Sâ€Scheme Heterojunction TiO₂/CdS Nand H₂â€Production Photocatalyst

ChemCatChem 11, 6301-6309 DOI: 10.1002/cctc.201901486

Citation Report

#	Article	IF	CITATIONS
1	Noble-metal-free NiS decorated organic-inorganic hybrid ZnxCd1â^'xSe-diethylenetriamine solid solution for hydrogen evolution. Applied Surface Science, 2020, 507, 145213.	3.1	17
2	Visible-light-driven HSr2Nb3O10/CdS heterojunctions for high hydrogen evolution activity. International Journal of Hydrogen Energy, 2020, 45, 2896-2908.	3.8	16
3	Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Science China Materials, 2020, 63, 2153-2188.	3.5	281
4	CulnS ₂ nanoparticles embedded in mesoporous TiO ₂ nanofibers for boosted photocatalytic hydrogen production. Journal of Materials Chemistry C, 2020, 8, 11001-11007.	2.7	29
5	Construction of TiO2 nanosheets with exposed {0Â0Â1} facets/Zn0.2Cd0.8S-DETA heterostructure with enhanced visible light hydrogen production. Applied Surface Science, 2020, 516, 146141.	3.1	5
6	High-efficiency all-solid-state Z-scheme Ag3PO4/g-C3N4/MoSe2 photocatalyst with boosted visible-light photocatalytic performance for antibiotic elimination. Applied Surface Science, 2020, 530, 147234.	3.1	59
7	Layered MoS2 Grown on Anatase TiO2 {001} Promoting Interfacial Electron Transfer to Enhance Photocatalytic Evolution of H2 From H2S. Frontiers in Environmental Chemistry, 2020, 1, .	0.7	2
8	Comparison of Eosin yellowish dye–sensitized and CdS-sensitized TiO2 nanomaterial–based solid-state solar cells. Journal of Solid State Electrochemistry, 2020, 24, 2499-2509.	1.2	6
9	A semiconductor-insulator heterojunction induced by hydroxyl groups formed on the surface of SiO2 microspheres. Applied Surface Science, 2020, 531, 147385.	3.1	16
10	Fe3C/CdS as noble-metal-free composite photocatalyst for highly enhanced photocatalytic H2 production under visible light. Applied Catalysis A: General, 2020, 603, 117768.	2.2	34
11	Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 15985-16038.	3.8	187
12	CdS nanosheets decorated with Ni@graphene core-shell cocatalyst for superior photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 170-178.	5.6	92
13	2D/2D Bi2MoO6/g-C3N4 S-scheme heterojunction photocatalyst with enhanced visible-light activity by Au loading. Journal of Materials Science and Technology, 2020, 56, 216-226.	5.6	172
14	Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. Journal of Materials Science and Technology, 2020, 56, 196-205.	5.6	126
15	One-pot preparation of double S-scheme Bi2S3/MoO3/C3N4 heterojunctions with enhanced photocatalytic activity originated from the effective charge pairs partition and migration. Applied Surface Science, 2020, 527, 146788.	3.1	37
16	Synergetic effect of ZnIn2S4 nanosheets with metal-organic framework molding heterostructure for efficient visible- light driven photocatalytic reduction of Cr(VI). Arabian Journal of Chemistry, 2020, 13, 5939-5948.	2.3	20
17	BiVO4@MoS2 core-shell heterojunction with improved photocatalytic activity for discoloration of Rhodamine B. Applied Surface Science, 2020, 528, 146949.	3.1	89
18	S-Scheme Heterojunction Photocatalyst. CheM, 2020, 6, 1543-1559.	5.8	1,993

#	Article	IF	CITATIONS
19	Embedding Pt nanoparticles at the interface of CdS/NaNbO3 nanorods heterojunction with bridge design for superior Z-Scheme photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 278, 119290.	10.8	63
20	Novel p-n type porous Ag2O/Bi5O7I heterojunction for Uv–Vis-NIR activated high efficient photocatalytic degradation of bisphenol A: Photoelectric properties and degradation mechanism. Applied Surface Science, 2020, 529, 147162.	3.1	41
21	The influence of the sacrificial agent nature on transformations of the Zn(OH) ₂ /Cd _{0.3} Zn _{0.7} S photocatalyst during hydrogen production under visible light. RSC Advances, 2020, 10, 1341-1350.	1.7	12
22	In2O3-(OH) /Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. Journal of Materials Science and Technology, 2020, 56, 151-161.	5.6	87
23	2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Science China Materials, 2020, 63, 2119-2152.	3.5	71
24	2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Applied Catalysis B: Environmental, 2020, 272, 119006.	10.8	604
25	Activation of graphitic carbon nitride by solvent-mediated supramolecular assembly for enhanced hydrogen evolution. Applied Surface Science, 2020, 525, 146444.	3.1	20
26	Recent advances in g-C3N4-based heterojunction photocatalysts. Journal of Materials Science and Technology, 2020, 56, 1-17.	5.6	297
27	S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. Journal of Materials Science and Technology, 2020, 52, 145-151.	5.6	133
28	2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chinese Journal of Catalysis, 2021, 42, 97-106.	6.9	131
29	Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chinese Journal of Catalysis, 2021, 42, 78-86.	6.9	86
30	Zn Cd1–S quantum dot with enhanced photocatalytic H2-production performance. Chinese Journal of Catalysis, 2021, 42, 15-24.	6.9	79
31	Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chinese Journal of Catalysis, 2021, 42, 56-68.	6.9	493
32	S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chinese Journal of Catalysis, 2021, 42, 69-77.	6.9	157
33	Fabrication of novel CoO/porous graphitic carbon nitride S-scheme heterojunction for efficient CO2 photoreduction. Materials Letters, 2021, 282, 128722.	1.3	33
34	Photocatalysis Within Intrinsic Spontaneous Polarization Electric Field. Solar Rrl, 2021, 5, 2000446.	3.1	18
35	S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chemical Engineering Journal, 2021, 409, 127377.	6.6	269
36	Enhanced photocatalytic H2 production performance of CdS hollow spheres using C and Pt as bi-cocatalysts. Chinese Journal of Catalysis, 2021, 42, 743-752.	6.9	67

