Enhanced CAR T cell expansion and prolonged persister treated with a low-affinity CD19 CAR

Nature Medicine 25, 1408-1414

DOI: 10.1038/s41591-019-0549-5

Citation Report

#	Article	IF	Citations
1	CD19 affinity — is lower also better?. Nature Reviews Clinical Oncology, 2019, 16, 661-661.	12.5	3
2	Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer and Metastasis Reviews, 2019, 38, 595-610.	2.7	65
3	Long-term surviving cancer patients as a source of therapeutic TCR. Cancer Immunology, Immunotherapy, 2020, 69, 859-865.	2.0	16
4	Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature Reviews Clinical Oncology, 2020, 17, 147-167.	12.5	786
5	Development of a quantitative relationship between CAR-affinity, antigen abundance, tumor cell depletion and CAR-T cell expansion using a multiscale systems PK-PD model. MAbs, 2020, 12, 1688616.	2.6	71
6	The future of cellular immunotherapy for childhood leukemia. Current Opinion in Pediatrics, 2020, 32, 13-25.	1.0	13
7	Industry updates from the field of stem cell research and regenerative medicine in September 2019. Regenerative Medicine, 2020, 15, 1161-1170.	0.8	0
8	Advances in chimeric antigen receptor T cells. Current Opinion in Hematology, 2020, 27, 368-377.	1.2	24
9	Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. Lancet Haematology,the, 2020, 7, e816-e826.	2.2	84
10	Safety and Efficacy of an Immune Cell-Specific Chimeric Promoter in Regulating Anti-PD-1 Antibody Expression in CAR T Cells. Molecular Therapy - Methods and Clinical Development, 2020, 19, 14-23.	1.8	9
11	Chimeric Antigen Receptor T-Cells in B-Acute Lymphoblastic Leukemia: State of the Art and Future Directions. Frontiers in Oncology, 2020, 10, 1594.	1.3	46
12	Point mutation in <i>CD19</i> facilitates immune escape of B cell lymphoma from CAR-T cell therapy. , 2020, 8, e001150.		47
13	T Cell Activation Machinery: Form and Function in Natural and Engineered Immune Receptors. International Journal of Molecular Sciences, 2020, 21, 7424.	1.8	9
14	A Functional Screening Strategy for Engineering Chimeric Antigen Receptors with Reduced On-Target, Off-Tumor Activation. Molecular Therapy, 2020, 28, 2564-2576.	3.7	14
15	Building a CAR-Treg: Going from the basic to the luxury model. Cellular Immunology, 2020, 358, 104220.	1.4	47
16	Complications after CD19+ CAR T-Cell Therapy. Cancers, 2020, 12, 3445.	1.7	32
17	Antitumor activity without on-target off-tumor toxicity of GD2–chimeric antigen receptor T cells in patients with neuroblastoma. Science Translational Medicine, 2020, 12, .	5.8	108
18	The CAR Tâ€Cell Mechanoimmunology at a Glance. Advanced Science, 2020, 7, 2002628.	5.6	29

TION RE

#	Article	IF	CITATIONS
19	Identification of Potent CD19 scFv for CAR T Cells through scFv Screening with NK/T-Cell Line. International Journal of Molecular Sciences, 2020, 21, 9163.	1.8	11
20	A Novel Siglec-4 Derived Spacer Improves the Functionality of CAR T Cells Against Membrane-Proximal Epitopes. Frontiers in Immunology, 2020, 11, 1704.	2.2	21
21	ISSUE HICHLIGHTS ―July 2020. Cytometry Part B - Clinical Cytometry, 2020, 98, 295-298.	0.7	2
22	CAR-T design: Elements and their synergistic function. EBioMedicine, 2020, 58, 102931.	2.7	144
23	Improving CAR T-cells: The next generation. Seminars in Hematology, 2020, 57, 115-121.	1.8	13
24	Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope. , 2020, 8, e000896.		7
25	Regulatory T cell therapy: Current and future design perspectives. Cellular Immunology, 2020, 356, 104193.	1.4	39
26	Overcoming key challenges in cancer immunotherapy with engineered T cells. Current Opinion in Oncology, 2020, 32, 398-407.	1.1	9
27	Monitoring MRD in ALL: Methodologies, technical aspects and optimal time points for measurement. Seminars in Hematology, 2020, 57, 142-148.	1.8	20
28	Development of a Tâ€cell receptor mimic antibody targeting a novel Wilms tumor 1â€derived peptide and analysis of its specificity. Cancer Science, 2020, 111, 3516-3526.	1.7	6
29	Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. Journal of Hematology and Oncology, 2020, 13, 122.	6.9	44
30	TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Frontiers in Immunology, 2020, 11, 1689.	2.2	63
31	Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers, 2020, 12, 2360.	1.7	9
32	Engineering Solutions for Mitigation of Chimeric Antigen Receptor T-Cell Dysfunction. Cancers, 2020, 12, 2326.	1.7	6
33	B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers, 2020, 12, 3815.	1.7	9
34	Function and evolution of the prototypic CD28ζ and 4-1BBζ chimeric antigen receptors. Immuno-Oncology Technology, 2020, 8, 2-11.	0.2	8
35	Engineering better chimeric antigen receptor T cells. Experimental Hematology and Oncology, 2020, 9, 34.	2.0	64
36	4-1BB Signaling Boosts the Anti-Tumor Activity of CD28-Incorporated 2nd Generation Chimeric Antigen Receptor-Modified T Cells. Frontiers in Immunology, 2020, 11, 539654.	2.2	18

