Effect-based methods are key. The European Collaborat integrating effect-based methods for diagnosis and mor

Environmental Sciences Europe

31,

DOI: 10.1186/s12302-019-0192-2

Citation Report

#	ARTICLE	IF	CITATIONS
1	Combination of yeast-based inÂvitro screens with high-performance thin-layer chromatography as a novel tool for the detection of hormonal and dioxin-like compounds. Analytica Chimica Acta, 2019, 1081, 218-230.	2.6	22
2	Future water quality monitoring: improving the balance between exposure and toxicity assessments of real-world pollutant mixtures. Environmental Sciences Europe, 2019, 31, .	2.6	142
3	Detection and Quantification of Photosystem II Inhibitors Using the Freshwater Alga <i>Desmodesmus subspicatus</i> in Combination with High-Performance Thin-Layer Chromatography. Environmental Science & amp; Technology, 2019, 53, 13458-13467.	4.6	12
4	High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources. Environmental Sciences Europe, 2019, 31, .	2.6	74
5	Let us empower the WFD to prevent risks of chemical pollution in European rivers and lakes. Environmental Sciences Europe, 2019, 31, .	2.6	13
6	Bioavailability of estrogenic compounds from sediment in the context of flood events evaluated by passive sampling. Water Research, 2019, 161, 540-548.	5.3	29
7	Occurrence of selected pharmaceuticals in wastewater treatment plants of Tuscany: An effect-based approach to evaluate the potential environmental impact. International Journal of Hygiene and Environmental Health, 2019, 222, 717-725.	2.1	62
8	Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. Science of the Total Environment, 2019, 667, 809-820.	3.9	19
9	Assessing the ecological impact of chemical pollution on aquatic ecosystems requires the systematic exploration and evaluation of four lines of evidence. Environmental Sciences Europe, 2019, 31, .	2.6	19
10	Hypo- or hyperactivity of zebrafish embryos provoked by neuroactive substances: a review on how experimental parameters impact the predictability of behavior changes. Environmental Sciences Europe, 2019, 31, .	2.6	50
11	Assessment of pesticides in surface water samples from Swedish agricultural areas by integrated bioanalysis and chemical analysis. Environmental Sciences Europe, 2019, 31, .	2.6	22
12	Improved component-based methods for mixture risk assessment are key to characterize complex chemical pollution in surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	41
13	Exploring the â€~solution space' is key: SOLUTIONS recommends an early-stage assessment of options to protect and restore water quality against chemical pollution. Environmental Sciences Europe, 2019, 31, .	2.6	19
14	Evaluation of reverse osmosis drinking water treatment of riverbank filtrate using bioanalytical tools and non-target screening. Environmental Science: Water Research and Technology, 2020, 6, 103-116.	1.2	21
15	The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects. Food and Chemical Toxicology, 2020, 136, 111069.	1.8	48
16	Receptor-mediated estrogenicity of native and chemically dispersed crude oil determined using adapted microscale reporter gene assays. Environment International, 2020, 134, 105320.	4.8	7
17	Correcting deficiencies to risk assessment of surfactants by Freeling et al. (2019). Science of the Total Environment, 2020, 721, 135847.	3.9	1
18	Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Science of the Total Environment, 2020, 705, 135779.	3.9	51