#	Article	IF	CITATIONS
37	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42, 710-730.	6.9	182
38	CO2 selectivity of flower-like MoS2 grown on TiO2 nanofibers coated with acetic acid-treated graphitic carbon nitride. Solar Energy Materials and Solar Cells, 2021, 221, 110890.	3.0	23
39	Diethylenetriamine synergistic boosting photocatalytic performance with porous g-C3N4/CdS-diethylenetriamine 2D/2D S-scheme heterojunction. Journal of Alloys and Compounds, 2021, 863, 158068.	2.8	31
40	A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. Journal of CO2 Utilization, 2021, 43, 101381.	3.3	135
41	Reduced graphene oxide as a solid-state mediator in TiO2/In0.5WO3 S-scheme photocatalyst for hydrogen production. Solar Energy, 2021, 213, 260-270.	2.9	45
42	Advances in recyclable and superior photocatalytic fibers: Material, construction, application and future perspective. Composites Part B: Engineering, 2021, 205, 108512.	5.9	82
43	Visibleâ€Light Responsive TiO ₂ â€Based Materials for Efficient Solar Energy Utilization. Advanced Energy Materials, 2021, 11, 2003303.	10.2	118
44	Simultaneous realization of sulfur-rich surface and amorphous nanocluster of NiS1+ cocatalyst for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2021, 280, 119455.	10.8	105
45	Hollow CdS-based photocatalysts. Journal of Materiomics, 2021, 7, 419-439.	2.8	72
46	Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. Journal of Colloid and Interface Science, 2021, 585, 684-693.	5.0	85
47	Internal electric field induced S–scheme heterojunction MoS2/CoAl LDH for enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 585, 470-479.	5.0	154
48	Orienting Z scheme charge transfer in graphitic carbon nitride-based systems for photocatalytic energy and environmental applications. Journal of Materials Chemistry A, 2021, 9, 10039-10080.	5.2	90
49	Amorphous Co ₃ O ₄ quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p–n heterojunction for a highly efficient photocatalytic H ₂ evolution. Dalton Transactions, 2021, 50, 10501-10514.	1.6	35
50	Electrospun TiO ₂ â€Based Photocatalysts. Solar Rrl, 2021, 5, 2000571.	3.1	46
51	Cd _{0.8} Mn _{0.2} S/MoO ₃ composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2021, 50, 5360-5369.	1.6	18
52	Ag nanoparticle-decorated 2D/2D S-scheme g-C ₃ N ₄ /Bi ₂ WO ₆ heterostructures for an efficient photocatalytic degradation of tetracycline. CrystEngComm, 2021, 23, 4638-4647.	1.3	21
53	Ni-MOF-74 derived nickel phosphide and In ₂ O ₃ form S-scheme heterojunction for efficient hydrogen evolution. New Journal of Chemistry, 2021, 45, 16155-16167.	1.4	20
54	Design, Fabrication, and Mechanism of Nitrogenâ€Đoped Grapheneâ€Based Photocatalyst. Advanced Materials, 2021, 33, e2003521.	11.1	324

#	Article	IF	CITATIONS
55	Hollow Nanorods and Amorphous Co ₉ S ₈ Quantum Dots Construct S-Scheme Heterojunction for Efficient Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 648-659.	1.5	23
56	Nearâ€Infraredâ€Responsive Photocatalysts. Small Methods, 2021, 5, e2001042.	4.6	84
58	0D CdxZn1-xS and amorphous Co9S8 formed S-scheme heterojunction boosting photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 501, 111378.	1.0	22
59	Charge Transport Phenomena in Heterojunction Photocatalysts: The WO ₃ /TiO ₂ System as an Archetypical Model. ACS Applied Materials & Interfaces, 2021, 13, 9781-9793.	4.0	24
60	Preparation of Ga2O3/ZnO/WO3 double S-scheme heterojunction composite nanofibers by electrospinning method for enhancing photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2021, 32, 7307-7318.	1.1	15
62	Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3, 100051.	10.1	87
63	Synergistic Effect of Cu,F odoping of Titanium Dioxide for Multifunctional Catalytic and Photocatalytic Studies. Advanced Sustainable Systems, 2021, 5, 2000298.	2.7	8
64	NiFeâ€layered Double Hydroxide/Vertical Bi ₂ WO ₆ Nanoplate Arrays with Oriented {001} Facets Supported on ITO Glass: Improved Photoelectrocatalytic Activity and Mechanism Insight. ChemCatChem, 2021, 13, 3414-3420.	1.8	11
65	In Situ Synthesis of Mo ₂ C Nanoparticles on Graphene Nanosheets for Enhanced Photocatalytic H ₂ -Production Activity of TiO ₂ . ACS Sustainable Chemistry and Engineering, 2021, 9, 3828-3837.	3.2	56
66	An Inorganic/Organic Sâ€Scheme Heterojunction H ₂ â€Production Photocatalyst and its Charge Transfer Mechanism. Advanced Materials, 2021, 33, e2100317.	11.1	528
67	Synthesis of step-scheme In2Se3/CdSe nanocomposites photocatalysts for hydrogen production. Composites Communications, 2021, 24, 100618.	3.3	10
68	Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review. Environmental Chemistry Letters, 2021, 19, 2941-2966.	8.3	162
69	In-situ construction of 3D nanoflower-like BiOI/Bi2SiO5 heterojunctions with enhanced photocatalytic performance for removal of decontaminants originated from a step-scheme mechanism. Applied Surface Science, 2021, 544, 148883.	3.1	44
70	Photoactive TiO2/CuxO composite films for photocatalytic degradation of methylene blue pollutant molecules. Advanced Powder Technology, 2021, 32, 1287-1293.	2.0	14
71	In2Se3/CdS nanocomposites as high efficiency photocatalysts for hydrogen production under visible light irradiation. International Journal of Hydrogen Energy, 2021, 46, 15539-15549.	3.8	19
72	Sâ€Scheme Photocatalytic Systems. Solar Rrl, 2021, 5, 2100118.	3.1	128
73	Usage of natural leaf as a bio-template to inorganic leaf: Leaf structure black TiO2/CdS heterostructure for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 14369-14383.	3.8	33
74	CdS Q-Dot-Impregnated TiO ₂ -B Nanowire-Based Photoanodes for Efficient Photovoltaic Conversion in â€O-Dot Co-sensitized DSSC'. Energy &: Fuels. 2021. 35. 8246-8262.	2.5	17