#	Article	IF	CITATIONS
37	A primer set for the rapid isolation of scFv fragments against cell surface antigens from immunised rats. Scientific Reports, 2020, 10, 19168.	1.6	4
38	Fungal Infections Associated With the Use of Novel Immunotherapeutic Agents. Current Clinical Microbiology Reports, 2020, 7, 142-149.	1.8	12
39	Recent Advances in Managing Acute Lymphoblastic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, 330-342.	1.8	40
40	A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nature Reviews Immunology, 2020, 20, 651-668.	10.6	2,160
41	EGFRâ€ŧargeted CARâ€T cells are potent and specific in suppressing tripleâ€negative breast cancer both <i>in vitro</i> and <i>in vivo</i> . Clinical and Translational Immunology, 2020, 9, e01135.	1.7	48
42	MLL-rearranged infant leukaemia: A â€~thorn in the side' of a remarkable success story. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194564.	0.9	13
43	Updates in Chimeric Antigen Receptor T-Cell (CAR-T) Therapy for Lymphoma and Leukemia from the Annual Meeting of American Society of Hematology 2019. Critical Reviews in Oncology/Hematology, 2020, 152, 103007.	2.0	0
44	CAR T-cell immunotherapy of B-cell malignancy: the story so far. , 2020, 8, 251513552092716.	1.4	30
45	Structure-guided engineering of the affinity and specificity of CARs against Tn-glycopeptides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15148-15159.	3.3	30
46	Advances in Developing CAR T-Cell Therapy for HIV Cure. Frontiers in Immunology, 2020, 11, 361.	2.2	42
47	Emerging Approaches for Regulation and Control of CAR T Cells: A Mini Review. Frontiers in Immunology, 2020, 11, 326.	2.2	70
48	Chimeric Antigen Receptor Cell Therapy: Overcoming Obstacles to Battle Cancer. Cancers, 2020, 12, 842.	1.7	21
49	Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clinical Immunology, 2020, 214, 108382.	1.4	40
50	A Preclinical Embryonic Zebrafish Xenograft Model to Investigate CAR T Cells in Vivo. Cancers, 2020, 12, 567.	1.7	25
51	Prospects and challenges for use of CAR T cell therapies in solid tumors. Expert Opinion on Biological Therapy, 2020, 20, 503-516.	1.4	37
52	Emerging Prevention and Treatment Strategies to Control COVID-19. Pathogens, 2020, 9, 501.	1.2	22
53	Polymorphic Region-Specific Antibody for Evaluation of Affinity-Associated Profile of Chimeric Antigen Receptor. Molecular Therapy - Oncolytics, 2020, 17, 293-305.	2.0	1
54	Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Current Treatment Options in Oncology, 2020, 21, 16.	1.3	19

#	Article	IF	CITATIONS
55	Chimeric Antigen Receptor-T-Cell Therapy for B-Cell Hematological Malignancies: An Update of the Pivotal Clinical Trial Data. Pharmaceutics, 2020, 12, 194.	2.0	40
56	Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nature Medicine, 2020, 26, 270-280.	15.2	182
57	Clinical practice: chimeric antigen receptor (CAR) T cells: a major breakthrough in the battle against cancer. Clinical and Experimental Medicine, 2020, 20, 469-480.	1.9	8
58	Efficacy of B7-H3-Redirected BiTE and CAR-T Immunotherapies Against Extranodal Nasal Natural Killer/T Cell Lymphoma. Translational Oncology, 2020, 13, 100770.	1.7	29
59	How I treat adults with advanced acute lymphoblastic leukemia eligible for CD19-targeted immunotherapy. Blood, 2020, 135, 804-813.	0.6	34
60	Chimeric antigen receptor–T cells with cytokine neutralizing capacity. Blood Advances, 2020, 4, 1419-1431.	2.5	27
61	Pharmacology of Chimeric Antigen Receptor–Modified T Cells. Annual Review of Pharmacology and Toxicology, 2021, 61, 805-829.	4.2	7
62	CAR T cell therapy in B-cell acute lymphoblastic leukaemia: Insights from mathematical models. Communications in Nonlinear Science and Numerical Simulation, 2021, 94, 105570.	1.7	20
63	Monocytic Myeloid-Derived Suppressor Cells Underpin Resistance to Adoptive T Cell Therapy in Nasopharyngeal Carcinoma. Molecular Therapy, 2021, 29, 734-743.	3.7	11
64	Lymphodepletion strategies to potentiate adoptive T-cell immunotherapy – what are we doing; where are we going?. Expert Opinion on Biological Therapy, 2021, 21, 627-637.	1.4	25
65	Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials, 2021, 268, 120584.	5.7	40
66	The role of immunotherapy in relapse/refractory precursorâ€B acute lymphoblastic leukaemia: realâ€life UK/Ireland experience in children and young adults. British Journal of Haematology, 2021, 192, e42-e44.	1.2	0
67	Combinatorial CAR design improves target restriction. Journal of Biological Chemistry, 2021, 296, 100116.	1.6	7
68	Systematic Review and Meta-analysis of CD19-Specific CAR-T Cell Therapy in Relapsed/Refractory Acute Lymphoblastic Leukemia in the Pediatric and Young Adult Population: Safety and Efficacy Outcomes. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, e334-e347.	0.2	36
69	Development and functional characterization of novel fully human antiâ€CD19 chimeric antigen receptors for Tâ€cell therapy. Journal of Cellular Physiology, 2021, 236, 5832-5847.	2.0	2
70	Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. Oncolmmunology, 2021, 10, 1901434.	2.1	34
71	Evaluation of switch-mediated costimulation in trans on universal CAR-T cells (UniCAR) targeting CD123-positive AML. Oncolmmunology, 2021, 10, 1945804.	2.1	16
72	CAR T cells better than BiTEs. Blood Advances, 2021, 5, 602-606.	2.5	17

