Inhibition of mitochondrial translation overcomes vene activation of the integrated stress response

Science Translational Medicine

11,

DOI: 10.1126/scitranslmed.aax2863

Citation Report

#	Article	IF	CITATIONS
1	Mitochondrial ClpP serine protease-biological function and emerging target for cancer therapy. Cell Death and Disease, 2020, 11, 841.	2.7	55
2	BH3 Mimetics in AML Therapy: Death and Beyond?. Trends in Pharmacological Sciences, 2020, 41, 793-814.	4.0	18
3	Reduced Mitochondrial Apoptotic Priming Drives Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 872-890.e6.	7.7	80
4	Apoptosis targeted therapies in acute myeloid leukemia: an update. Expert Review of Hematology, 2020, 13, 1373-1386.	1.0	12
5	Mitochondria in Their Prime Drive Venetoclax Response in Acute Myeloid Leukemia. Cancer Cell, 2020, 38, 776-778.	7.7	1
6	Targeting Bcl-2 Proteins in Acute Myeloid Leukemia. Frontiers in Oncology, 2020, 10, 584974.	1.3	37
7	The role of mitochondrial proteases in leukemic cells and leukemic stem cells. Stem Cells Translational Medicine, 2020, 9, 1481-1487.	1.6	8
8	An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism. Expert Opinion on Investigational Drugs, 2020, 29, 973-988.	1.9	6
9	Role of Mitochondria in Cancer Stem Cell Resistance. Cells, 2020, 9, 1693.	1.8	59
10	DLBCL Cells with Acquired Resistance to Venetoclax Are Not Sensitized to BIRD-2 But Can Be Resensitized to Venetoclax through Bcl-XL Inhibition. Biomolecules, 2020, 10, 1081.	1.8	9
11	Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death and Disease, 2020, 11, 616.	2.7	50
12	Ex vivo cultures and drug testing of primary acute myeloid leukemia samples: Current techniques and implications for experimental design and outcome. Drug Resistance Updates, 2020, 53, 100730.	6.5	22
13	Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell International, 2020, 20, 524.	1.8	32
14	Oncogenic Mechanisms and Therapeutic Targeting of Metabolism in Leukemia and Lymphoma. Cold Spring Harbor Perspectives in Medicine, 2021, 11, a035477.	2.9	2
15	Cotargeting of Mitochondrial Complex I and Bcl-2 Shows Antileukemic Activity against Acute Myeloid Leukemia Cells Reliant on Oxidative Phosphorylation. Cancers, 2020, 12, 2400.	1.7	26
16	<p>Effective Inhibition of MYC-Amplified Group 3 Medulloblastoma Through Targeting EIF4A1</p> . Cancer Management and Research, 2020, Volume 12, 12473-12485.	0.9	5
17	The Progression of Acute Myeloid Leukemia from First Diagnosis to Chemoresistant Relapse: A Comparison of Proteomic and Phosphoproteomic Profiles. Cancers, 2020, 12, 1466.	1.7	33
18	elF2B and the Integrated Stress Response: A Structural and Mechanistic View. Biochemistry, 2020, 59, 1299-1308.	1.2	21

#	Article	IF	CITATIONS
19	Repurposing ribosome-targeting antibiotics to overcome resistance to venetoclax in acute myeloid leukemia. Molecular and Cellular Oncology, 2020, 7, 1712182.	0.3	0
20	Metabolic reprogramming and disease progression in cancer patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165721.	1.8	45
21	The Intriguing Clinical Success of BCL-2 Inhibition in Acute Myeloid Leukemia. Annual Review of Cancer Biology, 2021, 5, 277-289.	2.3	3
22	Extinguishing the Embers: Targeting AML Metabolism. Trends in Molecular Medicine, 2021, 27, 332-344.	3.5	30
24	Venetoclax nanomedicine alleviates acute lung injury <i>via</i> increasing neutrophil apoptosis. Biomaterials Science, 2021, 9, 4746-4754.	2.6	13
25	Mitochondrial and Metabolic Pathways Regulate Nuclear Gene Expression to Control Differentiation, Stem Cell Function, and Immune Response in Leukemia. Cancer Discovery, 2021, 11, 1052-1066.	7.7	24
26	Saikosaponin D exhibits anti-leukemic activity by targeting FTO/m ⁶ A signaling. Theranostics, 2021, 11, 5831-5846.	4.6	57
27	Venetoclax for the treatment of elderly or chemotherapy-ineligible patients with acute myeloid leukemia: a step in the right direction or a game changer?. Expert Review of Hematology, 2021, 14, 199-210.	1.0	5
28	Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell, 2021, 28, 378-393.	5.2	67
29	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	4.2	56
30	Arsenic trioxide synergistically promotes the antileukaemic activity of venetoclax by downregulating Mcl-1 in acute myeloid leukaemia cells. Experimental Hematology and Oncology, 2021, 10, 28.	2.0	12
31	Mitochondrial ATP-Dependent Proteases—Biological Function and Potential Anti-Cancer Targets. Cancers, 2021, 13, 2020.	1.7	12
32	Mitochondrial metabolism as a target for acute myeloid leukemia treatment. Cancer & Metabolism, 2021, 9, 17.	2.4	31
33	Review of Venetoclax in CLL, AML and Multiple Myeloma. Journal of Personalized Medicine, 2021, 11, 463.	1.1	41
35	Hypomethylating agents (HMA) for the treatment of acute myeloid leukemia and myelodysplastic syndromes: mechanisms of resistance and novel HMA-based therapies. Leukemia, 2021, 35, 1873-1889.	3.3	104
36	FLT3 tyrosine kinase inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD acute leukemia cells through BIM activation. Signal Transduction and Targeted Therapy, 2021, 6, 186.	7.1	47
37	Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood, 2021, 137, 3518-3532.	0.6	55
38	Mitochondrial metabolism: powering new directions in acute myeloid leukemia. Leukemia and Lymphoma, 2021, 62, 2331-2341.	0.6	6

