Tumor-reprogrammed resident T cells resist radiation t

Nature Communications 10, 3959 DOI: 10.1038/s41467-019-11906-2

Citation Report

#	Article	IF	CITATIONS
1	Radiotherapy as a Backbone for Novel Concepts in Cancer Immunotherapy. Cancers, 2020, 12, 79.	1.7	29
2	Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nature Immunology, 2020, 21, 120-134.	7.0	218
3	High versus low dose irradiation for tumor immune reprogramming. Current Opinion in Biotechnology, 2020, 65, 268-283.	3.3	13
4	Therapy-Induced Modulation of the Tumor Microenvironment: New Opportunities for Cancer Therapies. Frontiers in Oncology, 2020, 10, 582884.	1.3	23
5	Modulation of Determinant Factors to Improve Therapeutic Combinations with Immune Checkpoint Inhibitors. Cells, 2020, 9, 1727.	1.8	8
6	Radiation Therapy and the In Situ Vaccination Approach. International Journal of Radiation Oncology Biology Physics, 2020, 108, 891-898.	0.4	46
7	DNA Repair and Signaling in Immune-Related Cancer Therapy. Frontiers in Molecular Biosciences, 2020, 7, 205.	1.6	20
8	FLASH Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. International Journal of Molecular Sciences, 2020, 21, 6492.	1.8	132
9	Cytoreduction and the Optimization Of Immune Checkpoint Inhibition with Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 108, 17-26.	0.4	18
10	Photon versus carbon ion irradiation: immunomodulatory effects exerted on murine tumor cell lines. Scientific Reports, 2020, 10, 21517.	1.6	13
11	Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiation Oncology, 2020, 15, 254.	1.2	62
12	Challenges in Combining Immunotherapy with Radiotherapy in Recurrent/Metastatic Head and Neck Cancer. Cancers, 2020, 12, 3197.	1.7	16
13	The interplay between cancer associated fibroblasts and immune cells in the context of radiation therapy. Molecular Carcinogenesis, 2020, 59, 754-765.	1.3	34
14	Optimizing Radiation Therapy to Boost Systemic Immune Responses in Breast Cancer: A Critical Review for Breast Radiation Oncologists. International Journal of Radiation Oncology Biology Physics, 2020, 108, 227-241.	0.4	24
15	Trials and Tribulations of Radio-Immuno-Oncology. Seminars in Radiation Oncology, 2020, 30, 108-112.	1.0	3
16	Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy. Seminars in Radiation Oncology, 2020, 30, 187-193.	1.0	57
17	CD103+ tumor-resident CD8+ T cell numbers underlie improved patient survival in oropharyngeal squamous cell carcinoma. , 2020, 8, e000452.		26
18	Inflammatory microenvironment remodelling by tumour cells after radiotherapy. Nature Reviews Cancer, 2020, 20, 203-217.	12.8	420