#	Article	IF	CITATIONS
73	Mutated GMâ€CSFâ€based CARâ€T cells targeting CD116/CD131 complexes exhibit enhanced antiâ€tumor effec against acute myeloid leukaemia. Clinical and Translational Immunology, 2021, 10, e1282.	^{2ts} 1.7	15
74	Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathology and Applied Neurobiology, 2021, 47, 359-378.	1.8	34
75	Dual-Target CAR-Ts with On- and Off-Tumour Activity May Override Immune Suppression in Solid Cancers: A Mathematical Proof of Concept. Cancers, 2021, 13, 703.	1.7	12
76	How I Manage: Pathophysiology and Management of Toxicity of Chimeric Antigen Receptor T-Cell Therapies. Journal of Clinical Oncology, 2021, 39, 456-466.	0.8	21
77	Hematopoietic Stem Cell- and Induced Pluripotent Stem Cell-Derived CAR-NK Cells as Reliable Cell-Based Therapy Solutions. Stem Cells Translational Medicine, 2021, 10, 987-995.	1.6	23
78	Diagnosis, grading and management of toxicities from immunotherapies in children, adolescents and young adults with cancer. Nature Reviews Clinical Oncology, 2021, 18, 435-453.	12.5	31
79	Characteristics and risk factors of infections following CD28-based CD19 CAR-T cells. Leukemia and Lymphoma, 2021, 62, 1692-1701.	0.6	22
80	Immunotherapy of Acute Lymphoblastic Leukemia and Lymphoma With T Cell–Redirected Bispecific Antibodies. Journal of Clinical Oncology, 2021, 39, 444-455.	0.8	18
81	Immunogenicity of CAR T cells in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 379-393.	12.5	128
83	Challenges and Clinical Strategies of CAR T-Cell Therapy for Acute Lymphoblastic Leukemia: Overview and Developments. Frontiers in Immunology, 2020, 11, 569117.	2.2	26
84	MeV-Stealth: A CD46-specific oncolytic measles virus resistant to neutralization by measles-immune human serum. PLoS Pathogens, 2021, 17, e1009283.	2.1	13
85	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	7.7	63
86	Engineering Tolerance toward Allogeneic CAR-T Cells by Regulation of MHC Surface Expression with Human Herpes Virus-8 Proteins. Molecular Therapy, 2021, 29, 718-733.	3.7	13
87	Phenotypic Models of CAR T-Cell Activation Elucidate the Pivotal Regulatory Role of CAR Downmodulation. Molecular Cancer Therapeutics, 2021, 20, 946-957.	1.9	8
88	Adoptive Cellular Therapy for Solid Tumors. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2021, 41, 57-65.	1.8	10
89	Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy. Cancer Immunology Research, 2021, 9, 255-260.	1.6	16
90	Nanoparticles for Enhanced Adoptive T Cell Therapies and Future Perspectives for CNS Tumors. Frontiers in Immunology, 2021, 12, 600659.	2.2	19
91	A single-chain antibody generation system yielding CAR-T cells with superior antitumor function. Communications Biology, 2021, 4, 273.	2.0	14

#	Article	IF	CITATIONS
92	Biomarkers for Predicting Cytokine Release Syndrome following CD19-Targeted CAR T Cell Therapy. Journal of Immunology, 2021, 206, 1561-1568.	0.4	36
93	Shaping Functional Avidity of CAR T Cells: Affinity, Avidity, and Antigen Density That Regulate Response. Molecular Cancer Therapeutics, 2021, 20, 872-884.	1.9	26
94	Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. Journal of Fungi (Basel, Switzerland), 2021, 7, 186.	1.5	18
95	T-cell-based Immunotherapies for Haematological Cancers, Part B: A SWOT Analysis of Adoptive Cell Therapies. Anticancer Research, 2021, 41, 1143-1156.	0.5	11
96	Improving and Maintaining Responses in Pediatric B–Cell Acute Lymphoblastic Leukemia Chimeric Antigen Receptor–T Cell Therapy. Cancer Journal (Sudbury, Mass), 2021, 27, 151-158.	1.0	0
97	Detection of <scp>CARâ€T19</scp> cells in peripheral blood and cerebrospinal fluid: An assay applicable to routine diagnostic laboratories. Cytometry Part B - Clinical Cytometry, 2021, 100, 622-631.	0.7	6
99	Current Perspectives on the Use of off the Shelf CAR-T/NK Cells for the Treatment of Cancer. Cancers, 2021, 13, 1926.	1.7	17
100	Optimization of T Cell Redirecting Strategies: Obtaining Inspirations From Natural Process of T Cell Activation. Frontiers in Immunology, 2021, 12, 664329.	2.2	1
101	CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs, 2021, 35, 281-302.	2.2	30
102	MRD-Based Therapeutic Decisions in Genetically Defined Subsets of Adolescents and Young Adult Philadelphia-Negative ALL. Cancers, 2021, 13, 2108.	1.7	5
103	Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 21, 769-784.	10.6	83
104	BCMA CARs in multiple myeloma: room for more?. Blood, 2021, 137, 2859-2860.	0.6	1
105	Engineering a natural ligand-based CAR: directed evolution of the stress-receptor NKp30. Cancer Immunology, Immunotherapy, 2022, 71, 165-176.	2.0	10
106	Clonal expansion of T memory stem cells determines early anti-leukemic responses and long-term CAR T cell persistence in patients. Nature Cancer, 2021, 2, 629-642.	5.7	59
107	CAR T cells for T-cell leukemias: Insights from mathematical models. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105684.	1.7	16
108	The antigenâ€binding moiety in the driver's seat of CARs. Medicinal Research Reviews, 2022, 42, 306-342.	5.0	21
109	Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nature Reviews Immunology, 2022, 22, 85-96.	10.6	315
110	How Can We Engineer CAR T Cells to Overcome Resistance?. Biologics: Targets and Therapy, 2021, Volume 15, 175-198.	3.0	8

