Pedestrians and E-Scooters: An Initial Look at E-Scooter and Non-Riders

Sustainability

11,5591

DOI: 10.3390/su11205591

Citation Report

#	Article	IF	Citations
1	Evaluating Pedestrians' Safety on Urban Intersections: A Visibility Analysis. Sustainability, 2019, 11, 6630.	1.6	11
2	Sustainable Mobility: A Review of Possible Actions and Policies. Sustainability, 2020, 12, 7499.	1.6	63
3	From shared micro-mobility to shared responsibility: Using crowdsourcing to understand dockless vehicle violations in Austin, Texas. Journal of Urban Affairs, 2022, 44, 1341-1353.	1.0	13
4	Survey of E-scooter users in Vienna: Who they are and how they ride. Journal of Transport Geography, 2020, 89, 102874.	2.3	113
5	Considering the Potential Health Impacts of Electric Scooters: An Analysis of User Reported Behaviors in Provo, Utah. International Journal of Environmental Research and Public Health, 2020, 17, 6344.	1.2	37
6	Same same, but different? Cycling and eâ€scootering in a rapidly changing urban transport landscape. New Zealand Geographer, 2020, 76, 194-206.	0.4	13
7	Estimating E-Scooter Traffic Flow Using Big Data to Support Planning for Micromobility. Journal of Urban Technology, 2022, 29, 139-157.	2.5	22
8	Safety of micro-mobility: Analysis of E-Scooter crashes by mining news reports. Accident Analysis and Prevention, 2020, 143, 105608.	3.0	128
9	Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between Dockless E-Scooters, Displaced Transport, and Personal E-Scooters. Sustainability, 2020, 12, 1803.	1.6	104
10	Impeding access: The frequency and characteristics of improper scooter, bike, and car parking. Transportation Research Interdisciplinary Perspectives, 2020, 4, 100099.	1.6	39
11	The early days of shared micromobility: A social practices approach. Journal of Transport Geography, 2020, 86, 102779.	2.3	47
12	Challenges Caused by Increased Use of E-Powered Personal Mobility Vehicles in European Cities. Sustainability, 2020, 12, 273.	1.6	81
13	E-scooters and sustainability: Investigating the relationship between the density of E-scooter trips and characteristics of sustainable urban development. Sustainable Cities and Society, 2021, 66, 102624.	5.1	83
14	Transportation Transformation: Is Micromobility Making a Macro Impact on Sustainability?. Journal of Planning Literature, 2021, 36, 46-61.	2.2	42
15	Free-floating electric scooters: representation in French mainstream media. International Journal of Sustainable Transportation, 2021, 15, 778-787.	2.1	9
16	Formation Mechanisms and Clustering Differences in Risky Riding Behaviors of Electric Bike Riders. IEEE Access, 2021, 9, 119712-119721.	2.6	4
17	Road Transport: E-Scooters. , 2021, , 391-398.		2
18	Sharing: Attitudes and Perceptions. , 2021, , 187-192.		O

