.5	108
90	Putting Forests to Work? Enrolling Vegetal Labor in the Socioecological Fix of Bioenergy Resource Making. Annals of the American Association of Geographers, 2021, 111, 141-156.	1.5	18

#	Article	IF	Citations
91	Technical principles of atmospheric carbon dioxide reduction and conversion: economic considerations for some developing countries. Clean Technologies and Environmental Policy, 2021, 23, 475-482.	2.1	4
92	The carbon sequestration potential of â€~analog' forestry in Ecuador: an alternative strategy for reforestation of degraded pastures. Forestry, 2021, 94, 102-114.	1.2	0
93	Cropland trees need to be included for accurate model simulations of land-atmosphere heat fluxes, temperature, boundary layer height, and ozone. Science of the Total Environment, 2021, 751, 141728.	3.9	5
94	Recovery of aboveground biomass, species richness and composition in tropical secondary forests in SW Costa Rica. Forest Ecology and Management, 2021, 479, 118580.	1.4	24
95	Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nature Ecology and Evolution, 2021, 5, 10-13.	3.4	69
96	Estimating carbon biomass in forests using incomplete data. Biotropica, 2021, 53, 397-408.	0.8	2
97	The potential for using rare, native species in reforestation– A case study of yews (Taxaceae) in China. Forest Ecology and Management, 2021, 482, 118816.	1.4	8
99	Tree-tree interactions and crown complementarity: The role of functional diversity and branch traits for canopy packing. Basic and Applied Ecology, 2021, 50, 217-227.	1.2	22
100	Expected carbon emissions from a rubber plantation in Central Africa. Forest Ecology and Management, 2021, 480, 118668.	1.4	3
101	Managing Landâ€based CDR: BECCS, Forests and Carbon Sequestration. Global Policy, 2021, 12, 45-56.	1.0	17
102	Botanic garden solutions to the plant extinction crisis. Plants People Planet, 2021, 3, 22-32.	1.6	54
103	The cost of restoring carbon stocks in Brazil's Atlantic Forest. Land Degradation and Development, 2021, 32, 830-841.	1.8	14
104	Peat deposits store more carbon than trees in forested peatlands of the boreal biome. Scientific Reports, 2021, 11, 2657.	1.6	47
105	Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, 2021, 27, 1328-1348.	4.2	306
106	The resilient frugivorous fauna of an urban forest fragment and its potential role in vegetation enrichment. Urban Ecosystems, 2021, 24, 943-958.	1.1	9
107	Restoration for Provision of Ecosystem Services in Patagonia-Aysén, Chile. Natural and Social Sciences of Patagonia, 2021, , 187-212.	0.2	0
108	Estimating Forest Structure from UAV-Mounted LiDAR Point Cloud Using Machine Learning. Remote Sensing, 2021, 13, 352.	1.8	67
109	Promoting sustainability education through hands-on approaches: a tree carbon sequestration exercise in a Singapore green space. Sustainability Science, 2021, 16, 1045-1059.	2.5	7

#	Article	IF	CITATIONS
110	Hidden destruction of older forests threatens Brazil's Atlantic Forest and challenges restoration programs. Science Advances, 2021, 7, .	4.7	92
111	Beyond forest succession: A gap model to study ecosystem functioning and tree community composition under climate change. Functional Ecology, 2021, 35, 955-975.	1.7	19
112	Getting the message right on natureâ€based solutions to climate change. Global Change Biology, 2021, 27, 1518-1546.	4.2	363
113	Integrate ecosystem services into socio-economic development to enhance achievement of sustainable development goals in the post-pandemic era. Geography and Sustainability, 2021, 2, 68-73.	1.9	48
114	Negative-emissions technology portfolios to meet the 1.5†°C target. Global Environmental Change, 2021, 67, 102238.	3.6	52
115	The Link Between Habitats and Carbon Accumulation from Natural Forest Regrowth in Borino Municipality (Southern Bulgaria). Civil and Environmental Engineering Reports, 2021, 31, 182-191.	0.2	0
116	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281
117	Low resilience at the early stages of recovery of the semiâ€arid Chaco forest—Evidence from a field experiment. Journal of Ecology, 2021, 109, 3246-3259.	1.9	4
119	Carbon Accumulation Potential from Natural Forest Regrowth of Godech Municipality, Western Bulgaria. Civil and Environmental Engineering Reports, 2021, 31, 192-199.	0.2	0
120	Technologies to deliver food and climate security through agriculture. Nature Plants, 2021, 7, 250-255.	4.7	63
121	Alternative afforestation options on sandy heathland result in minimal long-term changes in mineral soil layers. Forest Ecology and Management, 2021, 483, 118906.	1.4	6
122	Soil amendment improves carbon sequestration by trees on severely damaged acid and metal impacted landscape, but total storage remains low. Forest Ecology and Management, 2021, 483, 118896.	1.4	8
123	Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nature Communications, 2021, 12, 2127.	5.8	51
124	Changes in soil carbon stocks under plantation systems and natural forests in Northeast India. Ecological Modelling, 2021, 446, 109500.	1.2	17
125	Global forest management, carbon sequestration and bioenergy supply under alternative shared socioeconomic pathways. Land Use Policy, 2021, 103, 105302.	2.5	36
126	Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences, 2021, 18, 2627-2647.	1.3	18
127	Heterotrophic Respiration and the Divergence of Productivity and Carbon Sequestration. Geophysical Research Letters, 2021, 48, e2020GL092366.	1.5	4
128	It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways. Energies, 2021, 14, 2103.	1.6	35