#	Article	IF	CITATIONS
111	Cytokine Release Syndrome By T-cell–Redirecting Therapies: Can We Predict and Modulate Patient Risk?. Clinical Cancer Research, 2021, 27, 6083-6094.	3.2	9
112	CARTmath—A Mathematical Model of CAR-T Immunotherapy in Preclinical Studies of Hematological Cancers. Cancers, 2021, 13, 2941.	1.7	27
113	CAR T-Cell Therapy in Hematologic Malignancies: Clinical Role, Toxicity, and Unanswered Questions. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2021, 41, e246-e265.	1.8	27
114	Promoter usage regulating the surface density of CAR molecules may modulate the kinetics of CAR-T cells inÂvivo. Molecular Therapy - Methods and Clinical Development, 2021, 21, 237-246.	1.8	20
115	A Mathematical Description of the Bone Marrow Dynamics during CAR T-Cell Therapy in B-Cell Childhood Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 2021, 22, 6371.	1.8	8
116	Characterization and Functional Analysis of CD44v6.CAR T Cells Endowed with a New Low-Affinity Nerve Growth Factor Receptor-Based Spacer. Human Gene Therapy, 2021, 32, 744-760.	1.4	10
117	Investigational immunotherapy targeting CD19 for the treatment of acute lymphoblastic leukemia. Expert Opinion on Investigational Drugs, 2021, 30, 773-784.	1.9	8
119	CAR-T Cell Therapy for the Treatment of ALL: Eradication Conditions and In Silico Experimentation. Hemato, 2021, 2, 441-462.	0.2	5
120	A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nature Reviews Clinical Oncology, 2021, 18, 715-727.	12.5	136
122	A deep insight into CRISPR/Cas9 application in CAR-T cell-based tumor immunotherapies. Stem Cell Research and Therapy, 2021, 12, 428.	2.4	63
123	Clonal hematopoiesis and its emerging effects on cellular therapies. Leukemia, 2021, 35, 2752-2758.	3.3	21
124	Graftâ€ <i>versus</i> â€host disease induced by tisagenlecleucel in patients after allogeneic stem cell transplantation. British Journal of Haematology, 2021, 195, 805-811.	1.2	5
125	Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives. Viruses, 2021, 13, 1528.	1.5	45
126	Early-phenotype CAR-T cells for the treatment of pediatric cancers. Annals of Oncology, 2021, 32, 1366-1380.	0.6	14
127	Kidney Transplant T Cell–Mediated Rejection Occurring After Anti-CD19 CAR T-Cell Therapy for Refractory Aggressive Burkitt-like Lymphoma With 11q Aberration: A Case Report. American Journal of Kidney Diseases, 2022, 79, 760-764.	2.1	15
129	Engineering strategies for broad application of TCR-T- and CAR-T-cell therapies. International Immunology, 2021, 33, 551-562.	1.8	20
130	Durable Responses and Low Toxicity After Fast Off-Rate CD19 Chimeric Antigen Receptor-T Therapy in Adults With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3352-3363.	0.8	59
131	Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design. , 2021, 9, e003149.		28

#	Article	IF	CITATIONS
133	Recent Advances in Pediatric Cancer Research. Cancer Research, 2021, 81, 5783-5799.	0.4	8
134	CD19 expression in pediatric patients with relapsed/refractory Bâ€cell precursor acute lymphoblastic leukemia pre―and postâ€treatment with blinatumomab. Pediatric Blood and Cancer, 2021, 68, e29323.	0.8	8
135	Self-assembling, self-adjuvanting and fully synthetic peptide nanovaccine for cancer immunotherapy. Smart Materials in Medicine, 2021, 2, 237-249.	3.7	14
136	Adoptive Cell Therapy in Hepatocellular Carcinoma: Biological Rationale and First Results in Early Phase Clinical Trials. Cancers, 2021, 13, 271.	1.7	39
137	CD4 Inhibits Helper T Cell Activation at Lower Affinity Threshold for Full-Length T Cell Receptors Than Single Chain Signaling Constructs. Frontiers in Immunology, 2020, 11, 561889.	2.2	3
138	Chimeric Antigen Receptor (CAR) Redirected T Cells. Learning Materials in Biosciences, 2021, , 251-302.	0.2	1
140	Detection and Quantification of Chimeric Antigen Receptor Transgene Copy Number by Droplet Digital PCR versus Real-Time PCR. Journal of Molecular Diagnostics, 2020, 22, 699-707.	1.2	27
141	Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cellular and Molecular Immunology, 2020, 17, 576-586.	4.8	12
143	A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight, 2020, 5, .	2.3	56
144	Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. Journal of Clinical Investigation, 2020, 130, 1595-1607.	3.9	10
145	Sleeping Beauty–engineered CAR T cells achieve antileukemic activity without severe toxicities. Journal of Clinical Investigation, 2020, 130, 6021-6033.	3.9	102
146	GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize with anti-PD-1 Ab. ELife, 2020, 9, .	2.8	41
147	Focused evaluation of the roles of macrophages in chimeric antigen receptor (CAR) T cell therapy associated cytokine release syndrome. Cancer Biology and Medicine, 2021, 18, 0-0.	1.4	4
148	Improving CAR T-Cell Persistence. International Journal of Molecular Sciences, 2021, 22, 10828.	1.8	44
149	CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nature Medicine, 2021, 27, 1797-1805.	15.2	125
150	Speed and Location Both Matter: Antigen Stimulus Dynamics Controls CAR-T Cell Response. Frontiers in Immunology, 2021, 12, 748768.	2.2	4
151	Reducing Hinge Flexibility of CAR-T Cells Prolongs Survival In Vivo With Low Cytokines Release. Frontiers in Immunology, 2021, 12, 724211.	2.2	10
152	Personalized Antigen Receptor with Cell Therapy (CAR-T). Journal of the Institute of Science and Technology, 0, , 2235-2245.	0.3	1