#	Article	IF	CITATIONS
19	De Facto Water Reuse: Bioassay suite approach delivers depth and breadth in endocrine active compound detection. Science of the Total Environment, 2020, 699, 134297.	3.9	24
20	Assessing endocrine disruption in freshwater fish species from a "hotspot―for estrogenic activity in sediment. Environmental Pollution, 2020, 257, 113636.	3.7	21
21	The hydrothermal solution for self-sustaining drinking water purification at point of use. Water Research, 2020, 170, 115338.	5.3	8
22	Combining Different In Vitro Bioassays to Evaluate Genotoxicity of Water-Accommodated Fractions from Petroleum Products. Toxics, 2020, 8, 45.	1.6	10
23	Toxicity tests in wastewater and drinking water treatment processes: A complementary assessment tool to be on your radar. Journal of Environmental Chemical Engineering, 2020, 8, 104262.	3.3	45
24	Risk Characterization of Environmental Samples Using <i>In Vitro</i> Bioactivity and Polycyclic Aromatic Hydrocarbon Concentrations Data. Toxicological Sciences, 2021, 179, 108-120.	1.4	18
25	Wastewater treatment efficacy evaluated with inÂvitro bioassays. Water Research X, 2020, 9, 100072.	2.8	31
26	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	2.6	46
27	A Tiered Approach for Screening and Assessment of Environmental Mixtures by Omics and <i>In Vitro</i> Assays. Environmental Science & Technology, 2020, 54, 7430-7439.	4.6	24
28	Validation of the micro-EROD assay with H4IIE cells for assessing sediment contamination with dioxin-like chemicals. Environmental Pollution, 2020, 265, 114984.	3.7	3
29	Application of the Sea Urchin Embryo Test in Toxicity Evaluation and Effect-Directed Analysis of Wastewater Treatment Plant Effluents. Environmental Science & Technology, 2020, 54, 8890-8899.	4.6	19
30	Selection of assay, organism, and approach in biomonitoring significantly affects the evaluation of genotoxic potential in aquatic environments. Environmental Science and Pollution Research, 2020, 27, 33903-33915.	2.7	7
31	Integrated approaches for detecting the occurrence and effects of endocrine disrupting substances in surface waters. Current Opinion in Environmental Science and Health, 2020, 18, 20-25.	2.1	4
32	Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. Water (Switzerland), 2020, 12, 1264.	1.2	18
33	Multiple Bioassays and Targeted and Nontargeted Analyses to Characterize Potential Toxicological Effects Associated with Sediments of Masan Bay: Focusing on AhR-Mediated Potency. Environmental Science & Technology, 2020, 54, 4443-4454.	4.6	31
34	Advancements in effect-based surface water quality assessment. Water Research, 2020, 183, 116017.	5.3	30
35	Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environment International, 2020, 136, 105454.	4.8	203
36	Optimization of the Ames RAMOS test allows for a reproducible high-throughput mutagenicity test. Science of the Total Environment, 2020, 717, 137168.	3.9	14

#	Article	IF	CITATIONS
37	Analysis of mobile chemicals in the aquatic environment—current capabilities, limitations and future perspectives. Analytical and Bioanalytical Chemistry, 2020, 412, 4763-4784.	1.9	35
38	Tracking complex mixtures of chemicals in our changing environment. Science, 2020, 367, 388-392.	6.0	390
39	Regulating water reuse for agricultural irrigation: risks related to organic micro-contaminants. Environmental Sciences Europe, 2020, 32, .	2.6	110
40	Alternative type of Ames test allows for dynamic mutagenicity detection by online monitoring of respiration activity. Science of the Total Environment, 2020, 726, 137862.	3.9	10
41	Fish biomarkers from a different perspective: evidence of adaptive strategy of Abramis brama (L.) to chemical stress. Environmental Sciences Europe, 2020, 32, .	2.6	27
42	Challenges to water quality assessment in Europe – Is there scope for improvement of the current Water Framework Directive bioassessment scheme in rivers?. Ecological Indicators, 2021, 121, 107030.	2.6	31
43	Is a liver comparable to a liver? A comparison of different rat-derived S9-fractions with a biotechnological animal-free alternative in the Ames fluctuation assay. Science of the Total Environment, 2021, 759, 143522.	3.9	6
44	Towards â€~one substance – one assessment': An analysis of EU chemical registration and aquatic risk assessment frameworks. Journal of Environmental Management, 2021, 280, 111692.	3.8	30
45	Study of the photoinduced transformations of maprotiline in river water using liquid chromatography high-resolution mass spectrometry. Science of the Total Environment, 2021, 755, 143556.	3.9	7
46	A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic. Analytical Methods, 2021, 13, 575-594.	1.3	82
47	Assessment of source and treated water quality in seven drinking water treatment plants by in vitro bioassays – Oxidative stress and antiandrogenic effects after artificial infiltration. Science of the Total Environment, 2021, 758, 144001.	3.9	21
48	Glass-bottled drinking water: a time capsule to study the historic presence of hazardous chemicals using effect-based methods. Environmental Sciences Europe, 2021, 33, .	2.6	7
49	Coupling high-performance thin-layer chromatography with a battery of cell-based assays reveals bioactive components in wastewater and landfill leachates. Ecotoxicology and Environmental Safety, 2021, 214, 112092.	2.9	12
50	Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 2021, 769, 144324.	3.9	24
51	Combining analytical and inÂvitro techniques for comprehensive assessments of chemical exposure and effect in green sea turtles (Chelonia mydas). Chemosphere, 2021, 274, 129752.	4.2	14
52	Natural toxins: environmental contaminants calling for attention. Environmental Sciences Europe, 2021, 33, .	2.6	4
53	Chemical pollution as a driver of biodiversity loss and potential deterioration of ecosystem services in Eastern Africa: A critical review. South African Journal of Science, 2021, 117, .	0.3	7
54	Estrogenicity of chemical mixtures revealed by a panel of bioassays. Science of the Total Environment, 2021, 785, 147284.	3.9	19

