Improved longevity of nanoscale zero-valent iron with shell for the removal of Cr(VI) in sand columns

Environment International 133, 105249 DOI: 10.1016/j.envint.2019.105249

Citation Report

#	Article	IF	CITATIONS
1	Investigating the artificial intelligence methods for determining performance of the NZVI permeable reactive barriers. Groundwater for Sustainable Development, 2021, 12, 100516.	2.3	10
2	Reduction of chlorinated hydrocarbons using nano zero-valent iron supported with an electric field. Characterization of electrochemical processes and thermodynamic stability. Chemosphere, 2021, 265, 128764.	4.2	10
3	AÂhighlyÂporousÂanimalÂbone-derivedÂchar with a superiority of promoting nZVI for Cr(VI) sequestration in agricultural soils. Journal of Environmental Sciences, 2021, 104, 27-39.	3.2	47
4	Remediation of hexavalent chromium in column by green synthesized nanoscale zero-valent iron/nickel: Factors, migration model and numerical simulation. Ecotoxicology and Environmental Safety, 2021, 207, 111572.	2.9	35
5	Heterogeneously Porous Multiadsorbent Clay–Biochar Surface to Support Redox-Sensitive Nanoparticles: Applications of Novel Clay–Biochar–Nanoscale Zerovalent Iron Nanotrident (C-BC-nZVI) in Continuous Water Filtration. ACS ES&T Water, 2021, 1, 641-652.	2.3	11
6	Evaluation of the Effects of Nanomaterials on Rice (<i>Oryza sativa</i> L.) Responses: Underlining the Benefits of Nanotechnology for Agricultural Applications. ACS Agricultural Science and Technology, 2021, 1, 44-54.	1.0	31
7	Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NanoImpact, 2021, 23, 100336.	2.4	18
8	Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. Journal of Hazardous Materials, 2022, 424, 126698.	6.5	21
9	The sequestration of aqueous Cr(VI) by zero valent iron-based materials: From synthesis to practical application. Journal of Cleaner Production, 2021, 312, 127678.	4.6	49
10	Highly efficient nano-Fe/Cu bimetal-loaded mesoporous silica Fe/Cu-MCM-41 for the removal of Cr(VI): Kinetics, mechanism and performance. Journal of Hazardous Materials, 2021, 418, 126344.	6.5	25
11	Co-benefits of biochar-supported nanoscale zero-valent iron in simultaneously stabilizing soil heavy metals and reducing their bioaccessibility. Journal of Hazardous Materials, 2021, 418, 126292.	6.5	44
12	Nano zero valent iron encapsulated in graphene oxide for reducing uranium. Chemosphere, 2021, 278, 130229.	4.2	23
13	A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid)s in groundwater: Current status and future prospects. Journal of Cleaner Production, 2021, 319, 128644.	4.6	54
14	Confining polyacrylic acid on the surface of nanoscale zero-valent iron by aluminum hydroxide for in-situ anti-passivation. Journal of Hazardous Materials, 2021, 420, 126649.	6.5	10
15	In situ remediation of Cr(VI) contaminated groundwater by ZVI-PRB and the corresponding indigenous microbial community responses: a field-scale study. Science of the Total Environment, 2022, 805, 150260.	3.9	42
16	Encapsulation of iron nanoparticles with magnesium hydroxide shell for remarkable removal of ciprofloxacin from contaminated water. Journal of Colloid and Interface Science, 2022, 605, 813-827.	5.0	70
17	Permeable reactive barrier of waste sludge from wine processing utilized to block a metallic mixture plume in a simulated aquifer. Water Science and Technology, 2021, 84, 2472-2485.	1.2	2
18	Novel analytical expressions for determining van der Waals interaction between a particle and air–water interface: Unexpected stronger van der Waals force than capillary force. Journal of Colloid and Interface Science, 2022, 610, 982-993.	5.0	6

CITATION REPORT

#	Article	IF	CITATIONS
19	Field demonstration of on-site immobilization of arsenic and lead in soil using a ternary amending agent. Journal of Hazardous Materials, 2022, 426, 127791.	6.5	7
20	Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environmental Pollution, 2022, 297, 118738.	3.7	18
21	Facile Auto-Combustion Synthesis and Characterization of Stable Amorphous Nanoscale Zero-Valent Iron (nZVI). International Journal of Self-Propagating High-Temperature Synthesis, 2021, 30, 251-256.	0.2	1
22	Innovative and Biocompatible Approaches for Nanomaterial Production and Application. Advances in Chemical and Materials Engineering Book Series, 2022, , 1-26.	0.2	0
23	Multi-functional magnesium hydroxide coating for iron nanoparticles towards prolonged reactivity in Cr(VI) removal from aqueous solutions. Journal of Environmental Chemical Engineering, 2022, 10, 107431.	3.3	41
24	Colloidal stabilities and deposition behaviors of chromium (hydr)oxides in the presence of dissolved organic matters: role of coprecipitation and adsorption. Environmental Science: Nano, 0, , .	2.2	2
25	Significant Mobility of Novel Heteroaggregates of Montmorillonite Microparticles with Nanoscale Zerovalent Irons in Saturated Porous Media. Toxics, 2022, 10, 332.	1.6	0
26	Strategies to enhance the reactivity of zero-valent iron for environmental remediation: A review. Journal of Environmental Management, 2022, 317, 115381.	3.8	21
27	Covalent and Non-covalent Functionalized Nanomaterials for Environmental Restoration. Topics in Current Chemistry, 2022, 380, .	3.0	11
28	Facile synthesis of lattice-defective and recyclable zirconium hydroxide coated nanoscale zero-valent iron for robust arsenite removal. Separation and Purification Technology, 2022, 302, 122085.	3.9	Ο
29	In situ formation of Ca(OH)2 coating shell to extend the longevity of zero-valent iron biochar composite derived from Fe-rich sludge for aqueous phosphorus removal. Science of the Total Environment, 2023, 854, 158794.	3.9	7
30	Health Risk Assessment during In Situ Remediation of Cr(VI)-Contaminated Groundwater by Permeable Reactive Barriers: A Field-Scale Study. International Journal of Environmental Research and Public Health 2022, 19, 13079	1.2	11