#	Article	IF	CITATIONS
129	Perceptions from non-governmental actors on forest and landscape restoration, challenges and strategies for successful implementation across Asia, Africa and Latin America. Journal of Environmental Management, 2021, 286, 112251.	3.8	10
130	High tree diversity enhances light interception in tropical forests. Journal of Ecology, 2021, 109, 2597-2611.	1.9	10
131	Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Science of the Total Environment, 2021, 769, 144341.	3.9	88
132	Biofuels from perennial energy crops on buffer strips: A win-win strategy. Journal of Cleaner Production, 2021, 297, 126703.	4.6	27
133	Nature-based solutions can help cool the planet â€" if we act now. Nature, 2021, 593, 191-194.	13.7	128
134	Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nature Reviews Earth & Environment, 2021, 2, 436-446.	12.2	42
136	Modeling impacts of broad-scale plantation forestry on ecosystem services in the past 60Âyears and for the future. Ecosystem Services, 2021, 49, 101271.	2.3	12
137	Commercial afforestation can deliver effective climate change mitigation under multiple decarbonisation pathways. Nature Communications, 2021, 12, 3831.	5.8	63
138	Tree composition and standing biomass in forests of the northern part of Kashmir Himalaya. Vegetos, 2021, 34, 857-866.	0.8	13
139	Designing industrial landscapes for mitigating air pollution with <scp>spatiallyâ€explicit technoâ€ecological</scp> synergy. AICHE Journal, 2021, 67, e17347.	1.8	5
140	Fire and water: the role of grass competition on juvenile tree growth and survival rates in a mesic savanna. Plant Ecology, 2021, 222, 861-875.	0.7	3
141	Reflecting on twenty years of forest landscape restoration. Restoration Ecology, 2021, 29, e13441.	1.4	27
142	Combining regional to local restoration goals in the Brazilian Atlantic forest. Regional Environmental Change, 2021, 21, 1.	1.4	3
143	Natural forests in New Zealand – a large terrestrial carbon pool in a national state of equilibrium. Forest Ecosystems, 2021, 8, .	1.3	13
144	Biodiversity–productivity relationships are key to nature-based climate solutions. Nature Climate Change, 2021, 11, 543-550.	8.1	77
145	For the sake of resilience and multifunctionality, let's diversify planted forests!. Conservation Letters, 2022, 15, e12829.	2.8	124
146	Multi-actor perspectives on afforestation and reforestation strategies in Central Europe under climate change. Annals of Forest Science, 2021, 78, 1.	0.8	11
147	A deep decarbonization pathway for Peru's rainforest. Energy Strategy Reviews, 2021, 36, 100675.	3.3	8

#	Article	IF	CITATIONS
148	Performance and cost of applied nucleation versus high-diversity plantations for tropical forest restoration. Forest Ecology and Management, 2021, 491, 119088.	1.4	11
149	Restoring for the climate: a review of coastal wetland restoration research in the last 30 years. Restoration Ecology, 2021, 29, e13438.	1.4	11
150	Indigenous and local communities can boost seed supply in the UN decade on ecosystem restoration. Ambio, 2022, 51, 557-568.	2.8	18
151	Tree species richness promotes an early increase of stand structural complexity in young subtropical plantations. Journal of Applied Ecology, 2021, 58, 2305-2314.	1.9	14
152	Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning. ISME Communications, 2021, 1, .	1.7	28
153	How politics shapes the outcomes of forest carbon finance. Current Opinion in Environmental Sustainability, 2021, 51, 7-14.	3.1	22
154	Embedding justice in the $1.5 \hat{A}^{\circ}$ C transition: A transdisciplinary research agenda. Renewable and Sustainable Energy Transition, 2021, 1, 100001.	1.4	7
155	The potential role of an alien tree species in supporting forest restoration: Lessons from Shiretoko National Park, Japan. Forest Ecology and Management, 2021, 493, 119253.	1.4	9
157	Lao Plantation Policy: Prospects for Change. Forests, 2021, 12, 1132.	0.9	11
158	Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Science Advances, 2021, 7, .	4.7	56
159	Does restoring native forest restore ecosystem functioning? Evidence from a largeâ€scale reforestation project in the Scottish Highlands. Restoration Ecology, 0, , e13530.	1.4	2
160	Reprint of: Tree-tree interactions and crown complementarity: the role of functional diversity and branch traits for canopy packing. Basic and Applied Ecology, 2021, 55, 53-63.	1.2	1
162	Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environmental Research Communications, 2021, 3, 115009.	0.9	12
163	People plant trees for utility more often than for biodiversity or carbon. Biological Conservation, 2021, 261, 109224.	1.9	44
164	Time dynamic climate impacts of a eucalyptus pulp product: Life cycle assessment including biogenic carbon and substitution effects. GCB Bioenergy, 2021, 13, 1831-1850.	2.5	2
165	Politics, power and planting trees. Nature Sustainability, 2021, 4, 932-932.	11.5	9
166	Upscaling ecological restoration: toward a new legal principle and protocol on ecological restoration in international law. Restoration Ecology, 2022, 30, e13560.	1.4	5
167	Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitigation and Adaptation Strategies for Global Change, 2021, 26, 1.	1.0	10