#	Article	IF	CITATIONS
75	Step-scheme GdFeO3/g-C3N4 heterostructures with outstanding photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2021, 32, 16400-16410.	1.1	6
76	Tracking Sâ€Scheme Charge Transfer Pathways in Mo ₂ C/CdS H ₂ â€Evolution Photocatalysts. Solar Rrl, 2021, 5, 2100177.	3.1	117
77	BiOBr/PBCD-B-D dual-function catalyst with oxygen vacancies for Acid Orange 7 removal: Evaluation of adsorption-photocatalysis performance and synergy mechanism. Chemical Engineering Journal, 2021, 411, 128456.	6.6	50
78	Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 592, 237-248.	5.0	45
79	Pd nanoparticle-modified Bi2WO6 nanoplates used for visible-light-driven photocatalyst. Research on Chemical Intermediates, 2021, 47, 4157-4171.	1.3	11
80	Pyramidal CdS Polyhedron Modified with NiAl LDH to Form Sâ€scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2021, 13, 3525-3535.	1.8	23
81	Hierarchically Grown Ni–Mo–S Modified 2D CeO2 for High-Efficiency Photocatalytic Hydrogen Evolution. Catalysis Letters, 2022, 152, 931-943.	1.4	6
82	DFT Study on Regulating the Electronic Structure and CO2 Reduction Reaction in BiOBr/Sulphur-Doped G-C3N4 S-Scheme Heterojunctions. Frontiers in Nanotechnology, 2021, 3, .	2.4	33
83	Promotion of the excited electron transfer over MoO3@Cu3P p-n heterojunction for photocatalytic hydrogen production under visible light irradiation. Molecular Catalysis, 2021, 510, 111691.	1.0	12
84	Boosting light-driven CO2 reduction into solar fuels: Mainstream avenues for engineering ZnO-based photocatalysts. Environmental Research, 2021, 197, 111134.	3.7	61
85	TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Applied Catalysis B: Environmental, 2021, 289, 120039.	10.8	302
86	Construction of zinc-indium-sulfide/indium oxide step-scheme junction catalyst for enhanced photocatalytic activities of pollutant degradation and hydrogen generation. Separation and Purification Technology, 2021, 266, 118545.	3.9	27
87	TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity. Nano Research, 2023, 16, 4506-4514.	5.8	85
88	0D/2D NiS/CdS nanocomposite heterojunction photocatalyst with enhanced photocatalytic H2 evolution activity. Applied Surface Science, 2021, 554, 149622.	3.1	48
89	Constructing g-C3N4/SnO2 S-scheme heterojunctions for efficient photocatalytic NO removal and low NO2 generation. Journal of Science: Advanced Materials and Devices, 2021, 6, 551-559.	1.5	11
90	A New Allotrope of Carbon—Graphdiyne (gâ€C <i>_n</i> H ₂ <i>_n</i> _{a^2}) Boosting with Mn _{0.2} Cd _{0.8} S form Sâ€Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution, Advanced Materials Interfaces, 2021, 8, 2100630.	1.9	26
91	Novel 0D/1D ZnBi2O4/ZnO S-scheme photocatalyst for hydrogen production and BPA removal. International Journal of Hydrogen Energy, 2021, 46, 24094-24106.	3.8	56
92	Mixed-dimensional 1D CdS/2D MoSe2 heterostructures for high-performance photocatalytic hydrogen production. Surfaces and Interfaces, 2021, 25, 101192.	1.5	7