#	ARTICLE	IF	CITATIONS
154	Will immunotherapy lead to a breakthrough in the treatment of older adults with ALL?. Best Practice and Research in Clinical Haematology, 2021, 34, 101319.	0.7	1
155	The Race of CAR Therapies: CAR-NK Cells for Fighting B-Cell Hematological Cancers. Cancers, 2021, 13, 5418.	1.7	7
157	Construction of PD1/CD28 Fusion Receptor Enhances Anti-Tumor Ability of c-Met CAR-T in Gastric Cancer. SSRN Electronic Journal, 0, , .	0.4	0
159	Immunotherapy in Pediatric Hematologic Malignant Neoplasms. Clinical Pediatric Hematology-Oncology, 2020, 27, 14-21.	0.0	0
164	Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Current Research in Translational Medicine, 2022, 70, 103320.	1.2	9
165	Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. VIII: CAR-T cells: preclinical development - Safety and efficacy evaluation. Hematology, Transfusion and Cell Therapy, 2021, 43, S54-S63.	0.1	0
166	Switch receptor T3/28 improves long-term persistence and antitumor efficacy of CAR-T cells. , 2021, 9, e003176.		10
167	Paediatric Strategy Forum for medicinal product development of chimeric antigen receptor T-cells in children and adolescents with cancer. European Journal of Cancer, 2022, 160, 112-133.	1.3	24
168	Enhancing CAR-T Cell Therapy with Functional Nucleic Acids. ACS Pharmacology and Translational Science, 2021, 4, 1716-1727.	2.5	5
169	Antigen multimers: Specific, sensitive, precise, and multifunctional high-avidity CAR-staining reagents. Matter, 2021, 4, 3917-3940.	5.0	4
170	Synthetic Gene Circuits: Design, Implement, and Apply. Proceedings of the IEEE, 2022, 110, 613-630.	16.4	4
171	Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Therapy, 2022, 29, 1080-1096.	2.2	52
172	Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacological Research, 2022, 175, 106036.	3.1	31
173	A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers. Nature Communications, 2022, 13, 217.	5.8	27
175	CAR T-cells in acute lymphoblastic leukemia: Current results. Bulletin Du Cancer, 2021, 108, S40-S54.	0.6	3
177	CAR-T cell: Toxicities issues: Mechanisms and clinical management. Bulletin Du Cancer, 2021, 108, S117-S127.	0.6	7
178	Adverse effects in hematologic malignancies treated with chimeric antigen receptor (CAR) T cell therapy: a systematic review and Meta-analysis. BMC Cancer, 2022, 22, 98.	1.1	15
179	Chimeric Antigen Receptor T-Cell Therapy in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia: Curative Treatment Option or Bridge to Transplant?. Frontiers in Pediatrics, 2021, 9, 784024.	0.9	13

#	Article	IF	CITATIONS
181	Synthetic Biology in Chimeric Antigen Receptor T (CAR T) Cell Engineering. ACS Synthetic Biology, 2022, 11, 1-15.	1.9	14
182	Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Reviews in Medical Virology, 2022, 32, e2325.	3.9	6
183	The treatment landscape for Relapsed Refractory B Acute Lymphoblastic Leukaemia (ALL). Leukemia and Lymphoma, 2022, , 1-10.	0.6	0
184	Resistance and recurrence of malignancies after CAR-T cell therapy. Experimental Cell Research, 2022, 410, 112971.	1.2	4
185	Chimeric antigen receptorâ€engineered adoptive cell therapy for AML: Current status and future perspectives. Immunomedicine, 2022, 2, .	0.7	0
186	Adoptive Cellular Therapy for Multiple Myeloma Using CAR- and TCR-Transgenic T Cells: Response and Resistance. Cells, 2022, 11, 410.	1.8	9
187	The Hematology of Tomorrow Is Here—Preclinical Models Are Not: Cell Therapy for Hematological Malignancies. Cancers, 2022, 14, 580.	1.7	5
188	A cell-based phenotypic library selection and screening approach for the de novo discovery of novel functional chimeric antigen receptors. Scientific Reports, 2022, 12, 1136.	1.6	2
189	Fine-tuning CARs for best performance. Cancer Cell, 2022, 40, 11-13.	7.7	5
190	Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Cancers, 2022, 14, 571.	1.7	12
191	Roadmap to affinity-tuned antibodies for enhanced chimeric antigen receptor T cell function and selectivity. Trends in Biotechnology, 2022, 40, 875-890.	4.9	17
192	Chimeric antigen receptor engineered T cells and their application in the immunotherapy of solid tumours. Expert Reviews in Molecular Medicine, 2022, 24, e7.	1.6	8
193	iPSC-Derived Natural Killer Cell Therapies - Expansion and Targeting. Frontiers in Immunology, 2022, 13, 841107.	2.2	42
194	Generation of CAR-T cells using lentiviral vectors. Methods in Cell Biology, 2022, 167, 39-69.	0.5	3
195	Adult Acute Lymphoblastic Leukaemia. , 2022, , 61-66.		1
196	Synthetic Biology-based Optimization of T cell Immunotherapies for Cancer. Current Opinion in Biomedical Engineering, 2022, 22, 100372.	1.8	0
197	Fluctuations in T cell receptor and pMHC interactions regulate T cell activation. Journal of the Royal Society Interface, 2022, 19, 20210589.	1.5	4
198	Engineering of an Avidity-Optimized CD19-Specific Parallel Chimeric Antigen Receptor That Delivers Dual CD28 and 4-1BB Co-Stimulation. Frontiers in Immunology, 2022, 13, 836549.	2.2	9