#	Article	IF	CITATIONS
168	Canopy cover and ecological restoration increase natural regeneration of rainforest trees in the Western Ghats, India. Restoration Ecology, 2022, 30, .	1.4	6
169	Assessing climatic benefits from forestation potential in semi-arid lands. Environmental Research Letters, 2021, 16, 104039.	2.2	6
170	Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nature Sustainability, 2021, 4, 997-1004.	11.5	68
171	Using satellite estimates of aboveground biomass to assess carbon stocks in a mixed-management, semi-deciduous tropical forest in the Yucatan Peninsula. Geocarto International, 0, , 1-22.	1.7	1
172	A conceptual framework and experimental design for analysing the relationship between biodiversity and ecosystem functioning (BEF) in agroforestry systems. Basic and Applied Ecology, 2021, 55, 133-151.	1.2	11
173	It's a keeper: Valuing the carbon storage service of Agroforestry ecosystems in the context of CAP Eco-Schemes. Land Use Policy, 2021, 109, 105712.	2.5	11
174	Aboveground carbon stocks in Madagascar's vanilla production landscape – exploring rehabilitation through agroforestry in the light of land-use history. Global Ecology and Conservation, 2021, 31, e01853.	1.0	7
175	Carbon ecosystem services and cellulose income from natural and commercial forests in the Brazilian savanna. Forest Ecology and Management, 2021, 499, 119582.	1.4	1
177	Can Long-Term Experiments Help Us Understand, and Manage, the Wider Landscapeâ€"Examples from Rothamsted, England. Innovations in Landscape Research, 2021, , 233-252.	0.2	3
178	A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 2021, 4, 88-101.	3.6	103
180	Forest Management for Climate Protection. Sustainable Development Goals Series, 2021, , 21-32.	0.2	0
181	Rooting Forest Landscape Restoration in Consumer Markets—A Review of Existing Marketing-Based Funding Initiatives. Frontiers in Forests and Global Change, 2021, 3, .	1.0	7
182	Synergistic Use of Sentinel-1 and Sentinel-2 to Map Natural Forest and Acacia Plantation and Stand Ages in North-Central Vietnam. Remote Sensing, 2021, 13, 185.	1.8	26
183	Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications., 2021,, 279-325.		5
184	Habitat Suitability Modelling and Nature-Based Solutions: An Efficient Combination to Realise the Targets of Bonn Challenge and SDGs in South Asia. Disaster Resilience and Green Growth, 2020, , 347-364.	0.2	4
185	Assessing land-based mitigation implications for biodiversity. Environmental Science and Policy, 2020, 106, 68-76.	2.4	11
186	Lower cost and more feasible options to restore forest cover in the contiguous United States for climate mitigation. One Earth, 2020, 3, 739-752.	3.6	27
187	Improving uncertainty in forest carbon accounting for REDD+ mitigation efforts. Environmental Research Letters, 2020, 15, 124002.	2,2	23

#	Article	IF	CITATIONS
188	Natural forests loss and tree plantations: large-scale tree cover loss differentiation in a threatened biodiversity hotspot. Environmental Research Letters, 2020, 15, 124055.	2.2	13
189	Forest landscape restoration: state of play. Royal Society Open Science, 2020, 7, 201218.	1.1	48
191	With Power Comes Responsibility – A Rangelands Perspective on Forest Landscape Restoration. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	20
192	Global climate response to idealized deforestation in CMIP6 models. Biogeosciences, 2020, 17, 5615-5638.	1.3	55
194	Survival, seedlings growth and natural regeneration in areas under ecological restoration in a sandy coastal plain (restinga) of southeastern Brazil. Austral Ecology, 2022, 47, 326-340.	0.7	1
195	Assessing the carbon capture potential of a reforestation project. Scientific Reports, 2021, 11, 19907.	1.6	25
196	Large-scale tree planting initiatives as an opportunity to derive carbon and biodiversity co-benefits: a case study from Aotearoa New Zealand. New Forests, 2022, 53, 589-602.	0.7	11
197	Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Current Biology, 2021, 31, R1326-R1341.	1.8	24
198	Overcoming Key Barriers for Secondary Cloud Forest Management in Mexico. Land, 2021, 10, 1078.	1.2	2
199	Variation in Onset of Leaf Unfolding and Wood Formation in a Central African Tropical Tree Species. Frontiers in Forests and Global Change, 2021, 4, .	1.0	1
200	Trees Cannot Sequester Enough Carbon to Slow Abrupt Climate Change. Modern Concepts & Developments in Agronomy, 2020, 6, .	0.1	0
202	Urgent need for updating the slogan of global climate actions from "tree planting―to "restore native vegetation― Restoration Ecology, 2022, 30, e13594.	1.4	27
203	Nature-based solutions as nodes of green-blue infrastructure networks: A cross-scale, co-creation approach. Nature-based Solutions, 2021, 1, 100006.	1.6	14
204	Predicting landscapeâ€scale biodiversity recovery by natural tropical forest regrowth. Conservation Biology, 2021, , .	2.4	4
205	Agroforestry for Rehabilitation of Degraded Landscapes: Achieving Livelihood and Environmental Security., 2020,, 23-68.		8
206	Opportunities and Advances to Mainstream Nature-Based Solutions in Disaster Risk Management and Climate Strategy. Disaster Resilience and Green Growth, 2020, , 1-26.	0.2	13
207	Domains of Climate Ethics Revisited. Kobe University Monograph Series in Social Science Research, 2021, , 173-199.	0.2	3
208	Reforestation reversals and forest transitions. Land Use Policy, 2022, 112, 105800.	2.5	12

