Review on DFT calculation of <i>s</i>â€triazineâ€base

DOI: 10.1002/cey2.1

Citation Report

#	Article	IF	CITATIONS
1	Quenching induced hierarchical 3D porous g-C ₃ N ₄ with enhanced photocatalytic CO ₂ reduction activity. Chemical Communications, 2019, 55, 14023-14026.	2.2	83
2	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 1900487.	3.1	85
3	Emerging Chemical Functionalization of g-C ₃ N ₄ : Covalent/Noncovalent Modifications and Applications. ACS Nano, 2020, 14, 12390-12469.	7.3	258
4	Soft and hard templates assisted synthesis mesoporous CuO/g-C3N4 heterostructures for highly enhanced and accelerated Hg(II) photoreduction under visible light. Journal of Colloid and Interface Science, 2020, 580, 223-233.	5.0	106
5	Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature. Green Energy and Environment, 2021, 6, 938-951.	4.7	26
6	Transforming Photocatalytic gâ€C ₃ N ₄ /MoSe ₂ into a Direct Zâ€Scheme System via Boronâ€Doping: A Hybrid DFT Study. ChemSusChem, 2020, 13, 4985-4993.	3.6	33
7	Unraveling the Nature of Excellent Potassium Storage in Smallâ€Molecule Se@Peapodâ€Like Nâ€Doped Carbon Nanofibers. Advanced Materials, 2020, 32, e2003879.	11.1	104
8	Mesoporous Polymeric Cyanamideâ€Triazoleâ€Heptazine Photocatalysts for Highlyâ€Efficient Water Splitting. Small, 2020, 16, e2003162.	5.2	27
9	Overall Regulation of Exciton Dynamics by Defect Engineering in Polymeric Photocatalysts for Hydrogen Evolution. Journal of Physical Chemistry C, 2020, 124, 24667-24676.	1.5	10
10	Fe-Doped g-C3N4: High-Performance Photocatalysts in Rhodamine B Decomposition. Polymers, 2020, 12, 1963.	2.0	36
11	g-C ₃ N ₄ -based photoelectrodes for photoelectrochemical water splitting: a review. Journal of Materials Chemistry A, 2020, 8, 21474-21502.	5.2	111
12	Design of 2D–2D NiO/g-C3N4 heterojunction photocatalysts for degradation of an emerging pollutant. Research on Chemical Intermediates, 2020, 46, 5281-5295.	1.3	61
13	Graphitic carbon nitride nanotubes: a new material for emerging applications. RSC Advances, 2020, 10, 34059-34087.	1.7	35
14	Functional group defect design in polymeric carbon nitride for photocatalytic application. APL Materials, 2020, 8, .	2.2	16
15	Twoâ€photon Absorption in a Defectâ€engineered Carbon Nitride Polymer Drives Redâ€light Photocatalysis. ChemCatChem, 2020, 12, 4185-4197.	1.8	10
16	Enhanced Photocatalytic H ₂ â€Production Activity of CdS Quantum Dots Using Sn ²⁺ as Cocatalyst under Visible Light Irradiation. Small, 2020, 16, e2001024.	5.2	124
17	Fabrication of a Sb ₂ MoO ₆ /g-C ₃ N ₄ Photocatalyst for Enhanced RhB Degradation and H ₂ Generation. Journal of Physical Chemistry C, 2020, 124, 13771-13778.	1.5	104
18	Design and application of active sites in g-C3N4-based photocatalysts. Journal of Materials Science and Technology, 2020, 56, 69-88.	5.6	211