ATION RE

#	Article	IF	CITATIONS
19	A Prospective, Phase 1 Trial of Nivolumab, Ipilimumab, and Radiotherapy in Patients with Advanced Melanoma. Clinical Cancer Research, 2020, 26, 3193-3201.	3.2	27
20	Radiotherapy–immunotherapy combinations – perspectives and challenges. Molecular Oncology, 2020, 14, 1529-1537.	2.1	94
21	Radiotherapy and Immunotherapy for Cancer: From "Systemic―to "Multisite― Clinical Cancer Research, 2020, 26, 2777-2782.	3.2	103
22	Enhancing cancer immunotherapy with nanomedicine. Nature Reviews Immunology, 2020, 20, 321-334.	10.6	506
23	FLASH-radiotherapy: A new perspective in immunotherapy era?. Radiotherapy and Oncology, 2020, 145, 137.	0.3	3
24	Deep abscopal response to radiotherapy and anti-PD-1 in an oligometastatic melanoma patient with unfavorable pretreatment immune signature. Cancer Immunology, Immunotherapy, 2020, 69, 1823-1832.	2.0	19
25	Stereotactic ablative radiotherapy for colorectal cancer liver metastasis. Seminars in Cancer Biology, 2021, 71, 21-32.	4.3	14
26	Lymphopenia Following Radiotherapy for Hepatocellular Carcinoma. , 2021, , 317-324.		0
27	The role of radiotherapy in the age of immunotherapy. Japanese Journal of Clinical Oncology, 2021, 51, 513-522.	0.6	28
28	Combinations of Radiotherapy with Vaccination and Immune Checkpoint Inhibition Differently Affect Primary and Abscopal Tumor Growth and the Tumor Microenvironment. Cancers, 2021, 13, 714.	1.7	32
29	Radiotherapy and Immunotherapy for Head and Neck Cancer: Current Evidence and Challenges. Frontiers in Oncology, 2020, 10, 608772.	1.3	30
30	Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers, 2021, 13, 1468.	1.7	24
31	Antigen-Specific Tissue-Resident Memory T Cells in the Respiratory System Were Generated following Intranasal Vaccination of Mice with BCG. Journal of Immunology Research, 2021, 2021, 1-15.	0.9	4
32	Radiation and CAR T-cell Therapy in Lymphoma: Future Frontiers and Potential Opportunities for Synergy. Frontiers in Oncology, 2021, 11, 648655.	1.3	19
33	Tissue-resident memory T cells in tumor immunity and immunotherapy. Journal of Experimental Medicine, 2021, 218, .	4.2	94
34	Radiotherapy in the Era of ImmunotherapyÂWith a Focus on Non-Small-Cell Lung Cancer: Time to Revisit Ancient Dogmas?. Frontiers in Oncology, 2021, 11, 662236.	1.3	19
35	Analysis of radiotherapyâ€ʻinduced alteration of CD8+ T cells and PDâ€ʻL1 expression in patients with uterine cervical squamous cell carcinoma. Oncology Letters, 2021, 21, 446.	0.8	16
36	Radiation dose and fraction in immunotherapy: one-size regimen does not fit all settings, so how does one choose?. , 2021, 9, e002038.		124

#	Article	IF	CITATIONS
37	Sequence of $\hat{I}\pm PD-1$ relative to local tumor irradiation determines the induction of abscopal antitumor immune responses. Science Immunology, 2021, 6, .	5.6	81
38	Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. , 2021, 9, e002555.		41
39	The AIM2 and NLRP3 inflammasomes trigger IL-1–mediated antitumor effects during radiation. Science Immunology, 2021, 6, .	5.6	33
40	Hypoxia acts as an environmental cue for the human tissue-resident memory T cell differentiation program. JCI Insight, 2021, 6, .	2.3	25
41	Changes in T Lymphocyte Subsets in Different Tumors Before and After Radiotherapy: A Meta-analysis. Frontiers in Immunology, 2021, 12, 648652.	2.2	21
42	Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine, 2021, 68, 103409.	2.7	53
43	Could Protons Promote Tumor Control by Avoiding Lymphopenia?. Journal of Thoracic Oncology, 2021, 16, e39-e41.	0.5	2
44	Phase I Study of Stereotactic Body Radiotherapy plus Nivolumab and Urelumab or Cabiralizumab in Advanced Solid Tumors. Clinical Cancer Research, 2021, 27, 5510-5518.	3.2	23
45	Radiotherapy and Immunotherapy Combinations in the Treatment of Patients with Metastatic Disease: Current Status and Future Focus. Clinical Cancer Research, 2021, 27, 5188-5194.	3.2	9
46	Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nature Reviews Immunology, 2022, 22, 124-138.	10.6	81
47	Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. , 2021, 9, e002256.		18
48	Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Science Translational Medicine, 2021, 13, .	5.8	92
49	Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Letters, 2021, 511, 56-67.	3.2	11
50	Pulsed Radiation Therapy to Improve Systemic Control of Metastatic Cancer. Frontiers in Oncology, 2021, 11, 737425.	1.3	6
51	Combining anti-PD-1 antibodies with Mn2+-drug coordinated multifunctional nanoparticles for enhanced cancer therapy. Biomaterials, 2021, 275, 120897.	5.7	40
52	Personalized Ultrafractionated Stereotactic Adaptive Radiotherapy (PULSAR) in Preclinical Models Enhances Single-Agent Immune Checkpoint Blockade. International Journal of Radiation Oncology Biology Physics, 2021, 110, 1306-1316.	0.4	41
53	Activated B Cells and Plasma Cells Are Resistant to Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2022, 112, 514-528.	0.4	11
54	Tumor Microenvironment in Breast Cancer—Updates on Therapeutic Implications and Pathologic Assessment. Cancers, 2021, 13, 4233.	1.7	72

