An Ultra-Low Energy Human Activity Recognition Acce Applications

Transactions on Embedded Computing Systems 18, 1-22

DOI: 10.1145/3358175

Citation Report

#	Article	IF	CITATIONS
1	Physical Workload Tracking Using Human Activity Recognition with Wearable Devices. Sensors, 2020, 20, 39.	2.1	35
2	Voltage-Frequency Domain Optimization for Energy-Neutral Wearable Health Devices. Sensors, 2020, 20, 5255.	2.1	2
3	w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices. Sensors, 2020, 20, 5356.	2.1	47
4	A Lightweight Framework for Human Activity Recognition on Wearable Devices. IEEE Sensors Journal, 2021, 21, 24471-24481.	2.4	27
5	Online Solar Energy Prediction for Energy-Harvesting Internet of Things Devices., 2021,,.		10
6	EExNAS: Early-Exit Neural Architecture Search Solutions for Low-Power Wearable Devices. , 2021, , .		10
7	Trends in human activity recognition with focus on machine learning and power requirements. Machine Learning With Applications, 2021, 5, 100072.	3.0	30
8	AHAR: Adaptive CNN for Energy-Efficient Human Activity Recognition in Low-Power Edge Devices. IEEE Internet of Things Journal, 2022, 9, 13041-13051.	5.5	44
9	Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Sensors, 2022, 22, 1476.	2.1	141
11	Smartphone Based Human Activity Recognition Using 1D Lightweight Convolutional Neural Network. , 2022, , .		4
12	Dynamic Temperature Scaling in Contrastive Self-Supervised Learning for Sensor-Based Human Activity Recognition. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2022, 4, 498-507.	3.8	5
14	A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge Al Applications. , 2022, , .		O
15	A Systematic Survey of Research Trends in Technology Usage for Parkinson's Disease. Sensors, 2022, 22, 5491.	2.1	16
16	Deep Ensemble Learning for Human Activity Recognition Using Wearable Sensors via Filter Activation. Transactions on Embedded Computing Systems, 2023, 22, 1-23.	2.1	22
17	Wearable Piezoelectric Energy Harvesting From Human Gait: Modeling and Experimental Validation. IEEE Sensors Journal, 2022, 22, 16617-16627.	2.4	6
18	BrainActivity1: A Framework ofÂEEG Data Collection andÂMachine Learning Analysis forÂCollege Students. Communications in Computer and Information Science, 2022, , 119-127.	0.4	1
19	A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined With Pruned and Quantized CNN for Wearable Device. IEEE Transactions on Consumer Electronics, 2023, 69, 657-670.	3.0	1
20	C-HAR: Compressive Measurement-Based Human Activity Recognition. , 2023, , .		O

ARTICLE lF CITATIONS

Robust Machine Learning for Low-Power Wearable Devices: Challenges and Opportunities. , 2024, , 45-71. o 24