#	Article	IF	CITATIONS
199	High-dimensional functional phenotyping of preclinical human CAR T cells using mass cytometry. STAR Protocols, 2022, 3, 101174.	0.5	3
200	Novel lowâ€avidity glypicanâ€3 specific CARTs resist exhaustion and mediate durable antitumor effects against HCC. Hepatology, 2022, 76, 330-344.	3.6	11
202	Parameters of longâ€ŧerm response with <scp>CD28</scp> â€based <scp>CD19 chimaeric antigen receptorâ€modified</scp> T cells in children and young adults with <scp>Bâ€acute lymphoblastic leukaemia</scp> . British Journal of Haematology, 2022, 197, 475-481.	1.2	10
203	Signaling Dynamics of TSHR-Specific CAR-T Cells Revealed by FRET-Based Biosensors. Frontiers in Cell and Developmental Biology, 2022, 10, 845319.	1.8	0
204	Point-of-care anti-CD19 CAR T-cells for treatment of relapsed and refractory aggressive B-cell lymphoma. Transplantation and Cellular Therapy, 2022, 28, 251-257.	0.6	14
205	Strategies for Manipulating T Cells in Cancer Immunotherapy. Biomolecules and Therapeutics, 2022, , .	1.1	Ο
206	Overcoming barriers to widespread use of <scp>CARâ€Treg</scp> therapy in organ transplant recipients. Hla, 2022, 99, 565-572.	0.4	2
207	Conduit CAR: Redirecting CAR T-Cell Specificity with A Universal and Adaptable Bispecific Antibody Platform. Cancer Research Communications, 2022, 2, 146-157.	0.7	1
208	A novel PD-L1-targeted shark VNAR single-domain-based CAR-T cell strategy for treating breast cancer and liver cancer. Molecular Therapy - Oncolytics, 2022, 24, 849-863.	2.0	16
209	A genome-scale gain-of-function CRISPR screen in CD8 TÂcells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism, 2022, 34, 595-614.e14.	7.2	70
210	Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. Journal of Experimental and Clinical Cancer Research, 2021, 40, 367.	3.5	72
211	Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cellular and Molecular Life Sciences, 2022, 79, 14.	2.4	27
212	Natural Receptor- and Ligand-Based Chimeric Antigen Receptors: Strategies Using Natural Ligands and Receptors for Targeted Cell Killing. Cells, 2022, 11, 21.	1.8	16
213	T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes. Nature Biotechnology, 2022, 40, 488-498.	9.4	12
216	NK Cells Armed with Chimeric Antigen Receptors (CAR): Roadblocks to Successful Development. Cells, 2021, 10, 3390.	1.8	17
217	Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR T-cell Therapy for Patients with Relapsed and Refractory T-cell Acute Lymphoblastic Leukemia/Lymphoma. Clinical Cancer Research, 2022, 28, 2830-2843.	3.2	39
219	Recent Advances in Treatment Options for Childhood Acute Lymphoblastic Leukemia. Cancers, 2022, 14, 2021.	1.7	24
220	Next-Generation CAR T-cell Therapies. Cancer Discovery, 2022, 12, 1625-1633.	7.7	53

~		~	
(11		1JED(דסר
\sim	IAL	NLP	ואכ

#	Article	IF	CITATIONS
221	Development of CAR T Cell Therapy in Children—A Comprehensive Overview. Journal of Clinical Medicine, 2022, 11, 2158.	1.0	12
222	Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Advanced Drug Delivery Reviews, 2022, 185, 114301.	6.6	28
225	The genesis of paediatric haematology in the UK. British Journal of Haematology, 2020, 191, 593-603.	1.2	1
226	Engineering a single-chain variable fragment of cetuximab for CAR T-cell therapy against head and neck squamous cell carcinomas. Oral Oncology, 2022, 129, 105867.	0.8	9
227	CARâ€T cell therapy in paediatric acute lymphoblastic leukaemia – past, present and future. British Journal of Haematology, 2020, 191, 617-626.	1.2	5
228	Preferential expansion of CD8+ CD19-CAR T cells postinfusion and the role of disease burden on outcome in pediatric B-ALL. Blood Advances, 2022, 6, 5737-5749.	2.5	20
230	Development of Cancer Immunotherapies. Cancer Treatment and Research, 2022, 183, 1-48.	0.2	4
231	IDENTIFY THE CURRENT TRENDS RELATED TO THE TREATMENT AND PREVENTION OF COVID- 19., 2022, 1, 17-21.		0
232	Low-affinity CAR T cells exhibit reduced trogocytosis, preventing rapid antigen loss, and increasing CAR T cell expansion. Leukemia, 2022, 36, 1943-1946.	3.3	41
233	Rational design of chimeric antigen receptor T cells against glypican 3 decouples toxicity from therapeutic efficacy. Cytotherapy, 2022, 24, 720-732.	0.3	4
234	Anti-CCR9 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia. Blood, 2022, 140, 25-37.	0.6	29
235	An Ex Vivo 3D Tumor Microenvironment-Mimicry Culture to Study TAM Modulation of Cancer Immunotherapy. Cells, 2022, 11, 1583.	1.8	10
236	CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. Journal of Clinical Investigation, 2022, 132, .	3.9	66
237	CAR-T Cell Performance: How to Improve Their Persistence?. Frontiers in Immunology, 2022, 13, 878209.	2.2	42
238	Phenotypic Composition of Commercial Anti-CD19 CAR T Cells Affects <i>In Vivo</i> Expansion and Disease Response in Patients with Large B-cell Lymphoma. Clinical Cancer Research, 2022, 28, 3378-3386.	3.2	15
239	The role of neoantigens in tumor immunotherapy. Biomedicine and Pharmacotherapy, 2022, 151, 113118.	2.5	17
240	Resistance against anti-CD19 and anti-BCMA CAR T cells: Recent advances and coping strategies. Translational Oncology, 2022, 22, 101459.	1.7	8
241	Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection. Disease Markers, 2022, 2022, 1-10.	0.6	3