#	Article	IF	CITATIONS
55	Treatment Strategies for Oligometastatic Breast Cancer. Current Treatment Options in Oncology, 2021, 22, 94.	1.3	12
56	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	2.3	7
57	Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21, .	0.9	1
58	Coadministration of a Clinically Relevant Dexamethasone Dosage With Ablative Radiation Therapy Reduces Peripheral Lymphocytes But Does Not Alter In Vivo Intratumoral Lymphocyte Phenotype or Inhibit Efficacy of Radiation Therapy in a Murine Colorectal Tumor Model. International Journal of Radiation Oncology Biology Physics, 2021, 111, 284-296.	0.4	0
59	Treatment of Cancer with Radio-Immunotherapy: What We Currently Know and What the Future May Hold. International Journal of Molecular Sciences, 2021, 22, 9573.	1.8	10
60	Interaction Between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Frontiers in Oncology, 2021, 11, 744679.	1.3	7
61	The Combination of Radiotherapy With Immunotherapy and Potential Predictive Biomarkers for Treatment of Non-Small Cell Lung Cancer Patients. Frontiers in Immunology, 2021, 12, 723609.	2.2	17
62	Image-guided cancer immunotherapy. , 2022, , 427-467.		Ο
63	Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8 ⁺ T cells drive gastrointestinal acute graft-versus-host disease. Science Translational Medicine, 2021, 13, .	5.8	39
64	The role of immunotherapy in combination with oligometastasis-directed therapy: a narrative review. Annals of Palliative Medicine, 2021, 10, 34-34.	0.5	3
65	Pre-treatment tumor-infiltrating T cells influence response to neoadjuvant chemoradiotherapy in esophageal adenocarcinoma. Oncolmmunology, 2021, 10, 1954807.	2.1	17
66	Radiotherapy and the immune system: More than just immune suppression. Stem Cells, 2021, 39, 1155-1165.	1.4	61
67	All-trans retinoic acid overcomes solid tumor radioresistance by inducing inflammatory macrophages. Science Immunology, 2021, 6, .	5.6	24
68	The Roles of Tissue-Resident Memory T Cells in Lung Diseases. Frontiers in Immunology, 2021, 12, 710375.	2.2	17
69	Radiotherapy and immunotherapy: open questions and future strategies. Trends in Cancer, 2022, 8, 9-20.	3.8	49
72	Bridging Radiotherapy to Immunotherapy: The IFN–JAK–STAT Axis. International Journal of Molecular Sciences, 2021, 22, 12295.	1.8	13
73	Pre-treatment immune status predicts disease control in NSCLCs treated with chemoradiation and durvalumab. Radiotherapy and Oncology, 2022, 167, 158-164.	0.3	10
74	CAR-T Plus Radiotherapy: A Promising Combination for Immunosuppressive Tumors. Frontiers in Immunology, 2021, 12, 813832.	2.2	15