#	Article	IF	CITATIONS
209	Strategic factors to design the next generation of molecular water oxidation catalysts: Lesson learned from ruthenium complexes. Coordination Chemistry Reviews, 2022, 450, 214256.	9.5	16
210	Mapuche Spirituality and Its Contribution to Climate Change Mitigation. , 2021, , 4787-4818.		0
211	Universal Ownership and the Polycrisis: Social Norms, Feedback Loops, and the Double Hermeneutic. SSRN Electronic Journal, 0, , .	0.4	1
212	Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications. , 2020, , 1-48.		2
213	Ecosistemi, boschi e servizi ecosistemici. Territori, 0, , 65-83.	0.0	0
214	Afforestation and Its Climate Change Impact. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-15.	0.0	0
216	O eucalipto é como o estado: chupa e leva todo para el. Recursos Rurais, 2020, , 19-33.	0.4	1
217	Projection of the Effectiveness of Alternative Forest Management Strategies in Climate Change Mitigation in Malawi., 2021,, 3065-3078.		0
218	Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology and Evolution, 2021, 5, 1594-1603.	3.4	83
219	Progress on incorporating biodiversity monitoring in REDD+ through national forest inventories. Global Ecology and Conservation, 2021, 32, e01901.	1.0	4
220	A highway to hell: a proposed, inessential, 6-lane highway (NH173) that threatens the forest and wildlife corridors of the Western Ghats, India. Journal of Threatened Taxa, 2020, 12, 16944-16953.	0.1	0
221	Mapuche Spirituality and Its Contribution to Climate Change Mitigation. , 2021, , 1-32.		1
222	Afforestation and Its Climate Change Impact. Encyclopedia of the UN Sustainable Development Goals, 2021, , 13-26.	0.0	0
223	Shift of soil fungal communities under afforestation in Nanliu River Basin, southwest China. Journal of Environmental Management, 2022, 302, 114130.	3.8	10
224	Economic assessment of the carbon sequestration potential of plantation forests. IOP Conference Series: Earth and Environmental Science, 2021, 875, 012013.	0.2	1
225	An assessment of the contribution of forest sector to federal and regional fiscal budgets in Russia. IOP Conference Series: Earth and Environmental Science, 2021, 875, 012073.	0.2	0
226	The impact of tree loss on carbon management in West Africa. Carbon Management, 2021, 12, 623-633.	1.2	7
227	Strengthening Local Governance of Secondary Forest in Peru. Land, 2021, 10, 1286.	1.2	5

#	Article	IF	CITATIONS
229	Are Tree Seed Systems for Forest Landscape Restoration Fit for Purpose? An Analysis of Four Asian Countries. Diversity, 2021, 13, 575.	0.7	8
230	Biodiversity postâ€2020: Closing the gap between global targets and nationalâ€level implementation. Conservation Letters, 2022, 15, e12848.	2.8	32
231	Water Availability Controls the Biomass Increment of Melia dubia in South India. Forests, 2021, 12, 1675.	0.9	2
232	Diverse forests are cool: Promoting diverse forests to mitigate carbon emissions and climate change. , 2022, 1, 5-8.		8
233	Dynamic modelling shows substantial contribution of ecosystem restoration to climate change mitigation. Environmental Research Letters, 2021, 16, 124061.	2.2	8
234	Loss of soil microbial residue carbon by converting a tropical forest to tea plantation. Science of the Total Environment, 2022, 818, 151742.	3.9	16
235	Global implications of cropâ€based bioenergy with carbon capture and storage for terrestrial vertebrate biodiversity. GCB Bioenergy, 2022, 14, 307-321.	2.5	18
236	The Demand for Voluntary Carbon Sequestration $\hat{a} \in ``Experimental Evidence From a Reforestation Project in Germany. SSRN Electronic Journal, 0, , .$	0.4	1
237	Forest Resources Depletion: An Ecological Model for Biodiversity Preservation and Conservation in Cote D'lvoire. Open Journal of Ecology, 2021, 11, 870-890.	0.4	2
238	Dietary change in high-income nations alone can lead to substantial double climate dividend. Nature Food, 2022, 3, 29-37.	6.2	70
239	Uphill Battle: Forest Rights and Restoration on Podu Landscapes in Keonjhar, Odisha. Journal of South Asian Development, 0, , 097317412110573.	0.6	2
240	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	4.2	28
241	The value of flagship and umbrella species for restoration and sustainable development: Bale monkeys and bamboo forest in Ethiopia. Journal for Nature Conservation, 2022, 65, 126117.	0.8	9
242	Passive restoration considerably improved the community structure, soil health and carbon stock in the Pine forests of Kashmir Himalaya, India. Ecological Engineering, 2022, 176, 106535.	1.6	6
243	Analysis and Evaluation of A/R CDM Projects in India for Abroad Afforestation Project. Journal of Climate Change Research, 2021, 12, 443-460.	0.1	0
244	Existing land uses constrain climate change mitigation potential of forest restoration in India. Conservation Letters, 2022, 15, .	2.8	13
246	Economic and environmental assessment of directly converting CO2 into a gasoline fuel. Energy Conversion and Management, 2022, 252, 115115.	4.4	17
247	Financial Analysis of Potential Carbon Value over 14 Years of Forest Restoration by the Framework Species Method. Forests, 2022, 13, 144.	0.9	5

