Bioinspired, Injectable, Quaternized Hydroxyethyl Cell Coordinated by Mesocellular Silica Foam for Rapid, Nor Wound Healing

ACS Applied Materials & amp; Interfaces

11, 34595-34608

DOI: 10.1021/acsami.9b08799

Citation Report

#	Article	IF	CITATIONS
1	Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules, 2020, 21, 2983-3006.	2.6	207
2	Facile Construction of Chitin/Graphene Nanocomposite Sponges for Efficient Hemostasis. ACS Sustainable Chemistry and Engineering, 2020, 8, 18377-18385.	3.2	21
3	A natural polymer-based porous sponge with capillary-mimicking microchannels for rapid hemostasis. Acta Biomaterialia, 2020, 114, 193-205.	4.1	75
4	Electrokinetic Sonic Amplitude of Polyelectrolyte Solutions and Networks. Macromolecules, 2020, 53, 7460-7468.	2.2	5
5	A multifunctional shape-adaptive and biodegradable hydrogel with hemorrhage control and broad-spectrum antimicrobial activity for wound healing. Biomaterials Science, 2020, 8, 6930-6945.	2.6	70
6	Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences, 2020, 21, 9656.	1.8	157
7	A Sodium-Ion Battery Separator with Reversible Voltage Response Based on Water-Soluble Cellulose Derivatives. ACS Applied Materials & Interfaces, 2020, 12, 29264-29274.	4.0	16
8	Anti-Infective and Pro-Coagulant Chitosan-Based Hydrogel Tissue Adhesive for Sutureless Wound Closure. Biomacromolecules, 2020, 21, 1243-1253.	2.6	79
9	Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomaterials Science, 2020, 8, 2084-2101.	2.6	245
10	Cationic superabsorbent hydrogel composed of mesoporous silica as a potential haemostatic material. Materials Science and Engineering C, 2020, 111, 110841.	3.8	18
11	A convenient approach by using polyâ€(<scp>HEMAâ€coâ€NIPAM</scp>)/Cu ²⁺ solution sol–gel transition for wound protection and healing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 50-59.	1.6	6
12	Nanocomposite hydrogel based on carrageenan-coated starch/cellulose nanofibers as a hemorrhage control material. Carbohydrate Polymers, 2021, 251, 117013.	5.1	60
13	A Composite Hydrogel Based on Pectin/Cellulose via Chemical Cross-Linking for Hemorrhage. Frontiers in Bioengineering and Biotechnology, 2020, 8, 627351.	2.0	24
14	Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Advanced Science, 2021, 8, 2003627.	5.6	291
15	By Endowing Polyglutamic Acid/Polylysine Composite Hydrogel with Super Intrinsic Characteristics to Enhance its Wound Repair Potential. Macromolecular Bioscience, 2021, 21, e2000367.	2.1	12
16	A cellulose/Konjac glucomannan–based macroporous antibacterial wound dressing with synergistic and complementary effects for accelerated wound healing. Cellulose, 2021, 28, 5591-5609.	2.4	24
17	Poly(aspartic acid) based self-healing hydrogels with antibacterial and light-emitting properties for wound repair. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111568.	2.5	18
18	A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomaterialia, 2021, 124, 205-218.	4.1	137