#	Article	IF	CITATIONS
93	Construction of Bi ₂ S ₃ /TiO ₂ /MoS ₂ S‧cheme Heterostructure with a Switchable Charge Migration Pathway for Selective CO ₂ Reduction. Solar Rrl, 2021, 5, 2100501.	3.1	27
94	BiVO3/g-C3N4 S-scheme heterojunction nanocomposite photocatalyst for hydrogen production and amaranth dye removal. Optical Materials, 2021, 118, 111237.	1.7	50
95	A Facile In Situ Hydrothermal Etching Method to CaTiO3/TiO2 Heterostructure for Efficient Photocatalytic N2 Reduction. Catalysis Letters, 2022, 152, 1990-1998.	1.4	7
96	Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. Journal of Materiomics, 2021, 7, 988-997.	2.8	77
97	Preparation of novel 0D/2D Ag2WO4/WO3 Step-scheme heterojunction with effective interfacial charges transfer for photocatalytic contaminants degradation and mechanism insight. Chemical Engineering Journal, 2021, 420, 130361.	6.6	58
98	Znâ€Vacancy Engineered Sâ€Scheme ZnCdS/ZnS Photocatalyst for Highly Efficient Photocatalytic H ₂ Evolution. ChemCatChem, 2021, 13, 4738-4750.	1.8	53
99	0D/2D CdS/ZnO composite with n-n heterojunction for efficient detection of triethylamine. Journal of Colloid and Interface Science, 2021, 600, 898-909.	5.0	44
100	Enhanced photocatalytic performance of TiO2/BiOI heterojunctions benefited from effective separation of photogenerated carriers. Chemical Physics Letters, 2021, 780, 138966.	1.2	13
101	Step-scheme BiVO4/WO3 heterojunction photocatalyst under visible LED light irradiation removing 4-chlorophenol in aqueous solutions. Journal of Environmental Management, 2021, 297, 113338.	3.8	22
102	2D/2D Covalent triazine-based heterostructure membrane for highly enhanced photoactivity and anti-fouling ability. Chemical Engineering Journal, 2021, 424, 129829.	6.6	12
103	Oxygen vacancy mediated step-scheme heterojunction of WO2.9/g-C3N4 for efficient electrochemical sensing of 4-nitrophenol. Chemical Engineering Journal Advances, 2021, 8, 100175.	2.4	9
104	Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers. Journal of Colloid and Interface Science, 2022, 605, 385-397.	5.0	68
105	Design and fabrication of a CdS QDs/Bi2WO6 monolayer S-scheme heterojunction configuration for highly efficient photocatalytic degradation of trace ethylene in air. Chemical Engineering Journal, 2022, 429, 132241.	6.6	56
106	Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions. Physical Chemistry Chemical Physics, 2021, 23, 22743-22749.	1.3	7
107	Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catalysis Science and Technology, 2021, 11, 27-42.	2.1	86
108	One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. Journal of Materials Science and Technology, 2020, 56, 206-215.	5.6	126
109	Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. Journal of Materials Science and Technology, 2020, 56, 236-243.	5.6	106
110	MoP@MoO ₃ S-scheme heterojunction <i>in situ</i> construction with phosphating MoO ₃ for high-efficient photocatalytic hydrogen production. Nanoscale, 2021, 13, 18507-18519.	2.8	22

#	Article	IF	CITATIONS
111	Recent advances in Co-based co-catalysts for efficient photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2022, 608, 1553-1575.	5.0	15
112	Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst. Journal of Colloid and Interface Science, 2022, 608, 2213-2223.	5.0	48
113	ZnCdS/NiAl hydrotalcite S-scheme heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 292-304.	3.8	36
114	Hexagonal CdS single crystals coupled with layered CoAl LDH—a step-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Sol-Gel Science and Technology, 2023, 107, 70-82.	1.1	4
115	Boosting the photocatalytic H ₂ evolution activity of a CdS/N-doped Znln ₂ S ₄ direct Z-scheme heterostructure using a band alignment regulation strategy. Sustainable Energy and Fuels, 2021, 5, 6441-6448.	2.5	4
116	Designing and fabricating a CdS QDs/Bi2MoO6 monolayer S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation under visible light. Journal of Hazardous Materials, 2022, 424, 127685.	6.5	51
117	Current status on designing of dual Z-scheme photocatalysts for energy and environmental applications. Journal of Industrial and Engineering Chemistry, 2022, 106, 340-355.	2.9	39
118	Hollow tubular Co9S8 grown on In2O3 to form S-scheme heterojunction for efficient and stable hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 1669-1682.	3.8	24
119	Bi2O2CO3/red phosphorus S-scheme heterojunction for H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2022, 609, 320-329.	5.0	32
120	S-Scheme α-Fe2O3/TiO2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H2 Production Activity and Stability. Catalysis Letters, 2022, 152, 2590-2606.	1.4	16
121	Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 609, 212-223.	5.0	28
122	Composite photocatalysts based on Cd _{1â^'<i>x</i>} Zn _{<i>x</i>} S and TiO ₂ for hydrogen production under visible light: effect of platinum co-catalyst location. RSC Advances, 2021, 11, 37966-37980.	1.7	5
123	2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation. Journal of Colloid and Interface Science, 2022, 612, 722-736.	5.0	34
124	WO3(H2O)0.333/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for hydrogen production. Surfaces and Interfaces, 2022, 29, 101702.	1.5	2
125	Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution. Journal of Materials Science and Technology, 2022, 112, 85-95.	5.6	92
126	NiO and Co _{1.29} Ni _{1.71} O ₄ Derived from NiCo LDH Form S-scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
127	ZIF-67 Dodecahedron Coupled with CoAl-Layered Double Hydroxide as S-Scheme Heterojunction for Efficient Visible-Light-Driven Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
128	Preparation of a Photosensitive Composite Carbon Fiber for Spilled Oil Cleaning. Journal of Composites Science, 2022, 6, 28.	1.4	3