#	Article	IF	CITATIONS
55	(Eco)toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: Facts, challenges, and future. Science of the Total Environment, 2021, 795, 148776.	3.9	59
56	An integrated approach for chemical water quality assessment of an urban river stretch through Effect-Based Methods and emerging pollutants analysis with a focus on genotoxicity. Journal of Environmental Management, 2021, 300, 113549.	3.8	12
57	Assessment of oil refinery wastewater and effluent integrating bioassays, mechanistic modelling and bioavailability evaluation. Chemosphere, 2022, 287, 132146.	4.2	12
58	Estimating the release of chemical substances from consumer products, textiles and pharmaceuticals to wastewater. Chemosphere, 2022, 287, 131854.	4.2	8
59	High-performance thin-layer chromatography in combination with a yeast-based multi-effect bioassay to determine endocrine effects in environmental samples. Analytical and Bioanalytical Chemistry, 2021, 413, 1321-1335.	1.9	11
60	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	2.6	7
61	Increase coherence, cooperation and cross-compliance of regulations on chemicals and water quality. Environmental Sciences Europe, 2019, 31, .	2.6	8
62	Prioritisation of water pollutants: the EU Project SOLUTIONS proposes a methodological framework for the integration of mixture risk assessments into prioritisation procedures under the European Water Framework Directive. Environmental Sciences Europe, 2019, 31, .	2.6	22
63	A holistic approach is key to protect water quality and monitor, assess and manage chemical pollution of European surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	12
64	The RiBaTox web tool: selecting methods to assess and manage the diverse problem of chemical pollution in surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	5
65	Mixtures of chemicals are important drivers of impacts on ecological status in European surface waters. Environmental Sciences Europe, 2019, 31, .	2.6	24
66	Solutions for present and future emerging pollutants in land and water resources management. Policy briefs summarizing scientific project results for decision makers. Environmental Sciences Europe, 2019, 31, .	2.6	8
67	Mixture toxicity in the Erft River: assessment of ecological risks and toxicity drivers. Environmental Sciences Europe, 2020, 32, .	2.6	26
68	Extensive rain events have a more substantial impact than advanced effluent treatment on the endocrine-disrupting activity in an effluent-dominated small river. Science of the Total Environment, 2022, 807, 150887.	3.9	6
69	Geotextilien in Seedeichen – Ökotoxikologische Aspekte. Wasser: OÌ^kologie Und Bewirtschaftung, 2020, , 101-115.	0.2	2
70	Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures. Analytical Methods, 2021, 13, 5120-5143.	1.3	17
71	Inconsistencies in How Environmental Risk Is Evaluated in Sweden for Dumping Dredged Sediment at Sea. Frontiers in Marine Science, 2021, 8, .	1.2	3
72	Removal of oxidative stress and genotoxic activities during drinking water production by ozonation and granular activated carbon filtration. Environmental Sciences Europe, 2021, 33, .	2.6	8