CITATION REPORT

#	Article	IF	CITATIONS
19	Glucose-triggered in situ forming keratin hydrogel for the treatment of diabetic wounds. Acta Biomaterialia, 2021, 125, 208-218.	4.1	47
20	Hemostatic Self-Healing Hydrogel with Excellent Biocompatibility Composed of Polyphosphate-Conjugated Functional PNIPAM-Bearing Acylhydrazide. Biomacromolecules, 2021, 22, 2272-2283.	2.6	35
21	A Versatile Method for Preparing Polysaccharide Conjugates via Thiol-Michael Addition. Polymers, 2021, 13, 1905.	2.0	9
22	Targeted delivery of hemostats to complex bleeding wounds with magnetic guidance for instant hemostasis. Chemical Engineering Journal, 2022, 427, 130916.	6.6	25
23	A hemostatic sponge derived from skin secretion of Andrias davidianus and nanocellulose. Chemical Engineering Journal, 2021, 416, 129136.	6.6	46
24	Inherent Antibacterial and Instant Swelling ε-Poly-Lysine/ Poly(ethylene glycol) Diglycidyl Ether Superabsorbent for Rapid Hemostasis and Bacterially Infected Wound Healing. ACS Applied Materials & Interfaces, 2021, 13, 36709-36721.	4.0	27
25	Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano, 2021, 15, 12687-12722.	7.3	1,131
26	Bioinspired hydrogels build a bridge from bench to bedside. Nano Today, 2021, 39, 101157.	6.2	28
27	Photocrosslinking silver nanoparticles–aloe vera–silk fibroin composite hydrogel for treatment of full-thickness cutaneous wounds. International Journal of Energy Production and Management, 2021, 8, rbab048.	1.9	23
28	Cationic Photothermal Hydrogels with Bacteria-Inhibiting Capability for Freshwater Production via Solar-Driven Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 37724-37733.	4.0	39
29	Biodegradable cellulose-based superabsorbent as potent hemostatic agent. Chemical Engineering Journal, 2021, 418, 129252.	6.6	34
30	Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nature Communications, 2021, 12, 4733.	5.8	159
31	Multifunctional dopamine modification of green antibacterial hemostatic sponge. Materials Science and Engineering C, 2021, 127, 112227.	3.8	30
32	Mussel-inspired blue-light-activated cellulose-based adhesive hydrogel with fast gelation, rapid haemostasis and antibacterial property for wound healing. Chemical Engineering Journal, 2021, 417, 129329.	6.6	157
33	Haemostatic materials for wound healing applications. Nature Reviews Chemistry, 2021, 5, 773-791.	13.8	371
34	Thrombin Embedded in eMPs@Thr/Sponge with Enhanced Procoagulant Ability for Uncompressible and Massive Hemorrhage Control. ACS Applied Bio Materials, 2021, 4, 7643-7652.	2.3	6
35	A synergy between dopamine and electrostatically bound bactericide in a poly (vinyl alcohol) hybrid hydrogel for treating infected wounds. Carbohydrate Polymers, 2021, 272, 118513.	5.1	31
36	Biocompatible, antibacterial and anti-inflammatory zinc ion cross-linked quaternized cellulose‑sodium alginate composite sponges for accelerated wound healing. International Journal of Biological Macromolecules, 2021, 191, 27-39.	3.6	27

		CITATION REPORT	
#	Article	IF	CITATIONS
37	Recent advances in materials for hemostatic management. Biomaterials Science, 2021, 9, 7343	3-7378. 2.6	40
38	Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Progress in Polymer Science, 2021, 123, 101472.	11.	8 77
39	An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals, 2021, 14, 1215.	1.7	53
40	Ball-Milling Exfoliation of Hexagonal Boron Nitride in Viscous Hydroxyethyl Cellulose for Produc Nanosheet Films as Thermal Interface Materials. ACS Applied Nano Materials, 2021, 4, 13167-1	ing 2.4 3175. 2.4	18
41	Light emitting CMC-CHO based self-healing hydrogel with injectability for in vivo wound repairi applications. Carbohydrate Polymers, 2022, 281, 119052.	ng 5.1	20
42	Antibacterial biomaterials for skin wound dressing. Asian Journal of Pharmaceutical Sciences, 2 17, 353-384.	022, 4.3	182
43	Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, a applications. Materials Horizons, 2022, 9, 1356-1386.	ınd 6.4	75
44	Bio-inspired, bio-degradable adenosine 5′-diphosphate-modified hyaluronic acid coordinated hydrophobic undecanal-modified chitosan for hemostasis and wound healing. Bioactive Materia 2022, 17, 162-177.	als, 8.6	34
45	Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Materials Science and Engineering C, 2022, 135, 112669.	3.8	11
46	Diversified antibacterial modification and latest applications of polysaccharide-based hydrogels wound healthcare. Applied Materials Today, 2022, 26, 101396.	for 2.3	16
47	Polyvinyl alcohol/sodium alginate composite sponge with 3D ordered/disordered porous struct for rapidly controlling noncompressible hemorrhage. Materials Science and Engineering C, 202 112698.	ure 2, 134, 3.8	17
48	Chitosan for constructing stable polymer-inorganic suspensions and multifunctional membrane wound healing. Carbohydrate Polymers, 2022, 285, 119209.	es for 5.1	15
49	Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerat wound repair. Composites Part B: Engineering, 2022, 234, 109746.	ing 5.9	60
51	Functionalization and Antibacterial Applications of Cellulose-Based Composite Hydrogels. Poly 2022, 14, 769.	mers, 2.0	20
52	A novel antibacterial and antifouling nanocomposite coated endotracheal tube to prevent ventilator-associated pneumonia. Journal of Nanobiotechnology, 2022, 20, 112.	4.2	9
53	MXeneâ€Enhanced Chitin Composite Sponges with Antibacterial and Hemostatic Activity for V Healing. Advanced Healthcare Materials, 2022, 11, e2102367.	Vound 3.9	29
54	Cell/Tissue Adhesive, Selfâ€Healable, Biocompatible, Hemostasis, and Antibacterial Hydrogel Di for Wound Healing Applications. Advanced Materials Interfaces, 2022, 9, .	ressings 1.9	14
55	Evaluation of kappa carrageenan and gelatin based sponges for dental applications. Chemical F 2022, 76, 4005-4015.	Papers, 1.0	5