	CITATION R	EPORT	
#	ARTICLE	IF	Citations
129	NiO and Co1.29Ni1.71O4 derived from NiCo LDH form S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 904, 164041.	2.8	18
130	Microwave Boosting of Interfacial Tunneling Electron Transfer in a Quantum Dot-Sensitized Photoelectrode. Bulletin of the Chemical Society of Japan, 2022, 95, 288-295.	2.0	1
131	Ternary Oxide CuWO ₄ /BiVO ₄ /FeCoO _{<i>x</i>} Films for Photoelectrochemical Water Oxidation: Insights into the Electronic Structure and Interfacial Band Alignment. ACS Applied Materials & Interfaces, 2022, 14, 22858-22869.	4.0	21
132	Emerging Sâ€Scheme Photocatalyst. Advanced Materials, 2022, 34, e2107668.	11.1	717
133	Photothermocatalytic System Designed by Facetâ€heterojunction to Enhance the Synergistic Effect of Toluene Oxidation. ChemCatChem, 2022, 14, .	1.8	3
134	NiAl‣DH In‣itu Derived Ni ₂ P and ZnCdS Nanoparticles Ingeniously Constructed Sâ€Scheme Heterojunction for Photocatalytic Hydrogen Evolution. ChemCatChem, 2022, 14, .	1.8	65
135	ZIF-67 derived hierarchical hollow Co ₃ S ₄ @Mo ₂ S ₃ dodecahedron with an S-scheme surface heterostructure for efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2022, 12, 1144-1158.	2.1	21
136	Designing S-scheme Au/g-C3N4/BiO1.2I0.6 plasmonic heterojunction for efficient visible-light photocatalysis. Separation and Purification Technology, 2022, 287, 120531.	3.9	38
137	Organic amine surface modified one-dimensional CdSe0.8S0.2-diethylenetriamine/two-dimensional SnNb2O6 S-scheme heterojunction with promoted visible-light-driven photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2022, 43, 255-264.	6.9	107
138	UV-VIS-NIR-induced extraordinary H2 evolution over W18O49/Cd0.5Zn0.5S: Surface plasmon effect coupled with S-scheme charge transfer. Chinese Journal of Catalysis, 2022, 43, 234-245.	6.9	82
139	1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution. Chinese Journal of Catalysis, 2022, 43, 339-349.	6.9	105
140	Promoting photocarriers separation in S-scheme system with Ni2P electron bridge: The case study of BiOBr/Ni2P/g-C3N4. Chinese Journal of Catalysis, 2022, 43, 276-287.	6.9	33
141	Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. Chinese Journal of Catalysis, 2022, 43, 350-358.	6.9	66
142	New progress on MXenes-based nanocomposite photocatalysts. Materials Reports Energy, 2022, 2, 100081.	1.7	7
143	Step-scheme ZnO@ZnS hollow microspheres for improved photocatalytic H2 production performance. Chinese Journal of Catalysis, 2022, 43, 329-338.	6.9	68
144	Selective CO2 photoreduction to CH4 mediated by dimension-matched 2D/2D Bi3NbO7/g-C3N4 S-scheme heterojunction. Chinese Journal of Catalysis, 2022, 43, 246-254.	6.9	85
145	Nanoscale modification of carbon fibers with CdS quantum-dot sensitized TiO2: Photocatalytic and photothermal evaluation under visible irradiation. Materials Science in Semiconductor Processing, 2022, 142, 106485.	1.9	12
146	Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chemical Engineering Journal, 2022, 437, 135153.	6.6	102

#	Article	IF	CITATIONS
147	Excellent photocatalytic degradation and antibiosis of WO ₃ /Fe ₂ O ₃ heterojunction. Materials Research Express, 2022, 9, 055010.	0.8	2
148	Electrospun Semiconductorâ€Based Nanoâ€Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges. Energy and Environmental Materials, 2023, 6, .	7.3	37
149	Hydrochloric acid-mediated synthesis of ZnFe2O4 small particle decorated one-dimensional Perylene Diimide S-scheme heterojunction with excellent photocatalytic ability. Chinese Journal of Catalysis, 2022, 43, 1111-1122.	6.9	48
150	Activating and Optimizing the Mos2@Moo3 S-Scheme Heterojunction Catalyst Through Interface Engineering to Form a Sulfur-Rich Surface for Photocatalyst Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
151	Regulation on MoO2/Mn0·2Cd0·8S S-scheme heterojunction for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 11561-11573.	3.8	21
152	ZIF-67 dodecahedron coupled with CoAl-layered double hydroxide as S-scheme heterojunction for efficient visible-light-driven hydrogen evolution. Applied Surface Science, 2022, 592, 153300.	3.1	24
153	Construction of a Novel Co ₂ P/TiO ₂ Zâ€Scheme Junction for Efficient Solarâ€Driven Photocatalytic H ₂ Evolution. Energy Technology, 2022, 10, .	1.8	4
154	Direct Z-scheme Ba0.8Sr0.2TiO3/Ag/Ag2O heterostructural nanotube with pyroelectric and photocatalytic synergy for enhanced catalytic performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 279, 115678.	1.7	4
155	Activating and optimizing the MoS2@MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution. Chemical Engineering Journal, 2022, 438, 135238.	6.6	49
156	Enhanced photocatalytic and antibacterial activities of S-scheme SnO2/Red phosphorus photocatalyst under visible light. Chemosphere, 2022, 296, 134013.	4.2	28
157	EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2022, 121, 28-39.	5.6	126
158	Efficient interfacial charge transfer of BiOCl-In2O3 step-scheme heterojunction for boosted photocatalytic degradation of ciprofloxacin. Journal of Materials Science and Technology, 2022, 121, 236-244.	5.6	48
159	Microwave hydrothermal synthesis of WO3(H2O)0.333/CdS nanocomposites for efficient visible-light photocatalytic hydrogen evolution. Frontiers of Materials Science, 2021, 15, 589-600.	1.1	3
160	Review on g-C3N4-based S-scheme heterojunction photocatalysts. Journal of Materials Science and Technology, 2022, 125, 128-144.	5.6	126
161	S-Scheme Bi ₂ S ₃ /CdS Nanorod Heterojunction Photocatalysts with Improved Carrier Separation and Redox Capacity for Pollutant Removal. ACS Applied Nano Materials, 2022, 5, 5448-5458.	2.4	16
162	Advanced Electrospun Nanofibrous Materials for Efficient Oil/Water Separation. Advanced Fiber Materials, 2022, 4, 938-958.	7.9	63
163	One-pot synthesis of Zn–CdS@C nanoarchitecture with improved photocatalytic performance toward antibiotic degradation. Chemosphere, 2022, 300, 134621.	4.2	13
165	Rational design of a 2D TiO ₂ –MoO ₃ step-scheme heterostructure for boosted photocatalytic overall water splitting. New Journal of Chemistry, 2022, 46, 9629-9640.	1.4	21