#	Article	IF	CITATIONS
19	2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Solar Rrl, 2020, 4, 2000132.	3.1	94
20	Polymeric carbon nitrides and related metal-free materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 11075-11116.	5.2	142
21	Heteroatom Doping: An Effective Way to Boost Sodium Ion Storage. Advanced Energy Materials, 2020, 10, 2000927.	10.2	309
22	Photocatalytic water splitting to simultaneously produce H2 and H2O2 by two-electron reduction process over Pt loaded Na+ introduced g-C3N4 catalyst. Diamond and Related Materials, 2020, 108, 107971.	1.8	17
23	Accelerating Photocatalytic Hydrogen Production and Pollutant Degradation by Functionalizing g-C3N4 With SnO2. Frontiers in Chemistry, 2019, 7, 941.	1.8	67
24	Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction. ChemNanoMat, 2020, 6, 1474-1478.	1.5	7
25	Charge steering in ultrathin 2D nanomaterials for photocatalysis. Journal of Materials Chemistry A, 2020, 8, 12928-12950.	5.2	44
26	In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Applied Surface Science, 2020, 515, 145922.	3.1	123
27	Quantum-chemical calculations on graphitic carbon nitride (g-C3N4) single-layer nanostructures: polymeric slab vs. quantum dot. Structural Chemistry, 2020, 31, 1137-1148.	1.0	22
28	Defect Engineering of Photocatalysts for Solar Energy Conversion. Solar Rrl, 2020, 4, 2070045.	3.1	4
29	2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Science China Materials, 2020, 63, 2119-2152.	3.5	71
30	Ni Co1-S as an effective noble metal-free cocatalyst for enhanced photocatalytic activity of g-C3N4. Journal of Materials Science and Technology, 2020, 56, 227-235.	5.6	27
31	Recent advances in g-C3N4-based heterojunction photocatalysts. Journal of Materials Science and Technology, 2020, 56, 1-17.	5.6	297
32	Triethanolamine-mediated photodeposition formation of amorphous Ni-P alloy for improved H2-evolution activity of g-C3N4. Science China Materials, 2020, 63, 2215-2227.	3.5	53
33	H2O molecule adsorption on s-triazine-based g-C3N4. Chinese Journal of Catalysis, 2021, 42, 115-122.	6.9	42
34	DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review. Nano-Micro Letters, 2021, 13, 13.	14.4	91
35	One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126498.	6.6	214
36	Solvothermal synthesis of various C ₃ N ₄ films on FTO substrates and their photocatalytic and sensing applications. Journal of the American Ceramic Society, 2021, 104, 722-732.	1.9	4

#	Article	IF	CITATIONS
37	Development of mesoporous Bi2WO6/g-C3N4 heterojunctions via soft- and hard-template-assisted procedures for accelerated and reinforced photocatalytic reduction of mercuric cations under vis light irradiation. Ceramics International, 2021, 47, 5003-5012.	2.3	29
38	Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants. Separation and Purification Technology, 2021, 255, 117693.	3.9	58
39	Molten-based defect engineering polymeric carbon nitride quantum dots with enhanced hole extraction: An efficient photoelectrochemical cell for water oxidation. Carbon, 2021, 173, 339-349.	5.4	15
40	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42, 710-730.	6.9	182
41	Design of highly-active photocatalytic materials for solar fuel production. Chemical Engineering Journal, 2021, 421, 127732.	6.6	27
42	One-step synthesis of oxygen doped g-C3N4 for enhanced visible-light photodegradation of Rhodamine B. Journal of Physics and Chemistry of Solids, 2021, 151, 109900.	1.9	64
43	High surface area Nanoflakes of P-gC3N4 photocatalyst loaded with Ag nanoparticle with intraplanar and interplanar charge separation for environmental remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113098.	2.0	4
44	Surface and interface engineering of two-dimensional bismuth-based photocatalysts for ambient molecule activation. Journal of Materials Chemistry A, 2021, 9, 196-233.	5.2	50
45	Recent Advances in Opal/Inverted Opal Photonic Crystal Photocatalysts. Solar Rrl, 2021, 5, 2000541.	3.1	31
46	Dual-functional CuO/CN for highly efficient solar evaporation and water purification. Separation and Purification Technology, 2021, 254, 117611.	3.9	47
47	Design and preparation of a ternary MoC-QDs/C/Mo–S heterojunction for enhanced eosin Y-sensitized photocatalytic hydrogen evolution. New Journal of Chemistry, 2021, 45, 11905-11917.	1.4	22
48	Creation of carbon defects and in-plane holes with the assistance of NH ₄ Br to enhance the photocatalytic activity of g-C ₃ N ₄ . Catalysis Science and Technology, 0, , .	2.1	15
49	State-of-the-art recent progress in MXene-based photocatalysts: a comprehensive review. Nanoscale, 2021, 13, 9463-9504.	2.8	87
50	Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale, 2021, 13, 9315-9321.	2.8	17
51	Whether planar or corrugated graphitic carbon nitride combined with titanium dioxide exhibits better photocatalytic performance?. RSC Advances, 2021, 11, 16351-16358.	1.7	6
52	Photocatalytic water splitting: advantages and challenges. Sustainable Energy and Fuels, 2021, 5, 4560-4569.	2.5	63
53	Design, Fabrication, and Mechanism of Nitrogenâ€Doped Grapheneâ€Based Photocatalyst. Advanced Materials, 2021, 33, e2003521.	11.1	324
54	Ball-milling method encapsulated α-Fe ₂ O ₃ into g-C ₃ N ₄ as efficient and stable photo-catalysts. New Journal of Chemistry, 2021, 45, 16092-16100.	1.4	4

