Phototactic Flocking of Photochemical Micromotors

IScience 19, 415-424 DOI: 10.1016/j.isci.2019.07.050

Citation Report

#	Article	IF	CITATIONS
1	Bubble-Assisted Three-Dimensional Ensemble of Nanomotors for Improved Catalytic Performance. IScience, 2019, 19, 760-771.	1.9	33
2	Calligraphy/Painting Based on a Bioinspired Light-Driven Micromotor with Concentration-Dependent Motion Direction Reversal and Dynamic Swarming Behavior. ACS Applied Materials & Interfaces, 2019, 11, 40533-40542.	4.0	39
3	Self-Propelled Janus Microdimer Swimmers under a Rotating Magnetic Field. Nanomaterials, 2019, 9, 1672.	1.9	29
4	Active Micromotor Systems Built from Passive Particles with Biomimetic Predator–Prey Interactions. ACS Nano, 2020, 14, 406-414.	7.3	84
5	From Passive Inorganic Oxides to Active Matters of Micro/Nanomotors. Advanced Functional Materials, 2020, 30, 2003195.	7.8	33
6	Light-Induced Dynamic Control of Particle Motion in Fluid-Filled Microchannels. Langmuir, 2020, 36, 10022-10032.	1.6	4
7	Numerical analysis of the distribution of the electric field intensity of TiO2 microspheres under multidirectional UV radiation. , 2020, , .		0
8	Light-Driven Hovering of a Magnetic Microswarm in Fluid. ACS Nano, 2020, 14, 6990-6998.	7.3	69
9	Light-powered active colloids from monodisperse and highly tunable microspheres with a thin TiO ₂ shell. Soft Matter, 2020, 16, 6082-6090.	1.2	14
10	A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. Soft Matter, 2020, 16, 3846-3868.	1.2	53
11	Medical micro/nanorobots in complex media. Chemical Society Reviews, 2020, 49, 8088-8112.	18.7	180
12	Hierarchical Microswarms with Leader–Followerâ€Like Structures: Electrohydrodynamic Selfâ€Organization and Multimode Collective Photoresponses. Advanced Functional Materials, 2020, 30, 1908602.	7.8	68
13	Cohesive self-organization of mobile microrobotic swarms. Soft Matter, 2020, 16, 1996-2004.	1.2	48
14	Recent Advances in Nano―and Micromotors. Advanced Functional Materials, 2020, 30, 1908283.	7.8	149
15	Coordinating an Ensemble of Chemical Micromotors <i>via</i> Spontaneous Synchronization. ACS Nano, 2020, 14, 5360-5370.	7.3	37
16	Current status of micro/nanomotors in drug delivery. Journal of Drug Targeting, 2021, 29, 29-45.	2.1	25
17	Trends in Microâ€∲Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047.	11.1	256
18	Reversible Design of Dynamic Assemblies at Small Scales. Advanced Intelligent Systems, 2021, 3, 2000193.	3.3	10