#	Article	IF	Citations
56	Asymmetric composite wound dressing with hydrophobic flexible bandage and tissue-adhesive hydrogel for joints skin wound healing. Composites Part B: Engineering, 2022, 235, 109762.	5.9	26
57	Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Materials Today Bio, 2022, 14, 100257.	2.6	30
58	An enzyme cross-linked hydrogel as a minimally invasive arterial tissue sealing and anti-adhesion barrier. Nano Today, 2022, 44, 101467.	6.2	26
59	Poly(aspartic acid) based self-healing hydrogel with blood coagulation characteristic for rapid hemostasis and wound healing applications. Colloids and Surfaces B: Biointerfaces, 2022, 214, 112430.	2.5	19
60	Hydrogel-Based Biomaterials Engineered from Natural-Derived Polysaccharides and Proteins for Hemostasis and Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 780187.	2.0	29
61	Sustainable wheat gluten foams used in self-expansion medical dressings. Smart Materials in Medicine, 2022, 3, 329-338.	3.7	2
62	Quaternized chitosan/cellulose composites as enhanced hemostatic and antibacterial sponges for wound healing. International Journal of Biological Macromolecules, 2022, 210, 271-281.	3.6	19
63	Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydrate Polymers, 2022, 291, 119553.	5.1	15
64	Hemostatic biomaterials to halt non-compressible hemorrhage. Journal of Materials Chemistry B, 2022, 10, 7239-7259.	2.9	25
65	A multifunctional chitosan hydrogel dressing for liver hemostasis and infected wound healing. Carbohydrate Polymers, 2022, 291, 119631.	5.1	50
66	Mussel-inspired collagen-hyaluronic acid composite scaffold with excellent antioxidant properties and sustained release of a growth factor for enhancing diabetic wound healing. Materials Today Bio, 2022, 15, 100320.	2.6	25
67	Engineered Hemostatic Biomaterials for Sealing Wounds. Chemical Reviews, 2022, 122, 12864-12903.	23.0	79
68	Self-healing hydrogel based on polyphosphate-conjugated pectin with hemostatic property for wound healing applications. , 2022, 139, 212974.		20
69	Facile synthesis of biogenic silica nanomaterial loaded transparent tragacanth gum hydrogels with improved physicochemical properties and inherent anti-bacterial activity. Nanoscale, 2022, 14, 11635-11654.	2.8	6
70	Oxidized dextran crosslinked polysaccharide/protein/polydopamine composite cryogels with multiple hemostatic efficacies for noncompressible hemorrhage and wound healing. International Journal of Biological Macromolecules, 2022, 215, 675-690.	3.6	11
71	Highâ€Wettability Composite Separator Embedded with in Situ Grown TiO ₂ Nanoparticles for Advanced Sodiumâ€lon Batteries. Energy Technology, 0, , 2200409.	1.8	7
72	Self-healing pectin/cellulose hydrogel loaded with limonin as TMEM16A inhibitor for lung adenocarcinoma treatment. International Journal of Biological Macromolecules, 2022, 219, 754-766.	3.6	18
73	Plant oil-based non-isocyanate waterborne poly(hydroxyl urethane)s. Chemical Engineering Journal, 2023, 452, 138965.	6.6	13