#	Article	IF	CITATIONS
55	Metal-doped carbon nitrides: synthesis, structure and applications. New Journal of Chemistry, 2021, 45, 11876-11892.	1.4	33
56	Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized Ï€â€Electron Induces Elevated Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2006622.	5.2	73
57	2D materials and their heterostructures for photocatalytic water splitting and conversion of CO ₂ to value chemicals and fuels. JPhys Energy, 2021, 3, 022003.	2.3	33
58	Construction of mesoporous ZnFe2O4-g-C3N4 nanocomposites for enhanced photocatalytic degradation of acridine orange dye under visible light illumination adopting soft- and hard-template-assisted routines. Journal of Materials Research and Technology, 2021, 11, 1260-1271.	2.6	15
59	Pointâ€Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g ₃ N ₄) Photocatalysts toward Artificial Photosynthesis. Small, 2021, 17, e2006851.	5.2	139
60	Precisely Located C@g-C3N4 Nanorod for Efficient Visible Light Photocatalysis. Kinetics and Catalysis, 2021, 62, 375-386.	0.3	1
61	Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 2021, 4, 1625-1638.	5.0	52
62	Accurate design of hollow/tubular porous g-C3N4 from melamine-cyanuric acid supramolecular prepared with mechanochemical method. Chemical Engineering Journal, 2021, 411, 128400.	6.6	67
63	Mesoporous V2O5/g-C3N4 Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4209-4221.	1.9	32
64	In situ growing graphene on g-C3N4 with barrier-free interface and polarization electric field for strongly boosting solar energy conversion into H2 energy. Applied Catalysis B: Environmental, 2021, 287, 119986.	10.8	38
65	Imide modification coupling with NH2-MIL-53(Fe) boosts the photocatalytic performance of graphitic carbon nitride for efficient water remediation. Journal of Catalysis, 2021, 399, 192-200.	3.1	26
66	Advanced activation of persulfate by polymeric g-C3N4 based photocatalysts for environmental remediation: A review. Journal of Hazardous Materials, 2021, 413, 125324.	6.5	293
67	Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering Reports, 2021, 145, 100610.	14.8	145
68	Electronic Tuning of Covalent Triazine Framework Nanoshells for Highly Efficient Photocatalytic H ₂ O ₂ Production. Advanced Sustainable Systems, 2021, 5, 2100184.	2.7	40
69	Highly Efficient Sâ€g N/Moâ€368 Catalyst for Synergistically NADH Regeneration Under Solar Light. Photochemistry and Photobiology, 2022, 98, 160-168.	1.3	6
70	Synthesis of crystalline carbon nitride with enhanced photocatalytic NO removal performance: An experimental and DFT theoretical study. Journal of Materials Science and Technology, 2021, 83, 113-122.	5.6	15
71	Toward Quantum Confinement in Graphitic Carbon Nitride-Based Polymeric Monolayers. Journal of Physical Chemistry A, 2021, 125, 7597-7606.	1.1	5
72	Accelerating interlayer charge transport of alkali metal-intercalated carbon nitride for enhanced photocatalytic hydrogen evolution. Research on Chemical Intermediates, 2021, 47, 5189-5202.	1.3	9