#	Article	IF	CITATIONS
73	Micronuclei in Fish Erythrocytes as Genotoxic Biomarkers of Water Pollution: An Overview. Reviews of Environmental Contamination and Toxicology, 2021, 258, 195-240.	0.7	2
74	Quantitative non-targeted analysis: Bridging the gap between contaminant discovery and risk characterization. Environment International, 2022, 158, 107011.	4.8	37
75	A plea for the integration of Green Toxicology in sustainable bioeconomy strategies – Biosurfactants and microgel-based pesticide release systems as examples. Journal of Hazardous Materials, 2022, 426, 127800.	6.5	5
76	Assessing the genotoxic potential of freshwater sediments after extensive rain events – Lessons learned from a case study in an effluent-dominated river in Germany. Water Research, 2022, 209, 117921.	5.3	7
77	A sensitive approach for screening acetylcholinesterase inhibition of water samples using ultra-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1190, 123101.	1.2	5
78	Fish health in the Nidda as an indicator for ecosystem integrity: a case study for Central European small streams in densely populated areas. Environmental Sciences Europe, 2022, 34, .	2.6	2
79	Biological effect and chemical monitoring of Watch List substances in European surface waters: Steroidal estrogens and diclofenac – Effect-based methods for monitoring frameworks. Environment International, 2022, 159, 107033.	4.8	28
80	Impacts of Urban Wastewater Treatment on Aquatic Micropollutant Emissions in Europe. SSRN Electronic Journal, 0, , .	0.4	2
81	Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biological Reviews, 2022, 97, 1346-1364.	4.7	46
82	One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste. Environmental Sciences Europe, 2022, 34, 21.	2.6	39
83	A risk based assessment approach for chemical mixtures from wastewater treatment plant effluents. Environment International, 2022, 164, 107234.	4.8	38
84	Evaluation of effectsâ€based methods as monitoring tools for assessing ecological impacts of metals in aquatic ecosystems. Integrated Environmental Assessment and Management, 2023, 19, 24-31.	1.6	1
85	Development and Automation of a Bacterial Biosensor to the Targeting of the Pollutants Toxic Effects by Portable Raman Spectrometer. Sensors, 2022, 22, 4352.	2.1	4
86	Artificial infiltration in drinking water production: Addressing chemical hazards using effect-based methods. Water Research, 2022, 221, 118776.	5.3	1
87	Cyclodextrins as Bricks for Tuning Polymer Properties. , 0, , .		1
88	European scale assessment of the potential of ozonation and activated carbon treatment to reduce micropollutant emissions with wastewater. Science of the Total Environment, 2022, 848, 157124.	3.9	14
89	Contribution of sediment contamination to multi-stress in lowland waters. Science of the Total Environment, 2022, 844, 157045.	3.9	4
90	Evaluation of Three ISO Estrogen Receptor Transactivation Assays Applied to 52 Domestic Effluent Samples. Environmental Toxicology and Chemistry, 2022, 41, 2512-2526.	2.2	2

Molecular biomarkers for oxidative stress and neuronal damage in red-bellied pacu (Piaractus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662