		LFORT	
#	Article	IF	CITATIONS
19	Cooperative transport by flocking phototactic micromotors. Nanoscale Advances, 2021, 3, 6157-6163.	2.2	22
20	Visible Light-Driven Micromotor with Incident-Angle-Controlled Motion and Dynamic Collective Behavior. Langmuir, 2021, 37, 180-187.	1.6	13
21	The Encoding of Lightâ€Ðriven Micro/Nanorobots: from Single to Swarming Systems. Advanced Intelligent Systems, 2021, 3, 2000170.	3.3	31
22	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
23	Magnetic Microswarm Composed of Porous Nanocatalysts for Targeted Elimination of Biofilm Occlusion. ACS Nano, 2021, 15, 5056-5067.	7.3	94
24	Swarming Microdroplets to a Dexterous Micromanipulator. Advanced Functional Materials, 2021, 31, 2011193.	7.8	46
25	Onâ€Board Mechanical Control Systems for Untethered Microrobots. Advanced Intelligent Systems, 0, , 2000233.	3.3	10
26	Design and Control of the Micromotor Swarm Toward Smart Applications. Advanced Intelligent Systems, 2021, 3, 2100002.	3.3	22
27	Plasmon Induced Photocatalysts for Light-Driven Nanomotors. Micromachines, 2021, 12, 577.	1.4	4
28	Synthesis of Snowmanâ€shaped Photocatalytic Microrotors and Mechanical Micropumps. ChemNanoMat, 2021, 7, 902-905.	1.5	5
29	Titania-Based Micro/Nanomotors: Design Principles, Biomimetic Collective Behavior, and Applications. Trends in Chemistry, 2021, 3, 387-401.	4.4	22
30	Magnetically modulated photochemical reaction pathways in anthraquinone molecules and aggregates. IScience, 2021, 24, 102458.	1.9	2
31	The rise of intelligent matter. Nature, 2021, 594, 345-355.	13.7	228
32	Dipoleâ€Moment Induced Phototaxis and Fuelâ€Free Propulsion of ZnO/Pt Janus Micromotors. Small, 2021, 17, e2101388.	5.2	23
33	Designing chemical micromotors that communicate-A survey of experiments. Jcis Open, 2021, 2, 100006.	1.5	15
34	3Dâ€Printed Lightâ€Driven Microswimmer with Builtâ€In Micromotors. Advanced Materials Technologies, 2022, 7, 2100687.	3.0	9
35	External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano, 2021, 15, 149-174.	7.3	138
36	Isotropic Hedgehog-Shaped-TiO ₂ /Functional-Multiwall-Carbon-Nanotube Micromotors with Phototactic Motility in Fuel-Free Environments. ACS Applied Materials & Interfaces, 2021, 13, 5406-5417.	4.0	23

CITATION REPORT

#	Article	IF	CITATIONS
37	Light-Triggered Catalytic Performance Enhancement Using Magnetic Nanomotor Ensembles. Research, 2020, 2020, 6380794.	2.8	24
38	Enhanced Light-Harvesting Efficiency and Adaptation: A Review on Visible-Light-Driven Micro/Nanomotors. Research, 2020, 2020, 6821595.	2.8	19
39	A Survey on Swarm Microrobotics. IEEE Transactions on Robotics, 2022, 38, 1531-1551.	7.3	45
40	Bioinspired micro/nanomotor with visible light energy–dependent forward, reverse, reciprocating, and spinning schooling motion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	31
41	Ionic Effects in Ionic Diffusiophoresis in Chemically Driven Active Colloids. Physical Review Letters, 2021, 127, 168001.	2.9	26
42	Magnetically propelled soft microrobot navigating through constricted microchannels. Applied Materials Today, 2021, 25, 101237.	2.3	18
43	External Fieldâ€Ðriven Untethered Microrobots for Targeted Cargo Delivery. Advanced Materials Technologies, 2022, 7, .	3.0	8
44	Nature-inspired micro/nanomotors. Nanoscale, 2022, 14, 219-238.	2.8	11
45	Long-range hydrodynamic communication among synthetic self-propelled micromotors. Cell Reports Physical Science, 2022, 3, 100739.	2.8	8
46	Magnetic Biohybrid Microrobot Multimers Based on <i>Chlorella</i> Cells for Enhanced Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 6320-6330.	4.0	69
47	Visible light-regulated BiVO4-based micromotor with biomimetic â€~predator-bait' behavior. Journal of Materials Science, 2022, 57, 4092-4103.	1.7	8
48	Photochemical micromotor of eccentric core in isotropic hollow shell exhibiting multimodal motion behavior. Applied Materials Today, 2022, 26, 101371.	2.3	11
49	Inorganic–Organic Hybrid Copolymeric Colloids as Multicolor Emission, Fuelâ€Free, UV―and Visibleâ€Lightâ€Actuated Micropumps. Small, 2022, 18, e2107621.	5.2	5
50	Microswimmers from Scalable Galvanic Displacement. Particle and Particle Systems Characterization, 2022, 39, .	1.2	5
51	Collective Behaviors of Magnetic Active Matter: Recent Progress toward Reconfigurable, Adaptive, and Multifunctional Swarming Micro/Nanorobots. Accounts of Chemical Research, 2022, 55, 98-109.	7.6	53
52	Phototactic micromotor assemblies in dynamic line formations for wide-range micromanipulations. Journal of Materials Chemistry C, 2022, 10, 5079-5087.	2.7	12
53	AC electrohydrodynamic propulsion and rotation of active particles of engineered shape and asymmetry. Current Opinion in Colloid and Interface Science, 2022, 59, 101586.	3.4	14
54	Control and Autonomy of Microrobots: Recent Progress and Perspective. Advanced Intelligent Systems, 2022, 4, .	3.3	53