#	Article	IF	CITATIONS
75	An investigation of kV mini-GRID spatially fractionated radiation therapy: dosimetry and preclinical trial. Physics in Medicine and Biology, 2022, 67, 045017.	1.6	5
76	Dosimetric Modeling of Lymphopenia in Patients With Metastatic Cancer Receiving Palliative Radiation and PD-1 Immune Checkpoint Inhibitors. Advances in Radiation Oncology, 2022, 7, 100880.	0.6	3
77	Granzymes: The Molecular Executors of Immune-Mediated Cytotoxicity. International Journal of Molecular Sciences, 2022, 23, 1833.	1.8	27
78	The Therapeutic Potential of FLASH-RT for Pancreatic Cancer. Cancers, 2022, 14, 1167.	1.7	8
79	The Radiosensitivity Index Gene Signature Identifies Distinct Tumor Immune Microenvironment Characteristics Associated With Susceptibility to Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2022, 113, 635-647.	0.4	11
80	Irradiation immunity interactions. Journal of Medical Imaging and Radiation Oncology, 2022, 66, 519-535.	0.9	2
81	Opportunities and challenges in combining immunotherapy and radiotherapy in head and neck cancers. Cancer Treatment Reviews, 2022, 105, 102361.	3.4	12
82	Combined radio-immunotherapy: An opportunity to increase the therapeutic ratio of oligometastasis-directed radiotherapy. Neoplasia, 2022, 27, 100782.	2.3	1
83	Higher Radiation Dose to the Immune Cells Correlates with Worse Tumor Control and Overall Survival in Patients with Stage III NSCLC: A Secondary Analysis of RTOG0617. Cancers, 2021, 13, 6193.	1.7	39
84	FLASH radiotherapy: Research process from basic experimentation to clinical application. Precision Radiation Oncology, 2021, 5, 259-266.	0.4	5
85	Targeted Marrow Irradiation Intensification of Reduced Intensity Fludarabine/Busulfan Conditioning for Allogeneic Hematopoietic Stem Cell Transplantation. Transplantation and Cellular Therapy, 2022, ,	0.6	2
86	Formulation of simvastatin within high density lipoprotein enables potent tumour radiosensitisation. Journal of Controlled Release, 2022, 346, 98-109.	4.8	8
87	A Biomathematical Model of Tumor Response to Radioimmunotherapy With αPDL1 and αCTLA4. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 808-821.	1.9	3
88	The mutual relationship between the host immune system and radiotherapy: stimulating the action of immune cells by irradiation. International Journal of Clinical Oncology, 2023, 28, 201-208.	1.0	1
89	Association of the tissue infiltrated and peripheral blood immune cell subsets with response to radiotherapy for rectal cancer. BMC Medical Genomics, 2022, 15, 107.	0.7	5
90	OX40 and 4-1BB delineate distinct immune profiles in sarcoma. Oncolmmunology, 2022, 11, 2066050.	2.1	6
92	Association of neutrophil-to-lymphocyte ratio, radiotherapy fractionation/technique, and risk of development of distant metastasis among patients with locally advanced rectal cancer. Radiation Oncology, 2022, 17, .	1.2	7
93	Oligometastatic Breast Cancer. Seminars in Radiation Oncology, 2022, 32, 282-290.	1.0	4

#	Article	IF	CITATIONS
94	The oligometastatic spectrum in the era of improved detection and modern systemic therapy. Nature Reviews Clinical Oncology, 2022, 19, 585-599.	12.5	39
95	The paradox of radiation and T cells in tumors. Neoplasia, 2022, 31, 100808.	2.3	9
97	Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	142
98	Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. Clinical and Translational Oncology, 2022, 24, 2255-2271.	1.2	6
99	Radiotherapy and Immunotherapy for Head and Neck Cancer. , 2022, , 91-113.		0
100	Ex vivo analysis of radiation effects on tumor infiltrating immune cells using tumor explants. Methods in Cell Biology, 2022, , .	0.5	0
101	FOXP3 expression diversifies the metabolic capacity and enhances the efficacy of CD8 T cells in adoptive immunotherapy of melanoma. Molecular Therapy, 2023, 31, 48-65.	3.7	3
102	Carbon ion irradiation plus CTLA4 blockade elicits therapeutic immune responses in a murine tumor model. Cancer Letters, 2022, 550, 215928.	3.2	8
103	Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Frontiers in Immunology, 0, 13, .	2.2	11
104	A Bayesian phase I/ <scp>II</scp> design to determine <scp>subgroupâ€specific</scp> optimal dose for immunotherapy sequentially combined with radiotherapy. Pharmaceutical Statistics, 2023, 22, 143-161.	0.7	2
105	A potential revolution in cancer treatment: A topical review of FLASH radiotherapy. Journal of Applied Clinical Medical Physics, 2022, 23, .	0.8	24
106	FLASH radiotherapy: A promising new method for radiotherapy (Review). Oncology Letters, 2022, 24, .	0.8	6
107	Beyond the Visible Spectrum: Considering the Oligometastatic Hypothesis in the Light of a New Era. International Journal of Radiation Oncology Biology Physics, 2022, 114, 581-586.	0.4	2
108	Nanomedicine embraces cancer radio-immunotherapy: mechanism, design, recent advances, and clinical translation. Chemical Society Reviews, 2023, 52, 47-96.	18.7	19
109	Synergizing radiotherapy and immunotherapy: Current challenges and strategies for optimization. Neoplasia, 2023, 36, 100867.	2.3	9
111	Anti-4-1BB immunotherapy enhances systemic immune effects of radiotherapy to induce B and T cell-dependent anti-tumor immune activation and improve tumor control at unirradiated sites. Cancer Immunology, Immunotherapy, 2023, 72, 1445-1460.	2.0	5
112	Targeted Radiation and Immune Therapies—Advances and Opportunities for the Treatment of Prostate Cancer. Pharmaceutics, 2023, 15, 252.	2.0	4
113	Functional biomaterials for biomimetic 3D in vitro tumor microenvironment modeling. In Vitro Models, 2023, 2, 1-23.	1.0	2