#	Article	IF	CITATIONS
248	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	4.2	51
249	Sustained Change: Design Speculations on the Performance of Fallow-Scapes in Time along the Erie Canal National Heritage Corridor, (ECNHC), New York. Sustainability, 2022, 14, 1675.	1.6	2
250	A mathematical model to study the dynamics of carbon capture in forest plantations. Journal of Physics: Conference Series, 2022, 2159, 012001.	0.3	0
251	Hydroclimatic adaptation critical to the resilience of tropical forests. Global Change Biology, 2022, 28, 2930-2939.	4.2	9
252	Where should China practice forestry in a warming world?. Global Change Biology, 2022, 28, 2461-2475.	4.2	69
253	Photosynthesis in action: The global view. , 2022, , 243-269.		0
254	Can't see the forest for the trees': The importance of fungi in the context of UK tree planting. Food and Energy Security, 0, , .	2.0	5
255	Mapping, validating, and interpreting spatio-temporal trends in post-disturbance forest recovery. Remote Sensing of Environment, 2022, 271, 112904.	4.6	37
257	Temporal Soundscape Patterns in a Panamanian Tree Diversity Experiment: Polycultures Show an Increase in High Frequency Cover. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	2
258	The quest for sustainable forest bioenergy: win-win solutions for climate and biodiversity. Renewable and Sustainable Energy Reviews, 2022, 159, 112180.	8.2	10
259	The glasgow leaders' declaration on forests and land use: Significance toward "Net Zero― Global Change Biology, 2022, 28, 1951-1952.	4.2	5
260	The Influence of Discounting Ecosystem Services in Robust Multi-Objective Optimization – an Application to a Forestry-Avocado Land-Use Portfolio. SSRN Electronic Journal, 0, , .	0.4	0
261	Restoring Biodiversity and Living With Nature (Based Solutions)., 2022,,.		3
262	Species-Specific and Generalized Biomass Models for Estimating Carbon Stocks of Young Reforestations. SSRN Electronic Journal, 0, , .	0.4	0
263	Estimation of Carbon Stocks in Coarse Woody Debris Using Permanent Sample Plot Data from the Korean National Forest Inventory. Journal of Climate Change Research, 2022, 13, 107-115.	0.1	1
264	Suitability of large-scale tree plantation models in Africa, Asia and Latin America for forest landscape restoration objectives. Bois Et Forets Des Tropiques, 0, 351, 29-44.	0.2	0
265	Restoring Riparian Ecosystems During the UN-Decade on Ecosystem Restoration: A Global Perspective. Anthropocene Science, 2022, 1, 42-61.	1.6	3
266	The role of large wild animals in climate change mitigation and adaptation. Current Biology, 2022, 32, R181-R196.	1.8	54

#	Article	IF	CITATIONS
268	Tropical forest restoration under future climate change. Nature Climate Change, 2022, 12, 279-283.	8.1	35
269	Towards effective reforestation: growth and commercial value of four commonly planted tropical timber species on infertile soils in Panama. New Forests, 2023, 54, 125-142.	0.7	6
270	Neighbourhood Species Richness Reduces Crown Asymmetry of Subtropical Trees in Sloping Terrain. Remote Sensing, 2022, 14, 1441.	1.8	2
271	Participatory scenarios for restoring European landscapes show a plurality of nature values. Ecography, 2022, 2022, .	2.1	12
272	Deforestation by Afforestation: Land Use Change in the Coastal Range of Chile. Remote Sensing, 2022, 14, 1686.	1.8	2
273	The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 2022, 376, 839-844.	6.0	188
274	Tree functional traits, forest biomass, and tree species diversity interact with site properties to drive forest soil carbon. Nature Communications, 2022, 13, 1097.	5.8	58
275	Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion. Biogeosciences, 2022, 19, 1995-2005.	1.3	6
276	Safeguarding against Harm in a Climate-Smart Forest Economy: Definitions, Challenges, and Solutions. Sustainability, 2022, 14, 4209.	1.6	5
277	Flammability trajectories following destocking and forestation: a case study in the New Zealand high country. Restoration Ecology, 2022, 30, .	1.4	1
278	Current and future carbon stocks of natural forests in China. Forest Ecology and Management, 2022, 511, 120137.	1.4	20
279	Agronomy in the temperate zone and threats or mitigation from climate change: A review. Catena, 2022, 212, 106089.	2.2	1
280	Safeguarding China's native trees – A review of integrated conservation practices between 2008 and 2020. Global Ecology and Conservation, 2022, 35, e02101.	1.0	1
281	A coupled modeling approach to assess the effect of forest policies in water provision: A biophysical evaluation of a drought-prone rural catchment in south-central Chile. Science of the Total Environment, 2022, 830, 154608.	3.9	4
283	Shifting Precipitation Patterns Drive Growth Variability and Drought Resilience of European Atlas Cedar Plantations. Forests, 2021, 12, 1751.	0.9	1
284	The meaning of net zero and how to get it right. Nature Climate Change, 2022, 12, 15-21.	8.1	257
286	Trade-off between tree planting and wetland conservation in China. Nature Communications, 2022, 13, 1967.	5.8	32
287	Designing Climate Action and Regulations for sustainaBility (DCARB): Framework and campus application. Journal of Cleaner Production, 2022, 356, 131690.	4.6	3

