DNN-Aided Block Sparse Bayesian Learning for User Ac Estimation in Grant-Free Non-Orthogonal Random Acc

IEEE Transactions on Vehicular Technology 68, 12000-12012

DOI: 10.1109/tvt.2019.2947214

Citation Report

#	Article	IF	CITATIONS
1	Detection Techniques for Massive Machine-Type Communications: Challenges and Solutions. IEEE Access, 2020, 8, 180928-180954.	4.2	14
2	Channel Estimation and User Activity Identification in Massive Grant-Free Multiple-Access. IEEE Open Journal of Vehicular Technology, 2020, 1, 296-316.	4.9	10
3	A Learning-Based Approach to Intra-Domain QoS Routing. IEEE Transactions on Vehicular Technology, 2020, 69, 6718-6730.	6.3	22
4	User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled Internet of Things Journal, 2020, 7, 8811-8825.	8.7	81
5	Massive connectivity with machine learning for the Internet of Things. Computer Networks, 2021, 184, 107646.	5.1	5
6	User activity detection for massive Internet of things with an improved residual convolutional neural network. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4182.	3.9	2
7	Clustering-Based Activity Detection Algorithms for Grant-Free Random Access in Cell-Free Massive MIMO. IEEE Transactions on Communications, 2021, 69, 7520-7530.	7.8	26
8	Task Partitioning and Offloading in DNN-Task Enabled Mobile Edge Computing Networks. IEEE Transactions on Mobile Computing, 2023, 22, 2435-2445.	5.8	30
9	An Efficient Matching Pursuit Based Compressive Sensing Detector For Uplink Grant-Free NOMA. IEEE Transactions on Vehicular Technology, 2021, 70, 2012-2017.	6.3	9
10	DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO Detection. IEEE Transactions on Wireless Communications, 2021, 20, 1349-1362.	9.2	60
11	Grant-Free Massive Connectivity in Massive MIMO Systems: Collocated Versus Cell-Free. IEEE Wireless Communications Letters, 2021, 10, 634-638.	5.0	12
12	Analysis and Optimization of Massive Access to the IoT Relying on Multi-Pair Two-Way Massive MIMO Relay Systems. IEEE Transactions on Communications, 2021, 69, 4585-4598.	7.8	11
13	Modeling and Analysis of Tagged Preamble Transmissions in Random Access Procedure for mMTC Scenarios. IEEE Transactions on Wireless Communications, 2021, 20, 4296-4312.	9.2	12
14	Deep-Learned Approximate Message Passing for Asynchronous Massive Connectivity. IEEE Transactions on Wireless Communications, 2021, 20, 5434-5448.	9.2	23
15	RAN Slicing for Massive IoT and Bursty URLLC Service Multiplexing: Analysis and Optimization. IEEE Internet of Things Journal, 2021, 8, 14258-14275.	8.7	13
16	Information Cofreshness-Aware Grant Assignment and Transmission Scheduling for Internet of Things. IEEE Internet of Things Journal, 2021, 8, 14435-14446.	8.7	3
17	Transformer-Based Online Bayesian Neural Networks for Grant-Free Uplink Access in CRAN With Streaming Variational Inference. IEEE Internet of Things Journal, 2022, 9, 7051-7064.	8.7	3
18	Machine-Learning-Aided Trajectory Prediction and Conflict Detection for Internet of Aerial Vehicles. IEEE Internet of Things Journal, 2022, 9, 5882-5894.	8.7	11