CITATION REPORT

#	Article	IF	CITATIONS
74	Graphene oxide reinforced hemostasis of gelatin sponge in noncompressible hemorrhage via synergistic effects. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112891.	2.5	3
75	Graphene oxide-based injectable conductive hydrogel dressing with immunomodulatory for chronic infected diabetic wounds. Materials and Design, 2022, 224, 111284.	3.3	15
76	Emerging materials for hemostasis. Coordination Chemistry Reviews, 2023, 475, 214823.	9.5	31
77	Polysaccharide-based hydrogels: New insights and futuristic prospects in wound healing. International Journal of Biological Macromolecules, 2022, 223, 1586-1603.	3.6	28
78	Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. Nanoscale Advances, 2022, 5, 27-45.	2.2	20
79	Skin-friendly PVA/PDA/Tyr-PEAm composite hydrogel with long-term antibacterial and self-recovery ability for wearable strain/pressure sensor. European Polymer Journal, 2023, 182, 111719.	2.6	3
80	Inorganic-based biomaterials for rapid hemostasis and wound healing. Chemical Science, 2022, 14, 29-53.	3.7	22
81	Structural and biological engineering of 3D hydrogels for wound healing. Bioactive Materials, 2023, 24, 197-235.	8.6	49
82	Poly β-Cyclodextrin/Quaternary Ammoniated Chitosan Cryogel with a Porous Structure for Effective Hemostasis. ACS Biomaterials Science and Engineering, 2023, 9, 1077-1088.	2.6	4
83	Implantable biomedical materials for treatment of bone infection. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	4
84	Chitosan Lactate Particles for Non-Compression Hemostasis on Hepatic Resection. Polymers, 2023, 15, 656.	2.0	1
85	High-strength, antibacterial, antioxidant, hemostatic, and biocompatible chitin/PEGDE-tannic acid hydrogels for wound healing. Carbohydrate Polymers, 2023, 307, 120609.	5.1	20
86	A kaolin/calcium incorporated shape memory and antimicrobial chitosan-dextran based cryogel as an efficient haemostatic dressing for uncontrolled hemorrhagic wounds. , 2023, 150, 213424.		4
87	Kaolin-loaded carboxymethyl chitosan/sodium alginate composite sponges for rapid hemostasis. International Journal of Biological Macromolecules, 2023, 233, 123532.	3.6	14
88	Nanocellulose aerogels from banana pseudo-stem as a wound dressing. Industrial Crops and Products, 2023, 194, 116383.	2.5	9
89	Sustainable wheat gluten foams with self-expansion and water/blood-triggered shape recovery. Journal of Biomaterials Applications, 2023, 37, 1687-1696.	1.2	0
90	Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis. Friction, 2023, 11, 1371-1394.	3.4	65
91	Euryale ferox stem-inspired anisotropic quaternized cellulose/xanthan-based antibacterial sponge with high absorbency and compressibility for noncompressible hemorrhage. International Journal of Biological Macromolecules, 2023, 237, 124166.	3.6	1

CITATION REPORT

#	Article	IF	CITATIONS
92	An enhanced fractal self-pumping dressing with continuous drainage for accelerated burn wound healing. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	3
93	Gemini Dressing with Both Super-hydrophilicity and -hydrophobicity Pursuing Isolation of Blood Cells for Hemostasis and Wound Healing. Advanced Fiber Materials, 2023, 5, 1447-1466.	7.9	4
94	Biodegradable Polymers and Polymer Composites with Antibacterial Properties. International Journal of Molecular Sciences, 2023, 24, 7473.	1.8	9
95	3Dâ€Printed Functional Hydrogel by DNAâ€Induced Biomineralization for Accelerated Diabetic Wound Healing. Advanced Science, 2023, 10, .	5.6	16
97	Pharmaceutical and Biomedical Importance of Regenerated CEL and Composites in Various Morphologies. Engineering Materials, 2023, , 313-346.	0.3	0