#	ARTICLE	IF	CITATIONS
19	Perception Analysis of E-Scooter Riders and Non-Riders in Riyadh, Saudi Arabia: Survey Outputs. Sustainability, 2021, 13, 863.	1.6	47
20	Can you Park your Scooter There? Why Scooter Riders Mispark and What to do about it. Findings, 0, , .	0.0	6
21	Consumer acceptance of shared e-scooters for urban and short-distance mobility. Transportation Research, Part D: Transport and Environment, 2021, 91, 102680.	3.2	79
22	Survey on e-Powered Micro Personal Mobility Vehicles: Exploring Current Issues towards Future Developments. Sustainability, 2021, 13, 3692.	1.6	62
23	Assessing the Willingness to Use Personal e-Transporters (PeTs): Results from a Cross-National Survey in Nine European Cities. Sustainability, 2021, 13, 3844.	1.6	7
24	E-Scooter safety: The riding risk analysis based on mobile sensing data. Accident Analysis and Prevention, 2021, 151, 105954.	3.0	79
25	Examining municipal guidelines for users of shared E-Scooters in the United States. Transportation Research, Part D: Transport and Environment, 2021, 92, 102710.	3.2	30
26	Transportation technologies, sharing economy, and teleactivities: Implications for built environment and travel. Transportation Research, Part D: Transport and Environment, 2021, 92, 102716.	3.2	65
27	Light Freight Railway (LFR) as an innovative solution for Sustainable Urban Freight Transport. Sustainable Cities and Society, 2021, 66, 102663.	5.1	20
28	Changes in Travel Behavior, Attitudes, and Preferences among E-Scooter Riders and Nonriders: First Look at Results from Pre and Post E-Scooter System Launch Surveys at Virginia Tech. Transportation Research Record, 2021, 2675, 335-345.	1.0	29
29	E-scooter sharing to serve short-distance transit trips: A Singapore case. Transportation Research, Part A: Policy and Practice, 2021, 147, 177-196.	2.0	32
30	The E-Scooter Potential to Change Urban Mobilityâ€"Belgrade Case Study. Sustainability, 2021, 13, 5948.	1.6	27
31	What type of infrastructures do e-scooter riders prefer? A route choice model. Transportation Research, Part D: Transport and Environment, 2021, 94, 102761.	3.2	57
32	The role of consumer innovativeness and green perceptions on green innovation use: The case of shared eâ€bikes and eâ€scooters. Journal of Consumer Behaviour, 2021, 20, 1466-1479.	2.6	41
33	The relationship between E-scooter travels and daily leisure activities in Austin, Texas. Transportation Research, Part D: Transport and Environment, 2021, 95, 102844.	3.2	23
34	Scoot over: Determinants of shared electric scooter presence in Washington D.C. Case Studies on Transport Policy, 2021, 9, 418-430.	1.1	27
35	Comparison of motor vehicle-involved e-scooter and bicycle crashes using standardized crash typology. Journal of Safety Research, 2021, 77, 217-228.	1.7	52
36	"l'll Take the E-Scooter Instead of My Carâ€â€"The Potential of E-Scooters as a Substitute for Car Trips in Germany. Sustainability, 2021, 13, 7361.	1.6	21

#	Article	IF	CITATIONS
37	How Do Shared Dockless E-Scooter Services Affect Mobility Practices in Paris? A Survey-Based Estimation of Modal Shift. Transportation Research Record, 2021, 2675, 291-304.	1.0	13
38	Shared E-Scooters: A Review of Uses, Health and Environmental Impacts, and Policy Implications of a New Micro-Mobility Service. Sustainability, 2021, 13, 8676.	1.6	54
39	Identifying and Selecting Key Sustainable Parameters for the Monitoring of e-Powered Micro Personal Mobility Vehicles. Evidence from Italy. Sustainability, 2021, 13, 9226.	1.6	12
40	E-scooters in urban infrastructure: Understanding sidewalk, bike lane, and roadway usage from trajectory data. Case Studies on Transport Policy, 2021, 9, 983-994.	1.1	26
41	Blurred boundaries: E-scooter riders' and pedestrians' experiences of sharing space. Mobilities, 2022, 17, 69-84.	2.5	17
42	Planning for e-scooter use in metropolitan cities: A case study for Paris. Transportation Research, Part D: Transport and Environment, 2021, 100, 103037.	3.2	37
43	Assessing a priori acceptance of shared dockless e-scooters in Iran. Transportation Research, Part D: Transport and Environment, 2021, 100, 103042.	3.2	18
44	Shared micro-mobility: The rise of and the future of E-scooters. , 2021, , 111-137.		1
45	An Ordered Logit Model for Predicting the Willingness of Renting Micro Mobility in Urban Shared Streets: A Case Study in Palermo, Italy. Lecture Notes in Computer Science, 2020, , 796-808.	1.0	9
46	Analysis of the use or non-use of e-scooters, their integration in the city of Munich (Germany) and their potential as an additional mobility system. , 2020, , .		3
47	Transurbanism., 2020, , .		11
48	Exploratory Analysis of Real-Time E-Scooter Trip Data in Washington, D.C Transportation Research Record, 2020, 2674, 285-299.	1.0	86
49	Planning Suitable Transport Networks for E-Scooters to Foster Micromobility Spreading. Sustainability, 2021, 13, 11422.	1.6	19
50	Gender Equality and E-Scooters: Mind the Gap! A Statistical Analysis of the Sicily Region, Italy. Social Sciences, 2021, 10, 403.	0.7	21
51	Where Have Shared E-Scooters Taken Us So Far? A Review of Mobility Patterns, Usage Frequency, and Personas. Sustainability, 2021, 13, 11792.	1.6	14
52	Micromobility implementation challenges and opportunities: Analysis of e-scooter parking and high-use corridors. Transportation Research, Part D: Transport and Environment, 2021, 101, 103082.	3.2	20
53	Urbane MobilitÃĦ, 2020, , 87-237.		0
54	Clutter and Compliance: Scooter Parking Interventions and Perceptions. Active Travel Studies, 2023, 3,	0.2	1