#	Article	IF	CITATIONS
73	Synthesis of CuCo2O4/BiVO4 composites as promise and efficient catalysts for 4-nitrophenol reduction in water: Experimental and theoretical study. Journal of Environmental Chemical Engineering, 2021, 9, 105408.	3.3	17
74	Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. Journal of Materiomics, 2021, 7, 988-997.	2.8	77
75	Multiscale structural engineering of carbon nitride for enhanced photocatalytic H2O2 production. Nano Research, 2023, 16, 4524-4530.	5.8	21
76	Construction of efficient active sites through cyano-modified graphitic carbon nitride for photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2021, 42, 1608-1616.	6.9	67
77	Building a Library for Catalysts Research Using Highâ€Throughput Approaches. Advanced Functional Materials, 2022, 32, 2107862.	7.8	13
78	g ₃ N ₄ â€Based 2D/2D Composite Heterojunction Photocatalyst. Small Structures, 2021, 2, 2100086.	6.9	127
79	g-C3N4/MoS2 based floating solar still for clean water production by thermal/light activation of persulfate. Chemosphere, 2021, 280, 130618.	4.2	27
80	Single-atom heterogeneous photocatalysts. Chem Catalysis, 2021, 1, 1173-1214.	2.9	59
81	Interfacial charge dynamics in type-II heterostructured sulfur doped-graphitic carbon nitride/bismuth tungstate as competent photoelectrocatalytic water splitting photoanode. Journal of Colloid and Interface Science, 2021, 602, 437-451.	5.0	42
82	Recent advances in crystalline carbon nitride for photocatalysis. Journal of Materials Science and Technology, 2021, 91, 224-240. Controllable functionalization of g-C <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>5.6</td><td>97</td></mml:math>	5.6	97
83	display="inline" id="d1e2116" altimg="si20.svg"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:mrow </mml:msub><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi </mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub> mediated all-solid-state (ASS) Z-scheme photocatalysts towards sustainable energy and environmental</mml:mrow>	>3,0 > <td>row></td>	row>
84	applications. Environmental Technology and Innovation, 2021, 24, 101972. Facile synthesis of nitrogen deficient graphitic carbon nitride for photocatalytic hydrogen production activity. Materials Letters, 2021, 303, 130467.	1.3	9
85	First-Principle study of lithium polysulfide adsorption on heteroatom doped graphitic carbon nitride for Lithium-Sulfur batteries. Applied Surface Science, 2021, 565, 150378.	3.1	24
86	Controlled synthesis of Ag2O/g-C3N4 heterostructures using soft and hard templates for efficient and enhanced visible-light degradation of ciprofloxacin. Ceramics International, 2021, 47, 31073-31083.	2.3	18
87	Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Applied Catalysis B: Environmental, 2021, 298, 120534.	10.8	71
88	Construction 0D/2D heterojunction by highly dispersed Ag2S quantum dots (QDs) loaded on the g-C3N4 nanosheets for photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 607, 662-675.	5.0	46
89	One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. Journal of Materials Science and Technology, 2022, 104, 155-162.	5.6	45
90	Bimetallic Ni–Co nanoparticles confined within nitrogen defective carbon nitride nanotubes for enhanced photocatalytic hydrogen production. Environmental Research, 2022, 203, 111844.	3.7	19