#	Article	IF	CITATIONS
166	Synergistic Effect of Bimetallic Sulfide Enhances the Performance of CdS Photocatalytic Hydrogen Evolution. Advanced Sustainable Systems, 2023, 7, .	2.7	28
167	Construction of S-scheme BiOCI/CdS composite for enhanced photocatalytic degradation of antibiotic. Journal of Materials Science: Materials in Electronics, 2022, 33, 13303-13315.	1.1	13
168	In-situ preparation of S-scheme BiOI/BiVO4 heterojunctions with enhanced photocatalytic performance. Solid State Sciences, 2022, 129, 106908.	1.5	7
169	Polyaniline/g-C3N4 hybrid nanoparticles: Fabrication, characterization and boosting bisphenol destruction and hydrogen gas evolution through direct S-scheme aspects. Journal of Physics and Chemistry of Solids, 2022, 168, 110773.	1.9	12
170	A low cost and green curcumin/ZnO nanocomposites: Preparation, characterization and photocatalytic aspects in removal of amaranth dye and hydrogen evolution generation. Optical Materials, 2022, 128, 112331.	1.7	5
171	Facile preparation of Nb2O5/TiO2 heterostructures for photocatalytic application. Chemical Physics Impact, 2022, 4, 100079.	1.7	13
172	Fabrication of MOF-derived CoTiO3/g-C3N4 S-scheme heterojunction for photocatalyst wastewater treatment. Journal of Alloys and Compounds, 2022, 918, 165698.	2.8	19
173	Recent trends in photocatalytic water splitting using titania based ternary photocatalysts-A review. International Journal of Hydrogen Energy, 2022, 47, 22371-22402.	3.8	33
174	Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2022, 315, 121546.	10.8	80
175	First Principle DFT + U Calculations for the Optoelectronic Properties of Cu and C-Cu co-doped TiO2 Anatase Model. Asian Journal of Chemistry, 2022, 34, 1863-1868.	0.1	1
176	Graphdiyne(Cnh2n-2) Based Nis S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Production. SSRN Electronic Journal, 0, , .	0.4	0
177	CoAl LDH in-situ derived CoAlP coupling with Ni2P form S-scheme heterojunction for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 23618-23631.	3.8	25
178	Plasmon Ag/AgVO3/ TiO2-nanowires S-scheme heterojunction photocatalyst for CO2 reduction. Journal of Environmental Chemical Engineering, 2022, 10, 108045.	3.3	18
179	<i>In Situ</i> Derivatization of NiAl-LDH/NiS a p–n Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 8157-8168.	2.5	10
180	Fabrication of Ultrathin Two-Dimensional/Two-Dimensional MoS ₂ /ZnIn ₂ S ₄ Hybrid Nanosheets for Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 8232-8240.	2.5	14
181	Dimensional-matched two dimensional/two dimensional TiO2/Bi2O3 step-scheme heterojunction for boosted photocatalytic performance of sterilization and water splitting. Journal of Colloid and Interface Science, 2022, 628, 166-178.	5.0	29
182	Bulk and surface dual-defects NiOx/B-TiO2@CdS photocatalyst for stable and effective photocatalytic hydrogen evolution. Journal of Materials Science, 2022, 57, 14450-14463.	1.7	6
183	Interfacial-engineered CoTiO3-based composite for photocatalytic applications: a review. Environmental Chemistry Letters, 2022, 20, 3039-3069.	8.3	17