#	Article	IF	CITATIONS
55	Liquid metal droplets enabled soft robots. Applied Materials Today, 2022, 27, 101423.	2.3	31
56	Microrobot collectives with reconfigurable morphologies, behaviors, and functions. Nature Communications, 2022, 13, 2239.	5.8	59
57	Magnetic Microswarm and Fluoroscopyâ€Guided Platform for Biofilm Eradication in Biliary Stents. Advanced Materials, 2022, 34, e2201888.	11.1	60
58	Unraveling the physiochemical nature of colloidal motion waves among silver colloids. Science Advances, 2022, 8, .	4.7	15
59	A Robot Platform for Highly Efficient Pollutant Purification. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	13
60	Light-Programmable Assemblies of Isotropic Micromotors. Research, 2022, 2022, .	2.8	20
61	Magnetic microswarm for MRI contrast enhancer. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
62	Light-driven Au–ZnO nanorod motors for enhanced photocatalytic degradation of tetracycline. Nanoscale, 2022, 14, 12804-12813.	2.8	12
63	Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. Advanced Materials, 2023, 35, .	11.1	23
64	Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. Journal of Materials Chemistry B, 2022, 10, 8235-8243.	2.9	8
65	"Motile-targeting―drug delivery platforms based on micro/nanorobots for tumor therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	10
66	Smallâ€Scale Robotics with Tailored Wettability. Advanced Materials, 2023, 35, .	11.1	14
67	Medical micro- and nanomotors in the body. Acta Pharmaceutica Sinica B, 2023, 13, 517-541.	5.7	28
68	Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS Nano, 2023, 17, 251-262.	7.3	22
69	Probing Fast Transformation of Magnetic Colloidal Microswarms in Complex Fluids. ACS Nano, 2022, 16, 19025-19037.	7.3	12
70	Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Science Advances, 2022, 8, .	4.7	24
71	Controlled propulsion of micro/nanomotors: operational mechanisms, motion manipulation and potential biomedical applications. Chemical Society Reviews, 2022, 51, 10083-10119.	18.7	42
72	Transition metal dichalcogenide micromotors with programmable photophoretic swarming motion. Journal of Materials Chemistry A, 2023, 11, 1239-1245.	5.2	8

CITATION REPORT

#	Article	IF	CITATIONS
73	Achieving Control in Microâ€∤Nanomotor Mobility. Angewandte Chemie - International Edition, 2023, 62,	7.2	18
74	Achieving Control in Microâ€/Nanomotor Mobility. Angewandte Chemie, 2023, 135, .	1.6	4
75	Solitary and Collective Motion Behaviors of TiO2 Microrobots under the Coupling of Multiple Light Fields. Micromachines, 2023, 14, 89.	1.4	2
76	Multiple cilia-like swarms enable efficient microrobot deployment and execution. Cell Reports Physical Science, 2023, 4, 101329.	2.8	4
77	Recent trends in non-reactive light driven Micro/-nano propellers and rotors. Applied Materials Today, 2023, 31, 101748.	2.3	2
78	Self-propelled predator-prey of swarming Janus micromotors. IScience, 2023, 26, 106112.	1.9	2
79	Diverse behaviors in non-uniform chiral and non-chiral swarmalators. Nature Communications, 2023, 14, .	5.8	15
80	Engineering Native Cells by TiO ₂ Nanoparticles and Polypyrrole for Light-Responsive Manipulation of Collective Behaviors of Unicellular Organisms. ACS Applied Nano Materials, 2023, 6, 4626-4635.	2.4	3
81	An Overview of Recent Progress in Micro/Nanorobots for Biomedical Applications. Advanced Materials Technologies, 2023, 8, .	3.0	3
87	Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano, 2023, 17, 12971-12999.	7.3	13
88	Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano, 2023, 17, 13081-13109.	7.3	11
100	Introduction to Micro/Nanorobot Swarms. , 2023, , 1-30.		0

CITATION REPORT