GIS-based earthquake-triggered-landslide susceptibility weighted index model in Jiuzhaigou region of Sichuan F

Natural Hazards and Earth System Sciences

19, 1973-1988

DOI: 10.5194/nhess-19-1973-2019

Citation Report

#	Article	IF	CITATIONS
1	Comparison of Different Machine Learning Models For Landslide Susceptibility Mapping. , 2019, , .		4
2	Hazard Mapping of the Rainfall–Landslides Disaster Chain Based on GeoDetector and Bayesian Network Models in Shuicheng County, China. Water (Switzerland), 2020, 12, 2572.	2.7	24
3	A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection From Single-Temporal RapidEye Satellite Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 6166-6176.	4.9	66
4	Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative Assessment of ICM, AHP, and RF Model. Symmetry, 2020, 12, 1848.	2.2	25
5	Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models—A Case Study of Shuicheng County, China. Water (Switzerland), 2020, 12, 3066.	2.7	50
6	Landslide susceptibility mapping using multiscale sampling strategy and convolutional neural network: A case study in Jiuzhaigou region. Catena, 2020, 195, 104851.	5.0	123
7	Application of an Incomplete Landslide Inventory and One Class Classifier to Earthquake-Induced Landslide Susceptibility Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 1649-1660.	4.9	31
8	GIS-based seismic vulnerability mapping: a comparison of artificial neural networks hybrid models. Geocarto International, 2022, 37, 4312-4335.	3.5	8
9	Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sensing, 2021, 13, 1157.	4.0	33
10	A Hybrid Model Consisting of Supervised and Unsupervised Learning for Landslide Susceptibility Mapping. Remote Sensing, 2021, 13, 1464.	4.0	20
11	Hazard zonation mapping of earthquake-induced secondary effects using spatial multi-criteria analysis. Natural Hazards, 2021, 109, 637-669.	3.4	27
12	AERIAL PHOTOGRAMMETRY AND MACHINE LEARNING BASED REGIONAL LANDSLIDE SUSCEPTIBILITY ASSESSMENT FOR AN EARTHQUAKE PRONE AREA IN TURKEY. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLIII-B3-2021, 713-720	0.2	3
13	Accurate Prediction of Earthquake-Induced Landslides Based on Deep Learning Considering Landslide Source Area. Remote Sensing, 2021, 13, 3436.	4.0	21
14	Rapidly assessing earthquake-induced landslide susceptibility on a global scale using random forest. Geomorphology, 2021, 391, 107889.	2.6	39
15	From scenario-based seismic hazard to scenario-based landslide hazard: rewinding to the past via statistical simulations. Stochastic Environmental Research and Risk Assessment, 0, , 1.	4.0	8
16	Spatio-temporal evolution of post-seismic landslides and debris flows: 2017 Ms 7.0 Jiuzhaigou earthquake. Environmental Science and Pollution Research, 2022, 29, 15681-15702.	5.3	16
17	Landslide Susceptibility Mapping Using Ant Colony Optimization Strategy and Deep Belief Network in Jiuzhaigou Region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11042-11057.	4.9	14
18	Comparison of Tree-Structured Parzen Estimator Optimization in Three Typical Neural Network Models for Landslide Susceptibility Assessment. Remote Sensing, 2021, 13, 4694.	4.0	21