#	Article	IF	Citations
19	Massive Connectivity in MIMO-OFDM Systems With Frequency Selectivity Compensation., 2021,,.		1
20	A DNN-based estimate of the PRACH traffic load for massive IoT scenarios in 5G networks and beyond. Computer Networks, 2021, , 108608.	5.1	1
21	ML and MAP Device Activity Detections for Grant-Free Massive Access in Multi-Cell Networks. IEEE Transactions on Wireless Communications, 2022, 21, 3893-3908.	9.2	10
22	Massive Access of Static and Mobile Users via Reconfigurable Intelligent Surfaces: Protocol Design and Performance Analysis. IEEE Journal on Selected Areas in Communications, 2022, 40, 1253-1269.	14.0	20
23	Bayesian Learning-Based Multiuser Detection for Grant-Free NOMA Systems. IEEE Transactions on Wireless Communications, 2022, 21, 6317-6328.	9.2	9
24	Joint Channel Estimation, Activity Detection and Data Decoding Based on Dynamic Message-Scheduling Strategies for mMTC. IEEE Transactions on Communications, 2022, 70, 2464-2479.	7.8	6
25	Massive Connectivity Over MIMO-OFDM: Joint Activity Detection and Channel Estimation With Frequency Selectivity Compensation. IEEE Transactions on Wireless Communications, 2022, 21, 6920-6934.	9.2	5
26	Detection of Burst Users and Symbols for Grant-Free Communication in the Presence of Massive Connected Users. IEEE Transactions on Vehicular Technology, 2022, 71, 7973-7978.	6.3	0
27	Grant Free Age-Optimal Random Access Protocol for Satellite-Based Internet of Things. IEEE Transactions on Communications, 2022, 70, 3947-3961.	7.8	8
28	OFDM-Based Massive Grant-Free Transmission Over Frequency-Selective Fading Channels. IEEE Transactions on Communications, 2022, 70, 4543-4558.	7.8	4
29	A Neural-Network-Based Uplink Interference Identification Algorithm for Ultra-Dense Networks. , 2022, , .		0
30	Random Access With Massive MIMO-OTFS in LEO Satellite Communications. IEEE Journal on Selected Areas in Communications, 2022, 40, 2865-2881.	14.0	15
31	Grant-Free Non-Orthogonal Multiple Access in Single-Carrier Frequency-Selective Fading Channels. IEEE Transactions on Vehicular Technology, 2022, 71, 12943-12957.	6.3	0
32	Deep Learning-Based User Activity Detection and Channel Estimation in Grant-Free NOMA. IEEE Transactions on Wireless Communications, 2023, 22, 2202-2214.	9.2	6
33	Deep Neural Network-Aided Cross-Slot User Equipment Scheduling for Grant-Free Random Access. IEEE Internet of Things Journal, 2022, , 1-1.	8.7	0
34	Compressed Sensing Based Active User Detection in MIMO Systems With One-Bit ADC. IEEE Transactions on Vehicular Technology, 2023, 72, 1313-1317.	6.3	3
35	A Novel Multiple Access Scheme for 6G Assisted Massive Machine Type Communication. IEEE Access, 2022, 10, 117638-117645.	4.2	3
36	An Energy-Efficient DL-Aided Massive Multiple Access Scheme for IoT Scenarios in Beyond 5G Networks. IEEE Internet of Things Journal, 2022, , 1-1.	8.7	0

#	Article	IF	CITATIONS
37	Estimation of user activity prior for active user detection in massive machine type communications. Signal Processing, 2023, 205, 108884.	3.7	0
38	Compressed Particle-Based Federated Bayesian Learning and Unlearning. IEEE Communications Letters, 2023, 27, 556-560.	4.1	1
39	A Hybrid Grant NOMA Random Access for Massive MTC Service. IEEE Internet of Things Journal, 2023, 10, 5490-5505.	8.7	3
40	Variational Bayesian Inference Clustering-Based Joint User Activity and Data Detection for Grant-Free Random Access in mMTC. IEEE Internet of Things Journal, 2023, 10, 9906-9916.	8.7	3
41	Block Sparse Bayesian Learning Based Joint User Activity Detection and Channel Estimation in Grant-Free MIMO-NOMA. Drones, 2023, 7, 27.	4.9	1
42	EM-AMP-Based Joint Active User Detection and Channel Estimation in Cell-Free System. IEEE Systems Journal, 2023, , 1-12.	4.6	0
43	A Reference Signal-Aided Deep Learning Approach for Overlapped Signals Automatic Modulation Classification. IEEE Communications Letters, 2023, 27, 1135-1139.	4.1	2
44	On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Communications Surveys and Tutorials, 2023, 25, 905-974.	39.4	151
45	Improving ADMM-based massive MIMO detectors via deep learning., 2023, 137, 104027.		0
46	Message Passing-Based Joint User Activity Detection and Channel Estimation for Temporally-Correlated Massive Access. IEEE Transactions on Communications, 2023, 71, 3576-3591.	7.8	0
47	OFDM-Based Massive Connectivity for LEO Satellite Internet of Things. IEEE Transactions on Wireless Communications, 2023, 22, 8244-8258.	9.2	2
48	Intelligent Traffic Control. Wireless Networks, 2023, , 111-209.	0.5	0
49	Two-Stage Preamble Detector for LEO Satellite-Based NTN IoT Random Access. IEEE Transactions on Vehicular Technology, 2023, , 1-14.	6.3	0
50	Model-Driven Deep Learning-Based Sparse Channel Representation and Recovery for Wideband mmWave Massive MIMO Systems. IEEE Transactions on Vehicular Technology, 2023, 72, 16788-16793.	6.3	1
51	Toward Massive Active Connectivity: Performance Analysis and Near-Optimal Detectors for Grant-Free Random Access Systems. IEEE Transactions on Communications, 2023, 71, 6272-6286.	7.8	0
52	Compressive-Sensing-Based Grant-Free Massive Access for 6G Massive Communication. IEEE Internet of Things Journal, 2024, 11, 7411-7435.	8.7	0
53	An Adaptive Frame-based Age-aware Access Scheme for Time-Critical Satellite-IoT., 2023,,.		0