Unexpected fish diversity gradients in the Amazon basi

Science Advances 5, eaav8681 DOI: 10.1126/sciadv.aav8681

Citation Report

#	Article	IF	CITATIONS
1	Andean Tectonics and Mantle Dynamics as a Pervasive Influence on Amazonian Ecosystem. Scientific Reports, 2019, 9, 16879.	3.3	63
2	Diversification of Neotropical Freshwater Fishes. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 27-53.	8.3	132
3	The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Global Change Biology, 2020, 26, 5509-5523.	9.5	50
4	Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Scientific Reports, 2020, 10, 15349.	3.3	33
5	Fish Community Responses to Human-Induced Stresses in the Lower Mekong Basin. Water (Switzerland), 2020, 12, 3522.	2.7	9
6	Stream fish metacommunity organisation across a Neotropical ecoregion: The role of environment, anthropogenic impact and dispersal-based processes. PLoS ONE, 2020, 15, e0233733.	2.5	23
7	Ecoregions, climate, topography, physicochemical, or a combination of all: Which criteria are the best to define river types based on abiotic variables and macroinvertebrates in neotropical rivers?. Science of the Total Environment, 2020, 738, 140303.	8.0	8
8	A database of freshwater fish species of the Amazon Basin. Scientific Data, 2020, 7, 96.	5.3	69
9	A river runs through it: The causes, consequences, and management of intraspecific diversity in river networks. Evolutionary Applications, 2020, 13, 1195-1213.	3.1	39
10	Freshwater fish diversity hotspots for conservation priorities in the Amazon Basin. Conservation Biology, 2020, 34, 956-965.	4.7	55
11	Cadaveric ichthyofauna of the Madeira River in the Amazon basin: the myth of man-eating piranhas. Forensic Science, Medicine, and Pathology, 2020, 16, 345-351.	1.4	4
12	Vulnerability of the biota in riverine and seasonally flooded habitats to damming of Amazonian rivers. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1136-1149.	2.0	38
13	Existing protected areas provide a poor safetyâ€net for threatened Amazonian fish species. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1167-1189.	2.0	27
14	Fish fauna of small-order streams of savannah and forest fragments landscape in the lower Tapajós River basin, Amazonia. Biota Neotropica, 2021, 21, .	0.5	2
15	Patterns in Freshwater Fish Diversity. , 2022, , 243-255.		4
16	The representativeness of protected areas for Amazonian fish diversity under climate change. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1158-1166.	2.0	9
17	Lengthâ€weight relationship of six small fish species from the Negro River basin in the Brazilian Amazon. Journal of Applied Ichthyology, 2021, 37, 492-496.	0.7	3
18	Classifying flow regimes of the Amazon basin. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1005-1028.	2.0	10

#	Article	IF	CITATIONS
19	Fish Ecology of the Alto Madre de Dios River Basin (Peru): Notes on Electrofishing Surveys, Elevation, Palm Swamp and Headwater Fishes. Water (Switzerland), 2021, 13, 1038.	2.7	3
20	Food web modeling indicates the potential impacts of increasing deforestation and fishing pressure in the Tapajós River, Brazilian Amazon. Regional Environmental Change, 2021, 21, 1.	2.9	10
21	Nonâ€stationary drivers on fish sampling efforts in Brazilian freshwaters. Diversity and Distributions, 2021, 27, 1224-1234.	4.1	6
24	Patterns of Pelagic Fish Diversity in Floodplain Lakes of Whitewater and Blackwater Drainage Systems Within the Central Amazon River Basin of Brazil. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
26	Wide-scope screening of pharmaceuticals, illicit drugs and their metabolites in the Amazon River. Water Research, 2021, 200, 117251.	11.3	27
27	The critical role of tree species and human disturbance in determining the macrofungal diversity in Europe. Global Ecology and Biogeography, 2021, 30, 2084-2100.	5.8	9
28	Genomic differentiation with gene flow in a widespread Amazonian floodplainâ€specialist bird species. Journal of Biogeography, 2022, 49, 1670-1682.	3.0	13
29	Late Neogene megariver captures and the Great Amazonian Biotic Interchange. Global and Planetary Change, 2021, 205, 103554.	3.5	19
30	Lotic Communities. , 2021, , 325-355.		0
31	Assessing extinction risk from geographic distribution data in Neotropical freshwater fishes. Neotropical Ichthyology, 2021, 19, .	1.0	9
32	Using community phylogenetics to assess phylogenetic structure in the Fitzcarrald region of Western Amazonia. Neotropical Ichthyology, 2020, 18, .	1.0	6
33	Checklist of the ichthyofauna of MamirauÃ; Sustainable Development Reserve, Middle Solimões, Amazonas, Brazil: high richness in a large protected area of Western-Central Amazonia. Biota Neotropica, 2021, 21, .	0.5	1
34	Riparian vegetation structure and seasonality influence functional diversity more than taxonomic diversity of stream fish assemblages in the Colombian Amazon. Aquatic Ecology, 2022, 56, 153-172.	1.5	4
35	The role of fishery management and environmental variables on the fish fauna in floodplain lakes in the lower Purus River, Amazon Basin, Brazil. Lakes and Reservoirs: Research and Management, 2021, 26,	0.9	0
36	Evaluating the influence of environmental variables on fish assemblages along Tropical Andes: considerations from ecology to conservation. Hydrobiologia, 0, , 1.	2.0	5
37	Biodiversity – the hidden risks. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200699.	0.8	2
38	Ichthyofauna of sandy beaches along the Acre river, Brazil. Biota Neotropica, 2020, 20, .	0.5	1
39	Mapping the hidden diversity of the <i>Geophagus sensu stricto</i> species group (Cichlidae:) Tj ETQq1 1 0.784	314 rgBT / 2.0	Oyerlock 10