#	ARTICLE	IF	CITATIONS
55	Electric scooters accidents: Analyses of two Swedish accident data sets. Accident Analysis and Prevention, 2021, 163, 106466.	3.0	40
56	A Spatiotemporal Study and Location-Specific Trip Pattern Categorization of Shared E-Scooter Usage. Sustainability, 2021, 13, 12527.	1.6	12
57	Predicting Spatiotemporal Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional Network. ISPRS International Journal of Geo-Information, 2021, 10, 773.	1.4	9
58	User Behavioral Intentions toward a Scooter-Sharing Service: An Empirical Study. Sustainability, 2021, 13, 13153.	1.6	9
59	Gamifying the city: E-scooters and the critical tensions of playful urban mobility. Mobilities, 2022, 17, 85-101.	2.5	8
60	Micromobility, Macro Goals: Aligning scooter parking policy with broader city objectives. Transportation Research Interdisciplinary Perspectives, 2021, 12, 100508.	1.6	8
61	On the Use of LoRaWAN and Cloud Platforms for Diversification of Mobility-as-a-Service Infrastructure in Smart City Scenarios. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	10
62	What travel modes do shared e-scooters displace? A review of recent research findings. Transport Reviews, 2023, 43, 5-31.	4.7	38
63	A Literature Review of Emerging Research Needs for Micromobility—Integration through a Life Cycle Thinking Approach. Future Transportation, 2022, 2, 135-164.	1.3	9
64	Are shared electric scooters energy efficient?. Communications in Transportation Research, 2021, 1, 100022.	4.9	24
65	Predicting Demand for Shared E-Scooter Using Community Structure and Deep Learning Method. Sustainability, 2022, 14, 2564.	1.6	20
66	Shared Micromobility: Between Physical and Digital Reality. Sustainability, 2022, 14, 2467.	1.6	5
67	A Multi-Perspective Assessment of the Introduction of E-Scooter Sharing in Germany. Sustainability, 2022, 14, 2639.	1.6	5
68	Investigating the acceptance of shared e-scooters: Empirical evidence from Turkey. Case Studies on Transport Policy, 2022, 10, 1058-1068.	1.1	12
69	Safe E-scooter operation alternative prioritization using a q-rung orthopair Fuzzy Einstein based WASPAS approach. Journal of Cleaner Production, 2022, 347, 131239.	4.6	28
70	Feasibility and Adoption of Electric Two-Wheeler Mobility Sharing service. Asian Journal of Management, 2021, , 435-438.	0.1	0
71	eHUBsâ€"Identifying the potential early and late adopters of shared electric mobility hubs. International Journal of Sustainable Transportation, 2023, 17, 199-218.	2.1	11
72	Modeling Urban Road Scenarios to Evaluate Intersection Visibility. Sustainability, 2022, 14, 354.	1.6	2