#	Article	IF	CITATIONS
184	Dithizone, carminic acid and pyrocatechol violet dyes sensitized metal (Ho, Ba& Cd) doped TiO2/CdS nanocomposite as a photoanode in hybrid heterojunction solar cell. Ceramics International, 2022, 48, 31478-31490.	2.3	3
185	Fe3O4/Co3O4–TiO2 S-scheme photocatalyst for degradation of organic pollutants and H2 production under natural sunlight. Journal of Materials Research and Technology, 2022, 20, 1043-1056.	2.6	17
186	The role and effect of CdS-based TiO2 photocatalysts enhanced with a wetness impregnation method for efficient photocatalytic glucose electrooxidation. Surfaces and Interfaces, 2022, 33, 102250.	1.5	5
187	Fabrication of beta zeolite supported Ti3+-TiO2/CdS composite for ultrahigh-performance photodegradation of tetracycline under visible-light illumination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129965.	2.3	3
188	In-situ irradiated XPS investigation on 2D/1D Cd0.5Zn0.5S/Nb2O5 S-scheme heterojunction photocatalysts for simultaneous promotion of antibiotics removal and hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129846.	2.3	21
189	A review of step-scheme photocatalysts. Applied Materials Today, 2022, 29, 101609.	2.3	22
190	Metal oxide/2D layered TMDs composites for H2 evolution reaction via photocatalytic water splitting – A mini review. Inorganic Chemistry Communication, 2022, 145, 109971.	1.8	13
191	Imprinted modified S-scheme heterojunction with high selectivity for inhibiting CdS photocorrosion by coating with poly-o-phenylenediamine. Applied Surface Science, 2022, 605, 154694.	3.1	7
192	Facile synthesis, optical properties regulation and boosted photocatalytic degradation performance for organic pollutants of Mn:CuInS2/CdS nanocrystals. Journal of Luminescence, 2022, 252, 119355.	1.5	4
193	Partial phosphating of Ni-MOFs and Cu2S snowflakes form 2D/2D structure for efficiently improved photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 36530-36542.	3.8	6
194	In Situâ€Illuminated Xâ€Ray Photoelectron Spectroscopy Investigation of Sâ€Scheme Ta ₂ O ₅ /ZnIn ₂ S ₄ Core–Shell Hybrid Nanofibers for Highly Efficient Solarâ€Driven CO ₂ Overall Splitting. Solar Rrl, 2022, 6, .	3.1	7
195	Ultra-Fast Construction of Novel S-Scheme CuBi2O4/CuO Heterojunction for Selectively Photocatalytic CO2 Conversion to CO. Nanomaterials, 2022, 12, 3247.	1.9	2
196	An Efficient Photocatalyst with Pt/TiO2@CdS/Co3O4 Hollow Core–Shell Nanostructure for Overall Water Splitting. Jom, 2022, 74, 4441-4448.	0.9	2
197	Synthesis of novel tetranuclear Ni complex incorporated mesoporous silica for improved photocatalytic degradation of methylene blue in presence of visible light. Polyhedron, 2022, 228, 116161.	1.0	9
198	One-Step Hydrothermal Synthesis of an Orthorhombic WO ₃ ·H2O/TiO ₂ Heterojunction and its Photocatalytic Activity. Materials Science Forum, 0, 1072, 195-201.	0.3	1
199	Molybdenum Carbide-Based Photocatalysts: Synthesis, Functionalization, and Applications. Langmuir, 2022, 38, 12739-12756.	1.6	43
200	Construction of step-scheme g-C3N4/Co/ZnO heterojunction photocatalyst for aerobic photocatalytic degradation of synthetic wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130449.	2.3	23
201	Plate-on-plate structured MoS2/Cd0.6Zn0.4S Z-scheme heterostructure with enhanced photocatalytic hydrogen production activity via hole sacrificial agent synchronously strengthen half-reactions. Journal of Colloid and Interface Science, 2023, 630, 341-351.	5.0	27

#	Article	IF	CITATIONS
202	A review on S-scheme and dual S-scheme heterojunctions for photocatalytic hydrogen evolution, water detoxification and CO2 reduction. Fuel, 2023, 333, 126267.	3.4	65
203	Emerging trends of pseudobrookite Fe2TiO5 photocatalyst: A versatile material for solar water splitting systems. Journal of Alloys and Compounds, 2023, 933, 167710.	2.8	9
204	Two-dimensional heterostructures for photocatalytic CO2 reduction. Environmental Research, 2023, 216, 114699.	3.7	7
205	MOF-Derived Non-Noble Metal CoP Nanoparticle Modified TiO ₂ for Enhanced Photocatalytic Hydrogen Production. Industrial & Engineering Chemistry Research, 2022, 61, 16653-16661.	1.8	5
206	Graphdiyne(CnH2n-2) based NiS S-scheme heterojunction for efficient photocatalytic hydrogen production. Renewable Energy, 2022, 201, 854-863.	4.3	17
207	Fabrication of S-scheme hollow TiO2@Bi2MoO6 composite for efficiently photocatalytic CO2 reduction. Materials Today Chemistry, 2023, 27, 101260.	1.7	4
208	Construction of 1D/0D CdS nanorods/Ti3C2 QDs Schottky heterojunctions for efficient photocatalysis. Journal of Environmental Chemical Engineering, 2023, 11, 109191.	3.3	7
209	Designing novel step-scheme heterojunction g-C3N4/TMCs/GO with effective charge transfer for photocatalytic degradation of organic pollutant under visible light. Separation and Purification Technology, 2023, 306, 122736.	3.9	9
210	Visible-light active S-scheme heterojunction photocatalyst based on nanosized anatase TiO2 and octahedral iodide molybdenum clusters. Applied Surface Science, 2023, 612, 155738.	3.1	6
211	Strategy III: Formation of Heterostructures. , 2022, , 125-156.		0
211 212	Strategy III: Formation of Heterostructures. , 2022, , 125-156. A Twin Sâ€Scheme Artificial Photosynthetic System with Selfâ€Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, .	11.1	0
211 212 213	Strategy III: Formation of Heterostructures., 2022, , 125-156. A Twin Sâ€Scheme Artificial Photosynthetic System with Selfâ€Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, . Heterojunction Photocatalysts for Solar Energy Conversion., 2022, , 1-42.	11.1	0 104 0
211 212 213 214	Strategy III: Formation of Heterostructures. , 2022, , 125-156. A Twin Sâ€Scheme Artificial Photosynthetic System with Selfâ€Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, . Heterojunction Photocatalysts for Solar Energy Conversion. , 2022, , 1-42. Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287.	11.1	0 104 0 16
211 212 213 214 215	Strategy III: Formation of Heterostructures. , 2022, , 125-156. A Twin Sâ€6cheme Artificial Photosynthetic System with Selfâ€Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, . Heterojunction Photocatalysts for Solar Energy Conversion. , 2022, , 1-42. Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287. Exploring the Effects of Crystal Facet Orientation at the Heterojunction Interface on Charge Separation for Photoanodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 3566-3573.	11.1 3.8 4.0	0 104 0 16 5
211 212 213 214 214 215 216	Strategy III: Formation of Heterostructures. , 2022, , 125-156. A Twin Sâ€6cheme Artificial Photosynthetic System with Selfâ€Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, . Heterojunction Photocatalysts for Solar Energy Conversion. , 2022, , 1-42. Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287. Exploring the Effects of Crystal Facet Orientation at the Heterojunction Interface on Charge Separation for Photoanodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 3566-3573. Facile Synthesis of Nano-Flower β-Bi2O3/TiO2 Heterojunction as Photocatalyst for Degradation RhB. Molecules, 2023, 28, 882.	11.1 3.8 4.0 1.7	0 104 0 16 5
211 212 213 214 215 216 217	Strategy III: Formation of Heterostructures. , 2022, , 125-156. A Twin Sâ&E6cheme Artificial Photosynthetic System with Selfâ&Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, . Heterojunction Photocatalysts for Solar Energy Conversion. , 2022, , 1-42. Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287. Exploring the Effects of Crystal Facet Orientation at the Heterojunction Interface on Charge Separation for Photoanodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 3566-3573. Facile Synthesis of Nano-Flower β-Bi2O3/TiO2 Heterojunction as Photocatalyst for Degradation RhB. Molecules, 2023, 28, 882. Advances in photocatalytic environmental and clean energy applications of bismuth-rich oxy halides-based heterojunctions: aÅreview. Materials Today Sustainability, 2023, 21, 100327.	11.1 3.8 4.0 1.7	0 104 0 16 5 5
 211 212 213 214 215 216 217 218 	Strategy III: Formation of Heterostructures. , 2022, , 125-156. A Twin Sâ@Gcheme Artificial Photosynthetic System with Selfâ@Assembled Heterojunctions Yields Superior Photocatalytic Hydrogen Evolution Rate. Advanced Materials, 2023, 35, . Heterojunction Photocatalysts for Solar Energy Conversion. , 2022, , 1-42. Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287. Exploring the Effects of Crystal Facet Orientation at the Heterojunction Interface on Charge Separation for Photoanodes. ACS Applied Materials & amp; Interfaces, 2023, 15, 3566-3573. Facile Synthesis of Nano-Flower β-Bi2O3/TiO2 Heterojunction as Photocatalyst for Degradation RhB. Molecules, 2023, 28, 882. Advances in photocatalytic environmental and clean energy applications of bismuth-rich oxy halides-based heterojunctions: aAreview. Materials Today Sustainability, 2023, 21, 100327. Construction of OD/3D CdS/CoAl-LDH S-scheme heterojunction with boosted charge transfer and highly hydrophilic surface for enhanced photocatalytic hydrogen evolution and antibiotic degradation. Fuel, 2023, 338, 127259.	11.1 3.8 4.0 1.7 1.9 3.4	0 104 0 16 5 5 5 9