CITATION REPORT

#	Article	IF	Citations
40	Geomorphological diversity of rivers in the Amazon Basin. Geomorphology, 2022, 400, 108078.	2.6	4
41	Structure of the ichthyoplankton community in a Neotropical floodplain lake affected by environmental degradation. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20201598.	0.8	4
42	Amphibians and squamates in Amazonian flooded habitats, with a study on the variation of amphibian assemblages along the Solimões River. , 2022, , 361-384.		3
44	Effects of climateâ€driven hydrological changes in the reproduction of Amazonian floodplain fishes. Journal of Applied Ecology, 2022, 59, 1134-1145.	4.0	7
45	Assessing the short-term response of fish assemblages to damming of an Amazonian river. Journal of Environmental Management, 2022, 307, 114571.	7.8	9
46	Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change, 2022, 210, 103717.	3.5	8
47	Biogeographic Regionalization: Freshwater. , 2024, , 543-553.		0
48	Climate Change is not the Biggest Threat to Freshwater Biodiversity. , 2022, , 623-632.		2
49	Contemporary environment and historical legacy explain functional diversity of freshwater fishes in the world rivers. Global Ecology and Biogeography, 2022, 31, 700-713.	5.8	14
50	Phylogenetic relationships and evolutionary patterns of the genus Psammolestes Bergroth, 1911 (Hemiptera: Reduviidae: Triatominae). Bmc Ecology and Evolution, 2022, 22, 30.	1.6	3
51	Rethinking biodiversity patterns and processes in stream ecosystems. Ecological Monographs, 2022, 92, .	5.4	8
53	Drivers of phylogenetic structure in Amazon freshwater fish assemblages. Journal of Biogeography, 2022, 49, 310-323.	3.0	3
54	Kudoa rousseauxii n. sp. (Cnidaria: Multivalvulida) Infects the Skeletal Muscles of the Freshwater Fish Brachyplatystoma rousseauxii in the Amazon River. Acta Parasitologica, 2022, 67, 962-969.	1.1	1
55	Resveratrol and neuroprotection: an insight into prospective therapeutic approaches against Alzheimer's disease from bench to bedside. Molecular Neurobiology, 2022, 59, 4384-4404.	4.0	37
56	Historical processes explain fish diversity in the upper Amazon River basin. Hydrobiologia, 0, , 1.	2.0	1
57	Evolution of an Amazonian Fish Is Driven by Allopatric Divergence Rather Than Ecological Divergence. Frontiers in Ecology and Evolution, 0, 10, .	2.2	3
58	Intense droughts affect temporal stability of Amazonian stream fish assemblages. Freshwater Biology, 0, , .	2.4	1
59	Estimating the extended and hidden species diversity from environmental DNA in hyperâ€diverse regions. Ecography, 2022, 2022, .	4.5	2