#	Article	IF	CITATIONS
73	Toward Equitable Micromobility: Lessons from Austin E-Scooter Sharing Program. Journal of Planning Education and Research, 0, , 0739456X2110571.	1.5	9
74	Evaluation of e-scooters as transit last-mile solution. Transportation Research Part C: Emerging Technologies, 2022, 139, 103660.	3.9	23
75	Impact of E-Scooters on Pedestrian Safety: A Field Study Using Pedestrian Crowd-Sensing. , 2022, , .		4
76	Analysis of Shared Electric Scooter Usage Behavior and Determining Factors of User Satisfaction: Focused on IPA Method. Journal of Korea Planning Association, 2022, 57, 92-107.	0.2	O
77	Differences in the Assessment of Safe and Risky Driving Behaviors: Pedestrians Versus Drivers. SAGE Open, 2022, 12, 215824402211024.	0.8	4
78	Environmentally friendly, but behaviorally complex? A systematic review of e-scooter riders' psychosocial risk features. PLoS ONE, 2022, 17, e0268960.	1.1	20
79	Analysis of residents' stated preferences of shared micro-mobility devices using regression-text mining approach. Transportation Planning and Technology, 2022, 45, 159-178.	0.9	11
80	Unsafety on two wheels, or social prejudice? Proxying behavioral reports on bicycle and e-scooter riding safety $\hat{a} \in A$ mixed-methods study. Transportation Research Part F: Traffic Psychology and Behaviour, 2022, 89, 168-182.	1.8	17
81	Towards an electric scooter level of service: A review and framework. Travel Behaviour & Society, 2022, 29, 149-164.	2.4	20
82	E-Scooters and Public Transport: An Ambivalent Relationship. SSRN Electronic Journal, 0, , .	0.4	0
83	Results From a Campus Population Survey of Near Misses, Crashes, and Falls While E-Scooting, Walking, and Bicycling. Transportation Research Record, 0, , 036119812211070.	1.0	2
84	Siting charging stations and identifying safe and convenient routes for environmentally sustainable e-scooter systems. Sustainable Cities and Society, 2022, 84, 104020.	5.1	14
85	Characteristics and Risk Factors for Electric Scooter-Related Crashes and Injury Crashes among Scooter Riders: A Two-Phase Survey Study. International Journal of Environmental Research and Public Health, 2022, 19, 10129.	1.2	10
86	Sociopsychological factors associated with the adoption and usage of electric micromobility. A literature review. Transport Policy, 2022, 127, 230-249.	3.4	11
87	Something for every one? - An investigation of people's intention to use different types of shared electric vehicle. Travel Behaviour & Society, 2023, 30, 178-191.	2.4	7
88	Is safety in the eye of the beholder? Discrepancies between self-reported and proxied data on road safety behaviors—A systematic review. Frontiers in Psychology, 0, 13, .	1.1	3
89	Mode shift, motivational reasons, and impact on emissions of shared e-scooter usage. Transportation Research, Part D: Transport and Environment, 2022, 112, 103468.	3.2	19
90	Comparison of motor-vehicle involved e-scooter fatalities with other traffic fatalities. Journal of Safety Research, 2023, 84, 61-73.	1.7	5

#	Article	IF	CITATIONS
91	Electric scooter safety: An integrative review of evidence from transport and medical research domains. Sustainable Cities and Society, 2023, 89, 104313.	5.1	18
92	E-Scooter usage and mobility behavior during the Covid-19 crisis– Evidence from a large scale survey in Munich and implications for leisure and tourism. Zeitschrift FÃ⅓r Tourismuswissenschaft, 2022, 14, 369-399.	0.3	1
93	Littering the City or Freedom of Mobility? The Case of Electric Scooters. , 2023, , 135-152.		0
94	An Exploration of the Decline in E-Scooter Ridership after the Introduction of Mandatory E-Scooter Parking Corrals on Virginia Tech's Campus in Blacksburg, VA. Sustainability, 2023, 15, 226.	1.6	3
95	What are the factors affecting the adoption and use of electric scooter sharing systems from the end user's perspective?. Transport Policy, 2023, 136, 70-82.	3.4	11
96	Micromobility: Progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving sustainable development goals. International Journal of Thermofluids, 2023, 17, 100292.	4.0	14
97	Exploring commonalities and disparities of seattle residents' perceptions on dockless bike-sharing across gender. City, Culture and Society, 2023, 32, 100503.	1.1	3
98	Sustainable E-scooter parking operation in urban areas using fuzzy Dombi based RAFSI model. Sustainable Cities and Society, 2023, 91, 104426.	5.1	28
99	Space sharing between pedestrians and micro-mobility vehicles: A systematic review. Transportation Research, Part D: Transport and Environment, 2023, 116, 103629.	3.2	10
100	Neighborhood characteristics encouraging micromobility: An observational study for tourists and local users. Travel Behaviour & Society, 2023, 32, 100564.	2.4	2
101	Modeling Dockless Shared E-Scooter Demand by Time of Day: A Case Study of Austin. Journal of Advanced Transportation, 2023, 2023, 1-18.	0.9	0
102	E-scooter riders and pedestrians: Attitudes and interactions in five countries. Heliyon, 2023, 9, e15449.	1.4	7
106	Foreign approaches to the systematization of means of individual mobility. AIP Conference Proceedings, 2023, , .	0.3	0
115	The legislation aspects of the emergence of electric scooters in urban transportation., 2023,,.		0
122	Sharing-Economy – Teilen statt Besitzen. Erfolgreich Studieren, 2023, , 79-119.	0.0	0