#	Article	IF	CITATIONS
242	BCMA-targeted therapies for multiple myeloma: strategies to maximize efficacy and minimize adverse events. Expert Review of Hematology, 2022, 15, 503-517.	1.0	1
243	Case Report: Chimeric Antigen Receptor T Cells Induced Late Severe Cytokine Release Syndrome. Frontiers in Oncology, 0, 12, .	1.3	1
244	CAR T Cells Targeting Membrane-Bound Hsp70 on Tumor Cells Mimic Hsp70-Primed NK Cells. Frontiers in Immunology, 2022, 13, .	2.2	10
245	A multimodal imaging workflow for monitoring CAR T cell therapy against solid tumor from whole-body to single-cell level. Theranostics, 2022, 12, 4834-4850.	4.6	5
246	Reforming the Chimeric Antigen Receptor by Peptide Towards Optimized CAR T Cells With Enhanced Anti-Cancer Potency and Safety. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
247	Immunotherapy for Pediatric Acute Lymphoblastic Leukemia: Recent Advances and Future Perspectives. Frontiers in Immunology, 0, 13, .	2.2	3
248	The Past, Present, and Future of Non-Viral CAR T Cells. Frontiers in Immunology, 0, 13, .	2.2	39
249	Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines, 2022, 10, 1493.	1.4	14
250	Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine, 2022, 156, 155920.	1.4	4
251	Evaluation of chimeric antigen receptor of humanized rabbitâ€derived T cell receptorâ€like antibody. Cancer Science, 0, , .	1.7	0
252	From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer. Journal of Inflammation Research, 0, Volume 15, 4061-4085.	1.6	1
253	Mapping CAR T-Cell Design Space Using Agent-Based Models. Frontiers in Molecular Biosciences, 0, 9, .	1.6	9
254	Clinically Applicable Assessment of Tisagenlecleucel CAR T Cell Treatment by Digital Droplet PCR for Copy Number Variant Assessment. International Journal of Molecular Sciences, 2022, 23, 7573.	1.8	2
255	Antibody variable region engineering for improving cancer immunotherapy. Cancer Communications, 2022, 42, 804-827.	3.7	15
256	CAR T-Cell Targeting of Macrophage Colony-Stimulating Factor Receptor. Cells, 2022, 11, 2190.	1.8	4
257	CD34 + -selected stem cell boost can safely improve cytopenias following CAR T-cell therapy. Blood Advances, 2022, 6, 4715-4718.	2.5	20
258	Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clinical Immunology, 2022, 241, 109078.	1.4	12
259	Programmable Attenuation of Antigenic Sensitivity for a Nanobody-Based EGFR Chimeric Antigen Receptor Through Hinge Domain Truncation. Frontiers in Immunology, 0, 13, .	2.2	8

#	Article	IF	CITATIONS
260	Multidimensional single-cell analysis identifies a role for CD2-CD58 interactions in clinical antitumor T cell responses. Journal of Clinical Investigation, 2022, 132, .	3.9	26
261	Feasibility of in vivo CAR T cells tracking using streptavidin–biotin-paired positron emission tomography. European Journal of Nuclear Medicine and Molecular Imaging, 0, , .	3.3	0
262	ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene, 2022, 41, 4104-4114.	2.6	12
263	Combination strategies to optimize the efficacy of chimeric antigen receptor T cell therapy in haematological malignancies. Frontiers in Immunology, 0, 13, .	2.2	13
264	Size-dependent activation of CAR-T cells. Science Immunology, 2022, 7, .	5.6	36
265	A Computational Model of Cytokine Release Syndrome during CAR T ell Therapy. Advanced Therapeutics, 2022, 5, .	1.6	1
266	An optimized bicistronic chimeric antigen receptor against GPC2 or CD276 overcomes heterogeneous expression in neuroblastoma. Journal of Clinical Investigation, 2022, 132, .	3.9	29
267	CAR-T cell potency: from structural elements to vector backbone components. Biomarker Research, 2022, 10, .	2.8	14
268	Recent advances in CAR-T cells therapy for colorectal cancer. Frontiers in Immunology, 0, 13, .	2.2	7
269	Ligand-based CAR-T cell: Different strategies to drive T cells in future new treatments. Frontiers in Immunology, 0, 13, .	2.2	4
270	CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Frontiers in Immunology, 0, 13, .	2.2	10
271	The Evolution of Chimeric Antigen Receptor T-Cell Therapy in Children, Adolescents and Young Adults with Acute Lymphoblastic Leukemia. Biomedicines, 2022, 10, 2286.	1.4	1
272	Co-Stimulatory Receptor Signaling in CAR-T Cells. Biomolecules, 2022, 12, 1303.	1.8	11
273	A new story for an old challenge: Would flow cytometry beat molecular biology in monitoring chimeric antigen receptor T cell pharmacokinetics?. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2023, 103, 8-11.	1.1	2
275	Targeting FLT3-specific chimeric antigen receptor T cells for acute lymphoblastic leukemia with KMT2A rearrangement. Cancer Immunology, Immunotherapy, 2023, 72, 957-968.	2.0	3
276	Infectious Complications of Targeted Therapies in Children with Leukemias and Lymphomas. Cancers, 2022, 14, 5022.	1.7	3
277	The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Frontiers in Immunology, 0, 13, .	2.2	17
279	Targeting of low ALK antigen density neuroblastoma using AND logic-gate engineered CAR-T cells. Cytotherapy, 2023, 25, 46-58.	0.3	5