#	Article	IF	CITATIONS
91	Thermodynamically stable polymorphs of nitrogen-rich carbon nitrides: a C ₃ N ₅ study. Physical Chemistry Chemical Physics, 2021, 23, 6422-6432.	1.3	5
92	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
93	Understanding the influence of single metal (Li, Mg, Al, Fe, Ag) doping on the electronic and optical properties of g-C ₃ N ₄ : a theoretical study. Molecular Simulation, 2021, 47, 10-17.	0.9	16
94	Comparative study of metal oxides and phosphate modification with different mechanisms over g-C3N4 for visible-light photocatalytic degradation of metribuzin. Rare Metals, 2022, 41, 155-165.	3.6	50
95	Selfâ€standing Janus nanofiber heterostructure photocatalyst with hydrogen production and degradation of methylene blue. Journal of the American Ceramic Society, 2022, 105, 1428-1441.	1.9	9
96	In Situ Wrapping of Oriented NaNbO3 with Carbon Nitride to Synergistically Enhance Photoelectrical Utilization at NaNbO3/g-C3N4 Heterostructures. Chemistry Letters, 2022, 51, 41-45.	0.7	1
97	Band Engineering of Semiconducting Microporous Graphitic Carbons by Phosphorous Doping: Enhancing of Photocatalytic Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 48753-48763.	4.0	10
98	Van der Waals heterostructure of graphene Defected&Doped X(X = Au, N) composite ZnO monolayer: AÂFirstÂPrinciple study. Materials Science in Semiconductor Processing, 2022, 138, 106247.	1.9	5
99	Engineering interfacial band bending over bismuth vanadate/carbon nitride by work function regulation for efficient solar-driven water splitting. Science Bulletin, 2022, 67, 389-397.	4.3	73
100	Recent advancements of g-C ₃ N ₄ -based magnetic photocatalysts towards the degradation of organic pollutants: a review. Nanotechnology, 2022, 33, 072004.	1.3	10
101	Photocatalytic Regeneration of Activated Carbon by Combining g-C3N4 Photocatalyst under Visible Light Irradiation. ECS Journal of Solid State Science and Technology, 2020, 9, 101007.	0.9	0
102	Recent Advances in g ₃ N ₄ â€Based Photocatalysts for Pollutant Degradation and Bacterial Disinfection: Design Strategies, Mechanisms, and Applications. Small, 2022, 18, e2105089.	5.2	39
103	Regulating Graphitic Carbon Nitride/Cocatalyst by an Amorphous MoS ₂ Conformal Multifunctional Intermediate Layer for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 13288-13296.	2.5	11
104	An insight of novel eutectic mixture between thiazolidineâ€2,4â€dione and zinc chloride: Temperatureâ€dependent density functional theory approach. Journal of Physical Organic Chemistry, 2022, 35, e4305.	0.9	15
105	A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coordination Chemistry Reviews, 2022, 453, 214338.	9.5	279
106	In silico study of remdesivir with and without ionic liquids having different cations using DFT calculations and molecular docking. Journal of the Indian Chemical Society, 2022, 99, 100328.	1.3	2
107	Recovering solar fuels from photocatalytic CO2 reduction over W6+-incorporated crystalline g-C3N4 nanorods by synergetic modulation of active centers. Applied Catalysis B: Environmental, 2022, 304, 120978.	10.8	88
108	Porous Nitrogen-Defected Carbon Nitride Derived from A Precursor Pretreatment Strategy for Efficient Photocatalytic Degradation and Hydrogen Evolution. Langmuir, 2022, 38, 828-837.	1.6	19