#	Article	IF	CITATIONS
60	Protection gaps in Amazon floodplains will increase with climate change: Insight from the world's largest scaled freshwater fish. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32, 1830-1841.	2.0	2
61	Environmental DNA metabarcoding reveals the impact of different land use on multitrophic biodiversity in riverine systems. Science of the Total Environment, 2023, 855, 158958.	8.0	14
62	Direct habitat descriptors improve the understanding of the organization of fish and macroinvertebrate communities across a large catchment. PLoS ONE, 2022, 17, e0274167.	2.5	1
63	Relationships between fishery catch rates and land cover along a longitudinal gradient in floodplains of the Amazon River. Fisheries Research, 2023, 258, 106521.	1.7	3
64	Environmental DNA Biomonitoring Reveals the Interactive Effects of Dams and Nutrient Enrichment on Aquatic Multitrophic Communities. Environmental Science & Technology, 2022, 56, 16952-16963.	10.0	15
65	Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	24
66	Fishes from the Colombian Amazonia region: species composition from the river systems within the rainforest biome. Biota Neotropica, 2022, 22, .	0.5	0
67	Spatial dynamics of Amazonian commercial fisheries: an analysis of landscape composition and fish landings. Brazilian Journal of Biology, 0, 83, .	0.9	0
68	Steps forward in Biomonitoring 2.0: <scp>eDNA</scp> metabarcoding and communityâ€level modelling allow the assessment of complex drivers of Neotropical fish diversity. Global Change Biology, 0, , .	9.5	2
69	Shortfalls in our understanding of the causes and consequences of functional and phylogenetic variation of freshwater communities across continents. Biological Conservation, 2023, 282, 110082.	4.1	4
70	Geographic Information System-Based Analysis of Fish Diversity Trends of River Meenachil, Southern Western Ghats, Kerala Current World Environment Journal, 2023, 18, 311-330.	0.5	0
71	Vulnerability to overfishing of fish stocks in the Amazon Basin. Fisheries Research, 2023, 265, 106740.	1.7	1
72	Neogene History of the Amazonian Flora: A Perspective Based on Geological, Palynological, and Molecular Phylogenetic Data. Annual Review of Earth and Planetary Sciences, 2023, 51, 419-446.	11.0	0
73	A new highly apomorphic species of Bujurquina (Teleostei: Cichlidae) from a reverse flowing river in the Peruvian Amazon, with a key to the species in the genus. European Journal of Taxonomy, 0, 870, .	0.6	0
74	Non-native fish species expand tacitly but rapidly toward upstream oxbow lakes along the longitudinal gradient. NeoBiota, 0, 85, 101-123.	1.0	0
75	Repeated ecomorphological divergence in Bujurquina (Teleostei: Cichlidae) body shape. Journal of Vertebrate Biology, 2023, 72, .	1.0	0
76	eDNA-based diversity and multitrophic network reveal the effects of land use and pollutants on the subtropical Dongjiang River systems. Environmental Pollution, 2023, 334, 122157.	7.5	2
77	Interacting effects of latitudinal and elevational gradients on the distribution of Iberian inland fish. , 2023, 43, 1.		0

CITATION REPORT

5

CITATION REPORT

#	Article	IF	CITATIONS
78	The effects of simulated hydropower turbine rapid decompression on two Neotropical fish species. Science of the Total Environment, 2023, 903, 166770.	8.0	1
79	Spatial priorities for freshwater fish conservation in relation to protected areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 2023, 33, 1028-1038.	2.0	0
80	The Hydrological Cycle of the Lower Amazon in Brazil Determines the Variation in Local Fishing Patterns. Fishes, 2023, 8, 371.	1.7	1
81	Freshwater fish diversity in the western Amazon basin shaped by Andean uplift since the Late Cretaceous. Nature Ecology and Evolution, 0, , .	7.8	0
82	Analysing spatioâ€ŧemporal patterns of nonâ€native fish in a biodiversity hotspot across decades. Diversity and Distributions, 2023, 29, 1492-1507.	4.1	1
83	Evaluation of exposure to multiple organic pollutants in riparian communities of the Brazilian Amazon: Screening levels and potential health risks. Science of the Total Environment, 2024, 908, 168294.	8.0	0
84	Abiotic and biotic factors influencing heavy metals pollution in fisheries of the Western Amazon. Science of the Total Environment, 2023, , 168506.	8.0	0
85	Environmental DNA biomonitoring reveals the human impacts on native and non-native fish communities in subtropical river systems. Journal of Environmental Management, 2024, 349, 119595.	7.8	0
86	Stable mean trophic level and decreasing fish size in Central Amazonian fishery landings. Fisheries Management and Ecology, 2024, 31, .	2.0	0
87	Local environmental variables are the best beta diversity predictors for fish communities from the Brazilian Cerrado streams. Aquatic Sciences, 2024, 86, .	1.5	0
88	Geodiversity in the Amazon drainage basin. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2024, 382, .	3.4	2