94	Endocrine disrupting chemicals entering European rivers: Occurrence and adverse mixture effects in treated wastewater. Environment International, 2022, 170, 107608.	4.8	9
95	The Effects of Single and Combined Stressors on Daphnids—Enzyme Markers of Physiology and Metabolomics Validate the Impact of Pollution. Toxics, 2022, 10, 604.	1.6	7
96	The role of effect-based methods to address water quality monitoring in South Africa: a developing country's struggle. Environmental Science and Pollution Research, 2022, 29, 84049-84055.	2.7	3
97	Identifying the impact of toxicity on stream macroinvertebrate communities in a multi-stressor context based on national ecological and ecotoxicological monitoring databases. Science of the Total Environment, 2022, , 160179.	3.9	1
98	Proposal for a tiered approach to evaluate the risk of transformation products formed from pesticide residues during drinking water treatment. Environmental Sciences Europe, 2022, 34, .	2.6	1
99	Effectâ€Based Trigger Values Are Essential for the Uptake of Effectâ€Based Methods in Water Safety Planning. Environmental Toxicology and Chemistry, 2023, 42, 714-726.	2.2	12
100	Review: mountain lakes as freshwater resources at risk from chemical pollution. Environmental Sciences Europe, 2023, 35, .	11.0	7
101	Wide-scope target screening characterization of legacy and emerging contaminants in the Danube River Basin by liquid and gas chromatography coupled with high-resolution mass spectrometry. Water Research, 2023, 230, 119539.	5.3	7
102	Risk assessment of chemicals and their mixtures are hindered by scarcity and inconsistencies between different environmental exposure limits. Environmental Research, 2023, 225, 115372.	3.7	7
103	Investigating the ecotoxicity of construction product eluates as multicomponent mixtures. Environmental Sciences Europe, 2023, 35, .	11.0	2
104	Using freshwater snail Biomphalaria glabrata (Say, 1818) as a biological model for ecotoxicology studies: a systematic review. Environmental Science and Pollution Research, 2023, 30, 28506-28524.	2.7	2
105	Beyond the Black Box of Life Cycle Assessment in Wastewater Treatment Plants: Which Help from Bioassays?. Water (Switzerland), 2023, 15, 960.	1.2	1
106	Detrimental effects of individual versus combined exposure to tetrabromobisphenol A and polystyrene nanoplastics in fish cell lines. Environmental Toxicology and Pharmacology, 2023, 98, 104072.	2.0	6
107	Battery of In Vitro Bioassays: A Case Study for the Cost-Effective and Effect-Based Evaluation of Wastewater Effluent Quality. Water (Switzerland), 2023, 15, 619.	1.2	2
108	Innovative electrochemical biosensor with nitrifying biofilm and nitrite oxidation signal for comprehensive toxicity detection in Tuojiang River. Water Research, 2023, 233, 119757.	5.3	2

#	Article	IF	CITATIONS
109	Building the Environmental Chemical-Protein Interaction Network (eCPIN): An Exposome-Wide Strategy for Bioactive Chemical Contaminant Identification. Environmental Science & Technology, 2023, 57, 3486-3495.	4.6	6
110	Fish-Kills in the Urban Stretch of the Tiber River After a Flash-Storm: Investigative Monitoring with Effect-Based Methods, Targeted Chemical Analyses, and Fish Assemblage Examinations. Water, Air, and Soil Pollution, 2023, 234, .	1.1	1
111	Commentary on the EUÂCommission's proposal for amending the Water Framework Directive, the Groundwater Directive, and the Directive on Environmental Quality Standards. Environmental Sciences Europe, 2023, 35, .	11.0	5
112	Application of Effect-Based Methods to Water Quality Monitoring: Answering Frequently Asked Questions by Water Quality Managers, Regulators, and Policy Makers. Environmental Science & Technology, 2023, 57, 6023-6032.	4.6	5
113	Intergrading Water Quality Parameters, Benthic Fauna and Acute Toxicity Test for Risk Assessment on an Urban-Rural River. Sustainability, 2023, 15, 6423.	1.6	0
114	Molecular Responses of Daphnids to Chronic Exposures to Pharmaceuticals. International Journal of Molecular Sciences, 2023, 24, 4100.	1.8	3
118	Better integration of chemical pollution research will further our understanding of biodiversity loss. Nature Ecology and Evolution, 2023, 7, 1552-1555.	3.4	7
132	Ecotoxicological response of algae to contaminants in aquatic environments: a review. Environmental Chemistry Letters, 2024, 22, 919-939.	8.3	1