A middle Cambrian arthropod with chelicerae and prote

Nature 573, 586-589

DOI: 10.1038/s41586-019-1525-4

Citation Report

#	Article	IF	CITATIONS
1	Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Development Genes and Evolution, 2020, 230, 137-153.	0.9	27
2	Fossils from South China redefine the ancestral euarthropod body plan. BMC Evolutionary Biology, 2020, 20, 4.	3.2	27
3	A new Devonian euthycarcinoid reveals the use of different respiratory strategies during the marine-to-terrestrial transition in the myriapod lineage. Royal Society Open Science, 2020, 7, 201037.	2.4	5
4	Air Breathing in an Exceptionally Preserved 340-Million-Year-Old Sea Scorpion. Current Biology, 2020, 30, 4316-4321.e2.	3.9	18
5	Arachnid monophyly: Morphological, palaeontological and molecular support for a single terrestrialization within Chelicerata. Arthropod Structure and Development, 2020, 59, 100997.	1.4	35
6	Macroevolutionary patterns of body plan canalization in euarthropods. Paleobiology, 2020, 46, 569-593.	2.0	14
7	Arthropod Origins: Integrating Paleontological and Molecular Evidence. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 1-25.	8.3	30
8	The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology, 2020, 46, 58-81.	2.0	47
9	New exceptionally preserved panarthropods from the Drumian Wheeler Konservat‣agerstÃæte of the House Range of Utah. Papers in Palaeontology, 2020, 6, 501-531.	1.5	32
10	Taxonomic Sampling and Rare Genomic Changes Overcome Long-Branch Attraction in the Phylogenetic Placement of Pseudoscorpions. Molecular Biology and Evolution, 2021, 38, 2446-2467.	8.9	53
11	Strange eyes, stranger brains: exceptional diversity of optic lobe organization in midwater crustaceans. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210216.	2.6	6
12	A Burgess Shale mandibulate arthropod with a pygidium: a case of convergent evolution. Papers in Palaeontology, 2021, 7, 1877.	1.5	9
13	Through a glass darkly, but with more understanding of arthropod origin. France Biotechnologies, 0,	0.0	0
15	An early Cambrian euarthropod with radiodont-like raptorial appendages. Nature, 2020, 588, 101-105.	27.8	37
16	Revision of the mollisoniid chelicerate(?) $\langle i \rangle$ Thelxiope $\langle i \rangle$, with a new species from the middle Cambrian Wheeler Formation of Utah. PeerJ, 2020, 8, e8879.	2.0	6
17	The evolution of feeding within Euchelicerata: data from the fossil groups Eurypterida and Trigonotarbida illustrate possible evolutionary pathways. PeerJ, 0, 8, e9696.	2.0	9
18	What Is an "Arachnid� Consensus, Consilience, and Confirmation Bias in the Phylogenetics of Chelicerata. Diversity, 2021, 13, 568.	1.7	12
20	Comprehensive Species Sampling and Sophisticated Algorithmic Approaches Refute the Monophyly of Arachnida. Molecular Biology and Evolution, 2022, 39, .	8.9	41

#	Article	IF	Citations
21	Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates. Nature Communications, 2022, 13, 410.	12.8	9
22	A new Palaeoburmesebuthidae scorpion from mid-Cretaceous Burmese amber (Arachnida: Scorpiones:) Tj ETQq1	1 0.78431 1.4	.4 ₃ rgBT /Over
23	A new marrellomorph arthropod from southern Ontario: a rare case of soft-tissue preservation on a Late Ordovician open marine shelf. Journal of Paleontology, 2022, 96, 859-874.	0.8	4
24	A sting in the tale of <i>Parioscorpio venator</i> from the Silurian of Wisconsin: is it a cheloniellid arthropod?. Lethaia, 0 , , .	1.4	5
25	The origin and early evolution of arthropods. Biological Reviews, 2022, 97, 1786-1809.	10.4	13
26	Functional importance of the mandibular skeleto-muscular system in the bivalved arthropod Heterocypris incongruens (Crustacea, Ostracoda, Cyprididae). Die Naturwissenschaften, 2022, 109, .	1.6	O
27	<i>Innovatiocaris</i> , a complete radiodont from the early Cambrian Chengjiang Lagerst \tilde{A} and its implications for the phylogeny of Radiodonta. Journal of the Geological Society, 2023, 180, .	2.1	4
28	Description of <i> Acheronauta < /i > gen. nov., a possible mandibulate from the Silurian Waukesha LagerstÃtte, Wisconsin, USA. Journal of Systematic Palaeontology, 2022, 20, 1-24.</i>	1.5	4
29	Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution. Nature Communications, 2022, 13 , .	12.8	5
30	The Origin and Main Trends in the Evolution of Bilaterally Symmetrical Animals. Paleontological Journal, 2022, 56, 887-937.	0.5	1
31	Hox genes in spiders: Their significance for development and evolution. Seminars in Cell and Developmental Biology, 2024, 152-153, 24-34.	5.0	3
32	The problematic Cambrian arthropod <i>Tuzoia</i> and the origin of mandibulates revisited. Royal Society Open Science, 2022, 9, .	2.4	7
33	Interpreting fossilized nervous tissues. BioEssays, 2023, 45, .	2.5	3
34	Threeâ€dimensional anatomy of the Tully monster casts doubt on its presumed vertebrate affinities. Palaeontology, 2023, 66, .	2.2	0
35	Paleo-trade wind directions over the Yangtze Carbonate Platform during the Cambrian–Ordovician, Southern China. Geological Magazine, 2023, 160, 1160-1176.	1.5	0
36	A vicissicaudatan arthropod from the Silurian Herefordshire LagerstÃ x e, UK. Royal Society Open Science, 2023, 10, .	2.4	1
37	Consensus and conflict in studies of chelicerate fossils and phylogeny. Arachnologische Mitteilungen, 2023, 66, .	0.3	0