#	Article	IF	CITATIONS
109	Electronic and catalytic properties of carbon nitride derivatives tuned by building blocks and linkages. International Journal of Hydrogen Energy, 2022, 47, 8761-8775.	3.8	5
110	A brief review of s-triazine graphitic carbon nitride. Carbon Letters, 2022, 32, 703-712.	3.3	15
111	Green synthesis of porous Cu2ZnSnS4/g-C3N4 heterostructured for promoted photocatalytic degradation of trichloroethylene. Ceramics International, 2022, 48, 11736-11746.	2.3	9
112	N-doped 2D graphite-2H nanoplatelets (GNPs) with enhanced PMS activation performance: Structure-dependent performance and Catalytic Mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131, 104158.	2.7	7
113	Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon, 2022, 190, 337-347.	5.4	73
114	Cooperative effects of zinc–nickel sulfides as a dual cocatalyst for the enhanced photocatalytic hydrogen evolution activity of g-C3N4. Journal of Environmental Chemical Engineering, 2022, 10, 107216.	3.3	14
115	Graphitic carbon nitride-based nanoplatforms for biosensors: design strategies and applications. Materials Today Chemistry, 2022, 24, 100770.	1.7	20
116	Advances in two-dimensional green materials for organic electronics applications. , 2022, , 391-422.		1
117	Constructing Pd-N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. Nano Research, 2022, 15, 2928-2934.	5.8	18
118	Deposition of triazine-based graphitic carbon nitride <i>via</i> plasma-induced polymerisation of melamine. Journal of Materials Chemistry A, O, , .	5.2	6
119	Photocatalytic Waterâ€6plitting by Organic Conjugated Polymers: Opportunities and Challenges. Chemical Record, 2022, 22, e202100336.	2.9	24
120	Structural and electronic properties of double-walled G-C3N4 nanotubes: a density functional theory study. Nanotechnology, 2022, 33, 245402.	1.3	4
121	First-principles study for electrochemical sensing of neurotoxin hydrazine derivatives via h-g-C3N4 quantum dot. Surfaces and Interfaces, 2022, 30, 101913.	1.5	12
122	A photocatalytic dye-degradation study on methylene blue by graphitic nitride based polyimides synthesized via a facile thermal-condensation approach. Journal of Environmental Chemical Engineering, 2022, 10, 107747.	3.3	1
123	Prussian Blue decorated g-C3N4 – From novel synthesis to insight study on charge transfer strategy for improving visible-light driven photo-Fenton catalytic activity. Journal of Alloys and Compounds, 2022, 916, 165331.	2.8	10
124	Strain Engineering of 2D-C ₃ N ₅ Monolayer and Its Application in Overall Water-Splitting: a Hybrid Density Functional Study. Journal of Physical Chemistry C, 2022, 126, 8436-8449.	1.5	5
125	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	9.5	34
126	Recent advances in solarâ€driven CO ₂ reduction over g ₃ N ₄ â€based photocatalysts. , 2023, 5, .		38

#	Article	IF	CITATIONS
127	Photo-inactive ZIF-8 is applied to significantly enhance the photocatalytic water reduction by forming a built-in electric field with g-C3N4 and the mechanism analysis. Journal of Environmental Chemical Engineering, 2022, 10, 107998.	3.3	4
128	Photocatalytic hydrogen production and storage in carbon nanotubes: a first-principles study. RSC Advances, 2022, 12, 17029-17035.	1.7	6
129	Laser direct writing derived robust carbon nitride films with efficient photonâ€ŧoâ€electron conversion for multifunctional photoelectrical applications. , 2022, 4, 1228-1241.		6
130	2D conjugated polymers: exploiting topological properties for the rational design of metal-free photocatalysts. Trends in Chemistry, 2022, 4, 792-806.	4.4	13
131	Probing interfacial charge transfer in heterojunctions for photocatalysis. Physical Chemistry Chemical Physics, 2022, 24, 19659-19672.	1.3	5
132	Improved atomic hydrogen desorption by Cu3N with suitable electronic structure to enhance photocatalytic H2 evolution. Materials Today Energy, 2022, 29, 101111.	2.5	5
133	Pointâ€ŧoâ€face contact heterojunctions: Interfacial design of 0D nanomaterials on 2D g ₃ N ₄ towards photocatalytic energy applications. , 2022, 4, 665-730.		40
134	Use of Carbon Nitrides as Photoactive Supports in Singleâ€Atom Heterogeneous Catalysis for Synthetic Purposes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	11
135	Activity and selectivity of N ₂ fixation on B doped g-C ₉ N ₁₀ : a density functional theory study. Journal of Materials Chemistry C, 2022, 10, 11791-11800.	2.7	2
136	Efficient photohydrogen production by edge-modified carbon nitride with nonmetallic group. Journal of Colloid and Interface Science, 2023, 629, 739-749.	5.0	11
137	Merits and Demerits of ODE Modeling of Physicochemical Systems for Numerical Simulations. Molecules, 2022, 27, 5860.	1.7	3
138	Structural, Electronic, and Magnetic Characteristics of Graphitic Carbon Nitride Nanoribbons and Their Applications in Spintronics. Journal of Physical Chemistry C, 2022, 126, 16429-16436.	1.5	3
139	Application of DFT Calculations in Designing Polymer-Based Drug Delivery Systems: An Overview. Pharmaceutics, 2022, 14, 1972.	2.0	15
140	Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS Omega, 2022, 7, 33808-33820.	1.6	6
141	Synthesis and characterization of CuO@S-doped g-C ₃ N ₄ based nanocomposites for binder-free sensor applications. RSC Advances, 2022, 12, 29959-29974.	1.7	9
142	Efficient reduction of organic pollutants by novel magnetic Bi2S3/NiCo2O4 MOF- derived composite: Exprimental and DFT investigation. Journal of Molecular Liquids, 2022, 367, 120574.	2.3	1
143	A promoted charge separation/transfer and surface plasmon resonance effect synergistically enhanced photocatalytic performance in Cu nanoparticles and single-atom Cu supported attapulgite/polymer carbon nitride photocatalyst. Materials Today Chemistry, 2022, 26, 101250.	1.7	5
144	Graphitic carbon nitride (g-C3N4) synthesis methods, surface functionalization, and drug delivery applications: A review. Journal of Drug Delivery Science and Technology, 2023, 79, 104001.	1.4	16