#	Article	IF	CITATIONS
291	Temperature and Rainfall Patterns Constrain the Multidimensional Rewilding of Global Forests. Advanced Science, 2022, 9, e2201144.	5.6	12
292	Empirical evidence for recent global shifts in vegetation resilience. Nature Climate Change, 2022, 12, 477-484.	8.1	42
293	Relation of pine crop damage to species-specific density in a multi-ungulate assemblage. European Journal of Forest Research, 0, , 1.	1.1	2
294	Visual Analysis of Global Carbon Mitigation Research Based on Scientific Knowledge Graphs. International Journal of Environmental Research and Public Health, 2022, 19, 5766.	1.2	2
295	Creating Strategic Reserves to Protect Forest Carbon and Reduce Biodiversity Losses in the United States. Land, 2022, 11, 721.	1.2	15
296	Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Science Advances, 2022, 8, eabm8237.	4.7	11
297	Species-specific and generalized biomass models for estimating carbon stocks of young reforestations. Biomass and Bioenergy, 2022, 161, 106453.	2.9	7
298	Contrasting patterns of microbial nutrient limitations between rhizosphere and bulk soil during stump sprout restoration in a clear-cut oak forest. Forest Ecology and Management, 2022, 515, 120241.	1.4	5
299	Global Environmental Problems: A Nexus Between Climate, Human Health and COVID 19 and Evolving Mitigation Strategies., 2022,, 65-110.		0
300	Biomass and soil carbon stocks of the main land use of the Allada Plateau (Southern Benin). Carbon Management, 2022, 13, 249-265.	1.2	5
301	Identification of priority areas for afforestation in the Loess Plateau region of China. Ecological Indicators, 2022, 140, 108998.	2.6	12
302	The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio. Forest Policy and Economics, 2022, 141, 102761.	1.5	8
303	Old timber plantations and secondary forests attain levels of plant diversity and structure similar to primary forests in the West African humid tropics. Forest Ecology and Management, 2022, 518, 120271.	1.4	3
304	Stand carbon storage and net primary production in Chinaâ $\in^{\mathbb{M}}$ s subtropical secondary forests are predicted to increase by 2060. Carbon Balance and Management, 2022, 17, .	1.4	3
305	Ensuring that nature-based solutions for climate mitigation address multiple global challenges. One Earth, 2022, 5, 493-504.	3.6	15
306	How the Glasgow Declaration on Forests can help keep alive the 1.5 °C target. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
307	Evidence for Alternate Stable States in an Ecuadorian Andean Cloud Forest. Forests, 2022, 13, 875.	0.9	2
308	The global potential for increased storage of carbon on land. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	54

#	Article	IF	CITATIONS
309	Harnessing the potential of nature-based solutions for mitigating and adapting to climate change. Science, 2022, 376, 1410-1416.	6.0	90
310	Trees as brokers in social networks: Cascades of rights and benefits from a Cultural Keystone Species. Ambio, 2022, 51, 2137-2154.	2.8	5
311	Climate Niche Modelling for Mapping Potential Distributions of Four Framework Tree Species: Implications for Planning Forest Restoration in Tropical and Subtropical Asia. Forests, 2022, 13, 993.	0.9	2
312	Land-use change emissions based on high-resolution activity data substantially lower than previously estimated. Environmental Research Letters, 2022, 17, 064050.	2.2	15
313	Soil Respiration in Planted and Naturally Regenerated Castanopis carelesii Forests during Three Years Post-Establishment. Forests, 2022, 13, 931.	0.9	2
314	The expansion of tree plantations across tropical biomes. Nature Sustainability, 2022, 5, 681-688.	11.5	28
317	Prediction of Oil Palm Yield Using Machine Learning in the Perspective of Fluctuating Weather and Soil Moisture Conditions: Evaluation of a Generic Workflow. Plants, 2022, 11, 1697.	1.6	13
318	Agroforestry systems recover tree carbon stock faster than natural succession in Eastern Amazon, Brazil. Agroforestry Systems, 2022, 96, 941-956.	0.9	6
319	Carbon removals from nature restoration are no substitute for steep emission reductions. One Earth, 2022, 5, 812-824.	3.6	17
320	Directions of sustainable development of regional industrial enterprisesÂ(on the example of the forest) Tj ETQq1	0.78431	4 _. rgBT /Ov∈
321	Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications, 2022, 13, .	5.8	27
322	Transforming food systems with trees and forests. Lancet Planetary Health, The, 2022, 6, e632-e639.	5.1	24
323	Estimation and Simulation of Forest Carbon Stock in Northeast China Forestry Based on Future Climate Change and LUCC. Remote Sensing, 2022, 14, 3653.	1.8	15
324	Net Zero: Science, Origins, and Implications. Annual Review of Environment and Resources, 2022, 47, 849-887.	5. 6	35
325	Data sharing for conservation: A standardized checklist of US native tree species and threat assessments to prioritize and coordinate action. Plants People Planet, 2023, 5, 600-616.	1.6	7
326	Responses of Tree Growth and Intrinsic Water Use Efficiency to Environmental Factors in Central and Northern China in the Context of Global Warming. Forests, 2022, 13, 1209.	0.9	3
327	Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests. Communications Earth & Environment, 2022, 3, .	2.6	31
329	Habitat amount is a driver for biodiversity, but not for the carbon stock in post-logging natural regenerating areas in Tropical Atlantic Forest. Biological Conservation, 2022, 273, 109673.	1.9	3