#	Article	IF	CITATIONS
280	Cytopenias following anti-CD19 chimeric antigen receptor (CAR) T cell therapy: a systematic analysis for contributing factors. Annals of Medicine, 2022, 54, 2950-2964.	1.5	5
281	Modeling Patient-Specific CAR-T Cell Dynamics: Multiphasic Kinetics via Phenotypic Differentiation. Cancers, 2022, 14, 5576.	1.7	4
282	Should all CAR-T therapy for acute lymphoblastic leukemia Be consolidated with allogeneic stem cell transplant?. Best Practice and Research in Clinical Haematology, 2022, 35, 101414.	0.7	2
284	Anti-CD19 chimeric antigen receptor T cells secreting anti-PD-L1 single-chain variable fragment attenuate PD-L1 mediated T cell inhibition. International Immunopharmacology, 2022, 113, 109442.	1.7	2
285	Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors. Journal of Cell Biology, 2023, 222, .	2.3	4
286	Phase I CAR-T Clinical Trials Review. Anticancer Research, 2022, 42, 5673-5684.	0.5	0
287	Cancer immunotherapy with CAR T cells: well-trodden paths and journey along lesser-known routes. Radiology and Oncology, 2022, 56, 409-419.	0.6	2
288	Activation priming and cytokine polyfunctionality modulate the enhanced functionality of low-affinity CD19 CAR T cells. Blood Advances, 2023, 7, 1725-1738.	2.5	7
289	Extracellular Vesicles Expressing CD19 Antigen Improve Expansion and Efficacy of CD19-Targeted CAR-T Cells. International Journal of Nanomedicine, 0, Volume 18, 49-63.	3.3	7
291	Novel banana lectin CAR-T cells to target pancreatic tumors and tumor-associated stroma. , 2023, 11, e005891.		9
292	Novel CD19-specific γ/δ TCR-T cells in relapsed or refractory diffuse large B-cell lymphoma. Journal of Hematology and Oncology, 2023, 16, .	6.9	5
293	Chimeric Antigen Receptor T-Cell Therapy. Cancer Journal (Sudbury, Mass), 2023, 29, 28-33.	1.0	3
294	Long-term response to autologous anti-CD19 chimeric antigen receptor T cells in relapsed or refractory B cell acute lymphoblastic leukemia: a systematic review and meta-analysis. Cancer Gene Therapy, 2023, 30, 845-854.	2.2	12
295	Failure of ALL recognition by CAR T cells: a review of CD 19-negative relapses after anti-CD 19 CAR-T treatment in B-ALL. Frontiers in Immunology, 0, 14, .	2.2	6
296	Sequencing <scp>antigenâ€ŧargeting</scp> antibodies and cellular therapies in adults with relapsed/refractory <scp>Bâ€cell</scp> acute lymphoblastic leukemia. American Journal of Hematology, 2023, 98, 666-680.	2.0	3
297	Massively parallel knock-in engineering of human T cells. Nature Biotechnology, 2023, 41, 1239-1255.	9.4	11
298	Nano-immunoengineering of CAR-T cell therapy against tumor microenvironment: The way forward in combating cancer. OpenNano, 2023, 10, 100124.	1.8	2
299	Efficacy and Safety of Dual-Targeting Chimeric Antigen Receptor-T Therapy for Relapsed or Refractory B Cell Lymphoid Malignancies: A Systematic Review and Meta-Analysis. Human Gene Therapy, 2023, 34, 192-202.	1.4	2

#	Article	IF	Citations
300	Universal chimeric Fcî ³ receptor T cells with appropriate affinity for IgG1 antibody exhibit optimal antitumor efficacy. Acta Pharmaceutica Sinica B, 2023, 13, 2071-2085.	5.7	1
301	Challenges and opportunities of CAR T-cell therapies for CLL. Seminars in Hematology, 2023, 60, 25-33.	1.8	3
302	CAR-T Cell Therapy: the Efficacy and Toxicity Balance. Current Hematologic Malignancy Reports, 2023, 18, 9-18.	1.2	15
303	CAR-NK Cell Therapy: A Promising Alternative to CAR-T Cell Therapy. , 2022, , 372-381.		0
304	Comparative Pre-Clinical Analysis of CD20-Specific CAR T Cells Encompassing 1F5-, Leu16-, and 2F2-Based Antigen-Recognition Moieties. International Journal of Molecular Sciences, 2023, 24, 3698.	1.8	1
305	Optimal Use of Novel Immunotherapeutics in B-Cell Precursor ALL. Cancers, 2023, 15, 1349.	1.7	0
306	Senescent cancer cell-derived nanovesicle as a personalized therapeutic cancer vaccine. Experimental and Molecular Medicine, 2023, 55, 541-554.	3.2	8
307	piggyBac-transposon-mediated CAR-T cells for the treatment of hematological and solid malignancies. International Journal of Clinical Oncology, 2023, 28, 736-747.	1.0	4
308	CD19 CAR antigen engagement mechanisms and affinity tuning. Science Immunology, 2023, 8, .	5.6	11
309	Novel pathophysiological insights into CAR-T cell associated neurotoxicity. Frontiers in Neurology, 0, 14, .	1.1	4
310	Chimeric antigen receptor T-cell therapy for adult B-cell acute lymphoblastic leukemia: state-of-the-(C)ART and the road ahead. Blood Advances, 2023, 7, 3350-3360.	2.5	2
314	Dual targeting of CD19 and CD22 against B-ALL using a novel high-sensitivity aCD22 CAR. Molecular Therapy, 2023, 31, 2089-2104.	3.7	9
315	T-cell engineering strategies for tumors with low antigen density, and T-cell survival in the immunosuppressive tumor microenvironment of relapsed/refractory diffuse large B-cell lymphoma. , 2023, 2, .		0
316	Non-viral TRAC-knocked-in CD19KICAR-T and gp350KICAR-T cells tested against Burkitt lymphomas with type 1 or 2 EBV infection: In vivo cellular dynamics and potency. Frontiers in Immunology, 0, 14, .	2.2	4
317	A high throughput bispecific antibody discovery pipeline. Communications Biology, 2023, 6, .	2.0	9
318	Inducible expression of interleukin-12 augments the efficacy of affinity-tuned chimeric antigen receptors in murine solid tumor models. Nature Communications, 2023, 14, .	5.8	8
319	Specific Activation of T Cells by an ACE2-Based CAR-Like Receptor upon Recognition of SARS-CoV-2 Spike Protein. International Journal of Molecular Sciences, 2023, 24, 7641.	1.8	4
327	Chimeric Antigen Receptor T-Cell Therapy in Acute Lymphoblastic Leukemia. , 2024, , 233-245.		0

	CITAII	TATION REPORT		
#	Article	IF	CITATIONS	
353	Stem-like exhausted and memory CD8+ T cells in cancer. Nature Reviews Cancer, 2023, 23, 780-798.	12.8	5	
388	Recent advances in CAR T-cell engineering using synthetic biology: Paving the way for next-generation cancer treatment. Advances in Protein Chemistry and Structural Biology, 2024, , .	1.0	0	