#	Article	IF	CITATIONS
145	High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. Computational and Theoretical Chemistry, 2023, 1220, 113990.	1.1	18
146	Visible-light-driven g-C3N4-doped Co catalyzed oxidation of benzylic hydroxylation of alkyl aromatic hydrocarbons. Chemical Engineering Science, 2023, 267, 118365.	1.9	3
147	Theoretical exploration of the structural, electronic and optical properties of g-C ₃ N ₄ /C ₃ N heterostructures. Physical Chemistry Chemical Physics, 2023, 25, 4081-4092.	1.3	5
148	Ultrathin origami accordionâ€like structure of vacancyâ€rich graphitized carbon nitride for enhancing CO ₂ photoreduction. , 2023, 5, .		8
149	Manipulating Selectivity of Hydroxyl Radical Generation by Single-Atom Catalysts in Catalytic Ozonation: Surface or Solution. Environmental Science & Technology, 2022, 56, 17753-17762.	4.6	23
150	Designing a Built-In Electric Field for Efficient Energy Electrocatalysis. ACS Nano, 2022, 16, 19959-19979.	7.3	82
151	Electron transfer in heterojunction catalysts. Physical Chemistry Chemical Physics, 2023, 25, 7106-7119.	1.3	6
152	Investigating the spatial charge density flow and molecular structure of g-C3N4 photocatalyst from a computational perspective. Applied Catalysis A: General, 2023, 659, 119190.	2.2	16
153	TiO ₂ /graphitic carbon nitride nanosheet composite with enhanced sensitivity to atmospheric water. RSC Advances, 2023, 13, 6143-6152.	1.7	2
154	Ni2P-Modified P-Doped Graphitic Carbon Nitride Hetero-Nanostructures for Efficient Photocatalytic Aqueous Cr(VI) Reduction. Catalysts, 2023, 13, 437.	1.6	3
155	Green Light Photoelectrocatalysis with Sulfurâ€Doped Carbon Nitride: Using Triazoleâ€Purpald for Enhanced Benzylamine Oxidation and Oxygen Evolution Reactions. Advanced Science, 2023, 10, .	5.6	14
156	Recent Advancements in the Preparation and Application of Copper Single-Atom Catalysts. ACS Applied Nano Materials, 2023, 6, 4987-5041.	2.4	10
157	Schottky junction with Bi/Bi ₂ O ₃ core–shell nanoparticle modified g-C ₃ N ₄ for boosting photocatalytic H ₂ O ₂ evolution from pure water. Catalysis Science and Technology, 2023, 13, 3094-3105.	2.1	3
158	Single-Atom Anchored g-C3N4 Monolayer as Efficient Catalysts for Nitrogen Reduction Reaction. Nanomaterials, 2023, 13, 1433.	1.9	1
161	Characterization methods of S-scheme photocatalyst. Interface Science and Technology, 2023, , 103-131.	1.6	0
169	Recent advancements in the fabrication and photocatalytic applications of graphitic carbon nitride-tungsten oxide nanocomposites. Nanoscale Advances, 2023, 5, 5214-5255.	2.2	5
174	Multifunctional carbon nitride nanoarchitectures for catalysis. Chemical Society Reviews, 2023, 52, 7602-7664.	18.7	9
191	Surface Grafting of Carbon Nanostructures. , 2024, , 1-45.		Ο

ARTICLE

IF CITATIONS