IF

ARTICLE

CITATIONS

114	Tumor immunology. , 2023, , 245-452.		0
115	Sepsis-induced changes in differentiation, maintenance, and function of memory CD8 T cell subsets. Frontiers in Immunology, 0, 14, .	2.2	7
116	FOSL2 promotes intertumoral infiltration of T cells and increases pathological complete response rates in locally advanced rectal cancer patients. Cancer Letters, 2023, 562, 216145.	3.2	1
117	Radiation-induced immune response in novel radiotherapy approaches FLASH and spatially fractionated radiotherapies. International Review of Cell and Molecular Biology, 2023, , 37-68.	1.6	3
118	Radiotherapy, PARP Inhibition, and Immune-Checkpoint Blockade: A Triad to Overcome the Double-Edged Effects of Each Single Player. Cancers, 2023, 15, 1093.	1.7	4
119	Novel Postoperative Serum Biomarkers in Atypical Meningiomas: A Multicenter Study. Neurosurgery, 2023, 93, 599-610.	0.6	2
120	Radiological lymphâ€node size improves the prognostic value of systemic inflammation index in rectal cancer with pathologically negative nodes. Cancer Medicine, 0, , .	1.3	1
121	Radio-induced lymphopenia in the era of anti-cancer immunotherapy. International Review of Cell and Molecular Biology, 2023, , 1-30.	1.6	3
122	PKC-ζ mediated reduction of the extracellular vesicles-associated TGF-β1 overcomes radiotherapy resistance in breast cancer. Breast Cancer Research, 2023, 25, .	2.2	2
123	Apoptosis: a <i>Janus bifrons</i> in T-cell immunotherapy. , 2023, 11, e005967.		3
124	Optimized CAR-T therapy based on spatiotemporal changes and chemotactic mechanisms of MDSCs induced by hypofractionated radiotherapy. Molecular Therapy, 2023, 31, 2105-2119.	3.7	2
125	Tumor resident memory CD8 T cells and concomitant tumor immunity develop independently of CD4 help. Scientific Reports, 2023, 13, .	1.6	4
126	Tumor and immune remodeling following radiotherapy in human renal cell carcinoma. , 2023, 11, e006392.		1
127	Opportunities and challenges of low-dose radiation to enable immunotherapy efficacy. International Review of Cell and Molecular Biology, 2023, , .	1.6	0
129	Emerging evidence for adapting radiotherapy to immunotherapy. Nature Reviews Clinical Oncology, 2023, 20, 543-557.	12.5	36
133	Radiobiologic Principles and the Role of Radiotherapy in Hematopoietic Cell Transplant and Chimeric Antigen Receptor T-Cell Therapy. , 2024, , 167-179.		0
138	Immunogenomic profiles associated with response to life-prolonging agents in prostate cancer. British Journal of Cancer, 0, , .	2.9	0
151	Strahlentherapie. , 2024, , 579-594.		0