#	Article	IF	CITATIONS
19	Application of Frequency Ratio Method for Landslide Susceptibility Mapping in the Surkhob Valley, Tajikistan. Journal of Geoscience and Environment Protection, 2021, 09, 168-189.	0.5	3
20	Multi-Temporal Landslide Inventory-Based Statistical Susceptibility Modeling Associated With the 2017 Mw 6.5 Jiuzhaigou Earthquake, Sichuan, China. Frontiers in Environmental Science, 2022, 10, .	3.3	4
21	Landslide hazard zonation and evaluation around Debre Markos town, NW Ethiopia—a GIS-based bivariate statistical approach. Scientific African, 2022, 15, e01129.	1.5	4
22	Catchment-scale impacts of shallow landslides on stream water chemistry. Science of the Total Environment, 2022, 825, 153970.	8.0	6
23	Comparison of multiple conventional and unconventional machine learning models for landslide susceptibility mapping of Northern part of Pakistan. Environment, Development and Sustainability, 0, , .	5.0	8
24	Introducing a geospatial database and GIS techniques as a decision-making tool for multicriteria decision analysis methods in landslides susceptibility assessment. Bulletin of the Geological Society of Greece, 2022, 59, 68-103.	0.5	4
25	Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM. Engineering Geology, 2022, 305, 106730.	6.3	15
26	A Novel Intelligent Method Based on the Gaussian Heatmap Sampling Technique and Convolutional Neural Network for Landslide Susceptibility Mapping. Remote Sensing, 2022, 14, 2866.	4.0	11
27	Evaluation of neural network models for landslide susceptibility assessment. International Journal of Digital Earth, 2022, 15, 934-953.	3.9	15
28	Landslide Susceptibility Mapping along the Anninghe Fault Zone in China using SVM and ACO-PSO-SVM Models. Lithosphere, 2022, 2022, .	1.4	4
29	Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatik, 2023, 8, 42-54.	1.6	3
30	Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale. Natural Hazards, 2022, 114, 2709-2738.	3.4	3
31	Landslide susceptibility mapping based on CNN-3D algorithm with attention module embedded. Bulletin of Engineering Geology and the Environment, 2022, 81, .	3.5	9
32	Implications of the loess record for Holocene climate and human settlement in Heye Catchment, Jiuzhaigou, eastern Tibetan Plateau, Sichuan, China. Quaternary Research, 2023, 112, 36-50.	1.7	2
33	A bibliometric and content analysis of research trends on GIS-based landslide susceptibility from 2001 to 2020. Environmental Science and Pollution Research, 2022, 29, 86954-86993.	5.3	11
34	Development of black ice prediction model using GIS-based multi-sensor model validation. Natural Hazards and Earth System Sciences, 2022, 22, 3435-3459.	3.6	0
35	Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. Remote Sensing, 2022, 14, 5795.	4.0	11
36	Climate Change Induced Landslide Susceptibility Assessment - for Aiding Climate Resilient Planning for Road Infrastructure: A Case Study in Rangamati District, Chittagong Hill Tracts, Bangladesh. IOP Conference Series: Earth and Environmental Science, 2022, 1091, 012010.	0.3	0

CITATION REPORT

\sim		<u> </u>	
			ЪΤ
\sim	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
37	Landslide Susceptibility Prediction: Improving the Quality of Landslide Samples by Isolation Forests. Sustainability, 2022, 14, 16692.	3.2	4
38	Climate Change-Induced Regional Landslide Hazard and Exposure Assessment for Aiding Climate Resilient Road Infrastructure Planning: A Case Study in Bagmati and Madhesh Provinces, Nepal. , 2023, , 175-184.		0
39	Population amount risk assessment of extreme precipitation-induced landslides based on integrated machine learning model and scenario simulation. Geoscience Frontiers, 2023, 14, 101541.	8.4	6
40	A Hybrid Multi-Hazard Susceptibility Assessment Model for a Basin in Elazig Province, Türkiye. International Journal of Disaster Risk Science, 2023, 14, 326-341.	2.9	6
41	An artificial intelligence based framework to analyze the landside risk of a mountainous highway. Geocarto International, 2023, 38, .	3.5	0
42	Landslide Hazard Zonation in the Alaknanda River Basin Using Innovative Techniques. , 2023, , .		0
43	An innovative method for landslide susceptibility mapping supported by fractal theory, GeoDetector, and random forest: a case study in Sichuan Province, SW China. Natural Hazards, 2023, 118, 2543-2568.	3.4	2
44	A review of recent earthquake-induced landslides on the Tibetan Plateau. Earth-Science Reviews, 2023, 244, 104534.	9.1	7
45	Modeling landslide susceptibility based on convolutional neural network coupling with metaheuristic optimization algorithms. International Journal of Digital Earth, 2023, 16, 3384-3416.	3.9	10
46	The suitability of different vegetation indices to analyses area with landslide propensity using Sentinel -2 Image. Boletim De Ciencias Geodesicas, 2023, 29, .	0.3	0
47	Landslide susceptibility mapping and risk assessment using total estimated susceptibility values along NH44 in Jammu and Kashmir, Western Himalaya. Natural Hazards, 2024, 120, 4257-4296.	3.4	2
48	Analysis of landslide susceptibility prediction accuracy with an event-based inventory: The 6 February 2023 Turkiye earthquakes. Soil Dynamics and Earthquake Engineering, 2024, 178, 108491.	3.8	0
49	An essential update on the inventory of landslides triggered by the Jiuzhaigou Mw6.5 earthquake in China on 8 August 2017, with their spatial distribution analyses. Heliyon, 2024, 10, e24787.	3.2	1