#	Article	IF	CITATIONS
330	Unravelling patterns of forest carbon stock along a wide elevational gradient in the Himalaya: Implications for climate change mitigation. Forest Ecology and Management, 2022, 521, 120442.	1.4	8
332	A comparative analysis of the efficiency, timing, and permanence of CO ₂ removal pathways. Energy and Environmental Science, 2022, 15, 4389-4403.	15.6	11
333	How to not trade water for carbon with tree planting in water-limited temperate biomes?. Science of the Total Environment, 2023, 856, 158960.	3.9	8
334	Scaling smallholder tree cover restoration across the tropics. Global Environmental Change, 2022, 76, 102591.	3.6	12
335	Limited climate change mitigation potential through forestation of the vast dryland regions. Science, 2022, 377, 1436-1439.	6.0	36
336	How the future of the global forest sink depends on timber demand, forest management, and carbon policies. Global Environmental Change, 2022, 76, 102582.	3.6	35
337	Economic potential and management of tropical mixed-species plantations in Central America. New Forests, 2023, 54, 565-586.	0.7	3
338	Modelling tree diameter of less commonly planted tree species in New Zealand using a machine learning approach. Forestry, 0, , .	1.2	0
339	Defining biodiverse reforestation: Why it matters for climate change mitigation and biodiversity. Plants People Planet, 2023, 5, 27-38.	1.6	8
340	Recognizing the equity implications of restoration priority maps. Environmental Research Letters, 2022, 17, 114019.	2.2	8
341	Monitoring early-successional trees for tropical forest restoration using low-cost UAV-based species classification. Frontiers in Forests and Global Change, 0, 5, .	1.0	6
342	The LGM refugia of deciduous oak and distribution development since the LGM in China. Science China Earth Sciences, 0, , .	2.3	0
343	Declining tree growth rates despite increasing water-use efficiency under elevated CO2 reveals a possible global overestimation of CO2 fertilization effect. Heliyon, 2022, 8, e11219.	1.4	4
344	ä¸å›½è½å¶æŽç±»æœ«æ¬¡å†°ç››æœŸé¿é𾿉€åŠå†°åŽæœŸå^†å¸få•åŒ−. SCIENTIA SINICA Terrae, 2022, , .	0.1	0
345	Biodiversity outcomes of nature-based solutions for climate change adaptation: Characterising the evidence base. Frontiers in Environmental Science, 0, 10, .	1.5	12
346	Supporting decision-making by companies in delivering their climate net-zero and nature recovery commitments: Synthesising current information and identifying research priorities in rainforest restoration. Global Ecology and Conservation, 2022, 40, e02305.	1.0	3
347	Medicinal and Aromatic Plant Species with Potential for Remediation of Metal(loid)-Contaminated Soils. Environmental Contamination Remediation and Management, 2022, , 173-236.	0.5	2
348	Impacts du changement d'utilisation des terres sur la biomasse et la diversité dans le paysage forestier de la réserve de biosphère de Yangambi en République démocratique du Congo. Bois Et Forets Des Tropiques, 0, 353, 61-73.	0.2	1

#	Article	IF	CITATIONS
349	Invasive alien acacias rapidly stock carbon, but threaten biodiversity recovery in young second-growth forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	9
350	Realizing the potential of restoration science. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	2
351	Contested food, conflicting policies: health and development in tribal communities in India. Third World Quarterly, 2023, 44, 190-210.	1.3	1
352	The framework species method: harnessing natural regeneration to restore tropical forest ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	10
353	Implications of tropical cyclones on damage and potential recovery and restoration of logged forests in Vietnam. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	4
354	Global drivers of change across tropical savannah ecosystems and insights into their management and conservation. Biological Conservation, 2022, 276, 109786.	1.9	3
355	Forest landscape restoration: Spectral behavior and diversity of tropical tree cover classes. Remote Sensing Applications: Society and Environment, 2023, 29, 100882.	0.8	2
356	Social-ecological and institutional factors affecting forest and landscape restoration in the Chittagong Hill Tracts of Bangladesh. Land Use Policy, 2023, 125, 106478.	2.5	12
357	Better Forests, Better Cities., 0,,.		5
358	Unravelling the extent of tree planting by corporations. Corporate Social Responsibility and Environmental Management, 2023, 30, 1514-1523.	5.0	1
359	The role of socialisation of the forest management system in Poland in the face of the need to mitigate climate change. Ochrona Srodowiska I Zasobow Naturalnych, 2022, .	0.4	0
360	Bacurú Drõa: Indigenous forest custody as an effective climate change mitigation option. A case study from Darià ©n, Panama. Frontiers in Climate, 0, 4, .	1.3	2
361	Effects of elevated temperature and abnormal precipitation on soil carbon and nitrogen dynamics in a Pinus densiflora forest. Frontiers in Forests and Global Change, 0, 5, .	1.0	4
362	Mercury Exposure and Habitat Fragmentation Affect the Movement, Foraging Behavior, and Search Efficiency of the Marsh Periwinkle (<i>Littorina irrorata</i>). Environmental Toxicology and Chemistry, 2023, 42, 1971-1981.	2.2	1
363	Integrating carbon stocks and landscape connectivity for natureâ€based climate solutions. Ecology and Evolution, 2023, 13, .	0.8	3
364	Optimal Management Strategies to Maximize Carbon Capture in Forest Plantations: A Case Study with Pinus radiata D. Don. Forests, 2023, 14, 82.	0.9	2
365	Development of tools to estimate the contribution of young sweet chestnut plantations to climate-change mitigation. Forest Ecology and Management, 2023, 530, 120761.	1.4	3
366	Abiotic and biotic drivers of tree trait effects on soil microbial biomass and soil carbon concentration. Ecological Monographs, 2023, 93, .	2.4	9

