Study on Spatial and Temporal Distribution Characteris Degree among Regional Water Resources, Social Econor Systems

International Journal of Environmental Research and Public He 16, 4213

DOI: 10.3390/ijerph16214213

Citation Report

#	Article	IF	CITATIONS
1	Spatio-Temporal Coordination and Conflict of Production-Living-Ecology Land Functions in the Beijing-Tianjin-Hebei Region, China. Land, 2020, 9, 170.	2.9	28
2	Investigation of Dynamic Coupling Coordination between Urbanization and the Eco-Environment—A Case Study in the Pearl River Delta Area. Land, 2021, 10, 190.	2.9	20
3	Regional water allocation for coordinated development among the social, economic and environmental systems. Journal of Water Supply: Research and Technology - AQUA, 2021, 70, 550-569.	1.4	2
4	Spatiotemporal analysis of the coordination of economic development, resource utilization, and environmental quality in the Beijing-Tianjin-Hebei urban agglomeration. Ecological Indicators, 2021, 127, 107724.	6.3	60
5	Evaluation Method of Synergy Degree for Comprehensive Benefits System of Hydropower Projects. Sustainability, 2021, 13, 10770.	3.2	5
6	Identification of Coupling and Influencing Factors between Urbanization and Ecosystem Services in Guanzhong, China. Sustainability, 2021, 13, 10637.	3.2	7
7	Temporal-spatial patterns and coupling coordination degree of water resources carrying capacity of urban agglomeration in the middle reaches of the Yangtze River. Hupo Kexue/Journal of Lake Sciences, 2021, 33, 1871-1884.	0.8	5
8	Water-land resource carrying capacity in China: Changing trends, main driving forces, and implications. Journal of Cleaner Production, 2022, 331, 130003.	9.3	22
9	An Intelligent and Highly Effective Water Circulating System Applied in Domestic Water Heater. , 2020, , .		0
10	Coordination evaluation and obstacle factors recognition analysis of water resource spatial equilibrium system. Environmental Research, 2022, 210, 112913.	7.5	23
11	The impact of fiscal decentralization, green energy, and economic policy uncertainty on sustainable environment: a new perspective from ecological footprint in five OECD countries. Environmental Science and Pollution Research, 2022, 29, 54698-54717.	5.3	20
12	Identifying the dynamic evolution and feedback process of water resources nexus system considering socioeconomic development, ecological protection, and food security: A practical tool for sustainable water use. Hydrology and Earth System Sciences, 2021, 25, 6495-6522.	4.9	5
13	Study on water resources carrying capacity in Zhuanglang River Basin. Environmental Monitoring and Assessment, 2022, 194, 390.	2.7	2
14	Environmental Design and Sustainable Development of Ecological Environment by Big Data Analysis and Computing: A Case Study of Tianjin. Scientific Programming, 2022, 2022, 1-10.	0.7	O
15	Spatiotemporal Evolution of Water Resource Utilization and Economic Development in the Arid Region of China: A "Matching-Constraint―Perspective. Sustainability, 2022, 14, 8724.	3.2	1
16	Digital finance and regional green innovation: evidence from Chinese cities. Environmental Science and Pollution Research, 2022, 29, 89498-89521.	5.3	34
17	Rivers: Linking nature, life, and civilization. , 2022, 1, 25-36.		12
18	Has the Yangtze river economic belt strategy promoted the construction of ecological civilization in the upper reaches of the Yangtze river?. Frontiers in Environmental Science, 0, 10 , .	3.3	6

#	Article	IF	CITATIONS
19	System dynamics modelling to simulate regional water-energy-food nexus combined with the society-economy-environment system in Hunan Province, China. Science of the Total Environment, 2023, 863, 160993.	8.0	17
20	Coupling assessment for the water-economy-ecology nexus in Western China. Ecological Indicators, 2023, 154, 110648.	6.3	2
21	Developing a Multidimensional Strategy for Water Eco-Environmental Protection in the Beijing–Tianjin–Hebei Urban Agglomeration: An Integrated SWOT-PROMETHEE-AHP Approach. ACS ES&T Water, 0, , .	4.6	0
22	Study on Spatial and Temporal Differences of Water Resource Sustainable Development and Its Influencing Factors in the Yellow River Basin, China. Sustainability, 2023, 15, 14316.	3.2	1
23	Adaptability of water resources development and utilization to social-economy system in Hunan province, China. Scientific Reports, 2023, 13 , .	3.3	0
24	Assessing the effects of regional coordinated development and ecological on public welfare in the Yangtze River Delta. Environment, Development and Sustainability, 0, , .	5.0	0
25	The role of the environmental subsystem in sustainable urban development: Evidence from megacities in China. Heliyon, 2024, 10, e24880.	3.2	0
26	A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP. Environmental Science and Pollution Research, 2024, 31, 23896-23908.	5.3	0