#	Article	IF	CITATIONS
220	Fabrication of Step‣cheme Heterojunction between Layered MoO ₃ /TiO ₂ for Photocatalytic H ₂ Evolution and Study on the Mechanism. Advanced Sustainable Systems, 2023, 7, .	2.7	9
221	In-situ growth of heterojunction CdS/TiO2 nanofibers monolithic photocatalyst sheet for enhanced hydrogen evolution. Sustainable Energy and Fuels, 0, , .	2.5	0
222	Synthesis of Z-schemes 0D–3D heterojunction bi-functional photocatalyst with ZnInCuS alloyed QDs supported BiOI MF for H ₂ O ₂ production and N ₂ fixation. Catalysis Science and Technology, 2023, 13, 1311-1324.	2.1	6
223	Modulating the tunable interfacial charge transfer of Z-scheme TiO ₂ /CdS with Ti–S bonds for enhanced glucose photoreforming. Journal of Materials Chemistry A, 2023, 11, 8235-8247.	5.2	4
224	Electronic structure regulation of an S-scheme CuBi2O4/Sr0.5NaTaO3 heterojunction with efficient carrier spatial transfer. Separation and Purification Technology, 2023, 317, 123856.	3.9	13
225	ZnAl2O4/sulfur-doped g-C3N4 S-scheme heterojunction for efficient photocatalytic degradation of malachite green. Optical Materials, 2023, 136, 113488.	1.7	7
226	Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering. Chemical Physics Letters, 2023, 815, 140365.	1.2	8
227	Synthesis of C/CdS/TiO2 Composite for Photocatalytic Degradation of Cationic Yellow X-GL. Water, Air, and Soil Pollution, 2023, 234, .	1.1	0
228	Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion. Journal of Environmental Chemical Engineering, 2023, 11, 109517.	3.3	8
229	Bimetallic CuAg Alloyed Nanoparticles Anchored on CdS Nanorods for the Photocatalytic Degradation of Enrofloxacin. ACS Applied Nano Materials, 2023, 6, 4554-4566.	2.4	8
230	Effect of Sulfur Contents in NiZnS Composite Photocatalysts on Solar Water Splitting. Journal of Korean Institute of Metals and Materials, 2023, 61, 284-290.	0.4	0
231	MoS2/polyaniline (PANI)/polyacrylonitrile (PAN)@BiFeO3 bilayer hollow nanofiber membrane: Photocatalytic filtration and piezoelectric effect enhancing degradation and disinfection. Journal of Colloid and Interface Science, 2023, 644, 29-41.	5.0	10
234	Heterojunction Photocatalysts for Solar Energy Conversion. , 2023, , 2181-2222.		0
243	CdS-based S-scheme photocatalyst. Interface Science and Technology, 2023, , 175-199.	1.6	1
244	Principles of photocatalysis. Interface Science and Technology, 2023, , 1-52.	1.6	0
245	Other S-scheme photocatalysts. Interface Science and Technology, 2023, , 253-287.	1.6	2
246	Characterization methods of S-scheme photocatalyst. Interface Science and Technology, 2023, , 103-131.	1.6	0
247	TiO2-based S-scheme photocatalyst. Interface Science and Technology, 2023, , 133-174.	1.6	1

#	Article	IF	CITATIONS
262	Percolation Nature of Threshold Switching: an Experimental Verification. , 2023, , .		0