#	Article	IF	CITATIONS
367	PRIORITIES OF SCIENTIFIC AND TECHNOLOGICAL DEVELOPMENT OF FORESTRY IN THE RUSSIAN FEDERATION. Actual Directions of Scientific Researches of the XXI Century Theory and Practice, 2022, 10, 164-180.	0.1	1
368	Global vegetation resilience linked to water availability and variability. Nature Communications, 2023, 14, .	5.8	25
369	The Triple Challenge: synergies, trade-offs and integrated responses for climate, biodiversity, and human wellbeing goals. Climate Policy, 2023, 23, 782-799.	2.6	11
370	Monitoring and modelling the effects of ecosystem engineers on ecosystem functioning. Functional Ecology, 2024, 38, 8-21.	1.7	2
371	Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: A synthesis in the China's Loess plateau. Agricultural and Forest Meteorology, 2023, 333, 109419.	1.9	3
372	Indicator-based agri-environmental direct payments: Assessment of three systems of different complexity levels. Ecological Indicators, 2023, 147, 109886.	2.6	2
373	diveRpine: Diversification of pine plantations in Mediterranean mountains. An interactive R tool to help decision makers. Ecological Indicators, 2023, 147, 110021.	2.6	1
374	Radiation and temperature dominate the spatiotemporal variability in resilience of subtropical evergreen forests in China. Frontiers in Forests and Global Change, 0, 6, .	1.0	0
375	Ecological Footprints in Changing Climate: An Overview. Springer Climate, 2022, , 3-30.	0.3	0
376	Avifauna recovers faster in areas less accessible to trapping in regenerating tropical forests. Biological Conservation, 2023, 279, 109901.	1.9	0
377	Multicriteria optimization to develop cost-effective pes-schemes to restore multiple environmental benefits in the Brazilian Atlantic forest. Ecosystem Services, 2023, 60, 101515.	2.3	4
378	Problems of Deforestation and Its Drivers. Springer Briefs in Geography, 2023, , 19-31.	0.1	0
379	Afforesting arid land with renewable electricity and desalination to mitigate climate change. Nature Sustainability, 2023, 6, 526-538.	11.5	11
380	The effect of spatial and temporal planning scale on the trade-off between the financial value and carbon storage in production forests. Land Use Policy, 2023, 127, 106583.	2.5	3
381	Modelling Climatically Suitable Areas for Mahogany (Swietenia macrophylla King) and Their Shifts across Neotropics: The Role of Protected Areas. Forests, 2023, 14, 385.	0.9	8
382	Comparison between the stem and leaf photosynthetic productivity in Eucalyptus urophylla plantations with different age. Planta, 2023, 257, .	1.6	2
383	Transitional forestry in New Zealand: reâ€evaluating the design and management of forest systems through the lens of forest purpose. Biological Reviews, 2023, 98, 1003-1015.	4.7	2
384	Towards a synthesized critique of forestâ€based  carbonâ€fix' strategies. Climate Resilience and Sustainability, 2023, 2, .	0.9	О

#	Article	IF	CITATIONS
386	Essential Environmental Impact Variables for Improved Corporate Sustainability Reporting. SSRN Electronic Journal, 0, , .	0.4	2
387	Ecosystem-based adaptation in Africa: integrating mitigation and adaptation. Regional Environmental Change, 2023, 23, .	1.4	1
388	Evaluating soil carbon stability by combining $\hat{l}'13C$ and soil aggregates after afforestation on agricultural land and thinning management. Plant and Soil, 2023, 487, 567-586.	1.8	1
389	Achieving Land Degradation Neutrality to Combat the Impacts of Climate Change. , 2023, , 77-96.		2
390	Use of Drone RGB Imagery to Quantify Indicator Variables of Tropical-Forest-Ecosystem Degradation and Restoration. Forests, 2023, 14, 586.	0.9	0
392	Coarse Woody Debris and Carbon Stocks in Pine Forests after 50 Years of Recovery from Harvesting in Northeastern California. Forests, 2023, 14, 623.	0.9	1
393	Effects of climate and plant functional types on forest above-ground biomass accumulation. Carbon Balance and Management, 2023, 18, .	1.4	6
394	Integrated approach to land management with self-sown forests in Ukraine. IOP Conference Series: Earth and Environmental Science, 2023, 1150, 012007.	0.2	0
395	Spatial Heterogeneity of Vegetation Resilience Changes to Different Drought Types. Earth's Future, 2023, 11, .	2.4	5
397	Overcoming the coupled climate and biodiversity crises and their societal impacts. Science, 2023, 380, .	6.0	56
410	Climate-Smart Forestry: Promise and risks for forests, society, and climate. , 2023, 2, e0000212.		4
415	Bridging global knowledge gaps in biodiversity databases: a comprehensive data synthesis on tree diversity of India. Biodiversity and Conservation, 2023, 32, 3089-3107.	1.2	2
428	The importance of capturing management in forest restoration targets. Nature Sustainability, 0, , .	11.5	1
431	Cooler forests in clean air. Nature Geoscience, 0, , .	5.4	0
444	Exploring Challenges and Lessons for Monitoring Forest Landscape Restoration. Current Landscape Ecology Reports, O, , .	1.1	0
447	Practices of APFNet Project Activities in Addressing Climate Change. Handbook of Environmental Chemistry, 2023, , .	0.2	0
457	Role of woody biomass in carbon capture, circular bioeconomy, and biomanufacturing., 2024,, 291-318.		0
460	Mitigation potential of forests: challenges to carbon accrual in the ecosystem., 2024,, 75-94.		0

#	Article	IF	CITATIONS
468	Mangroves and Ecosystem-Based Coastal Protection in the Mekong River Delta, Vietnam. , 0, , .		0
469	Demand and Supply of Air Quality Regulation Ecosystem Services. , 2023, , 407-430.		O
483	A call to develop carbon credits for second-growth forests. Nature Ecology and Evolution, 2024, 8, 179-180.	3.4	0
485	Climate change mitigation and adaptation strategies, the environment, and impacts of the COVID-19 pandemic: a review of the literature., 2024,, 61-72.		O
503	Biological carbon sequestration for environmental sustainability. , 2024, , 223-257.		0