#	Article	IF	CITATIONS
39	Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma. Journal of Experimental Medicine, 2021, 218, .	4.2	31
40	Actinomycin D Targets NPM1c-Primed Mitochondria to Restore PML-Driven Senescence in AML Therapy. Cancer Discovery, 2021, 11, 3198-3213.	7.7	38
41	SOHO State of the Art Updates and Next Questions: The Past, Present and Future of Venetoclax-Based Therapies in AML. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 805-811.	0.2	2
42	Nicotinamide phosphoribosyltransferase inhibitors selectively induce apoptosis of AML stem cells by disrupting lipid homeostasis. Cell Stem Cell, 2021, 28, 1851-1867.e8.	5.2	43
43	Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia, 2022, 36, 1-12.	3.3	54
44	An <i>In Vivo</i> CRISPR Screening Platform for Prioritizing Therapeutic Targets in AML. Cancer Discovery, 2022, 12, 432-449.	7.7	32
45	A mean-field approach for modeling the propagation of perturbations in biochemical reaction networks. European Journal of Pharmaceutical Sciences, 2021, 165, 105919.	1.9	1
46	MCL-1 dependency as a novel vulnerability for aggressive B cell lymphomas. Blood Cancer Journal, 2021, 11, 14.	2.8	4
47	Selective toxicity of antibacterial agents—still a valid concept or do we miss chances and ignore risks?. Infection, 2021, 49, 29-56.	2.3	26
48	An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorganic Chemistry, 2020, 100, 103935.	2.0	13
50	Resistance to venetoclax and hypomethylating agents in acute myeloid leukemia. , 2021, 4, 125-142.		26
51	B-cell lymphoma-2 inhibition and resistance in acute myeloid leukemia. World Journal of Clinical Oncology, 2020, 11, 528-540.	0.9	5
52	Metformin exerts a synergistic effect with venetoclax by downregulating Mcl-1 protein in acute myeloid leukemia. Journal of Cancer, 2021, 12, 6727-6739.	1.2	9
53	Targeting mitochondrial respiration and the BCL2 family in highâ€grade MYCâ€associated Bâ€cell lymphoma. Molecular Oncology, 2022, 16, 1132-1152.	2.1	10
54	Targeting mitochondrial metabolism in acute myeloid leukemia. Leukemia and Lymphoma, 2022, 63, 530-537.	0.6	3
57	Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Frontiers in Oncology, 2021, 11, 797265.	1.3	13
58	Venetoclax in Acute Myeloid Leukemia: Molecular Basis, Evidences for Preclinical and Clinical Efficacy and Strategies to Target Resistance. Cancers, 2021, 13, 5608.	1.7	10
59	Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers, 2021, 13, 5722.	1.7	17

#	Article	IF	CITATIONS
60	Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1204-1223.	5.7	42
61	AMP-Activated Protein Kinase Contributes to Apoptosis Induced by the Bcl-2 Inhibitor Venetoclax in Acute Myeloid Leukemia. Cancers, 2021, 13, 5966.	1.7	2
62	Apoptolidin family glycomacrolides target leukemia through inhibition of ATP synthase. Nature Chemical Biology, 2022, 18, 360-367.	3.9	20
63	Making Sense of Antisense Oligonucleotide Therapeutics Targeting Bcl-2. Pharmaceutics, 2022, 14, 97.	2.0	10
64	AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia. Cell Reports, 2022, 38, 110197.	2.9	22
65	The mitochondrial anti-apoptotic dependencies of hematological malignancies: from disease biology to advances in precision medicine. Haematologica, 2022, , .	1.7	6
66	Targeting AraC-Resistant Acute Myeloid Leukemia by Dual Inhibition of CDK9 and Bcl-2: A Systematic Review and Meta-Analysis. Journal of Healthcare Engineering, 2022, 2022, 1-7.	1.1	3
68	Gilteritinib in the management of acute myeloid leukemia: Current evidence and future directions. Leukemia Research, 2022, 114, 106808.	0.4	10
69	Fighting AML with its own weapons. Blood, 2022, 139, 807-809.	0.6	0
70	Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2022, 7, 51.	7.1	54
71	Targeting mitochondrial proteases for therapy of acute myeloid leukaemia. British Journal of Pharmacology, 2022, 179, 3268-3282.	2.7	3
72	PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene, 2022, 41, 1986-2002.	2.6	5
73	Evolution of Molecular Targeted Cancer Therapy: Mechanisms of Drug Resistance and Novel Opportunities Identified by CRISPR-Cas9 Screening. Frontiers in Oncology, 2022, 12, 755053.	1.3	12
74	The proteogenomic subtypes of acute myeloid leukemia. Cancer Cell, 2022, 40, 301-317.e12.	7.7	43
75	Targeting cancer stem cells with antibiotics inducing mitochondrial dysfunction as an alternative anticancer therapy. Biochemical Pharmacology, 2022, 198, 114966.	2.0	12
76	Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines, 2021, 9, 1869.	1.4	6
77	Clinically Relevant Oxygraphic Assay to Assess Mitochondrial Energy Metabolism in Acute Myeloid Leukemia Patients. Cancers, 2021, 13, 6353.	1.7	3
78	Mechanisms of resistance to targeted therapies for relapsed or refractory acute myeloid leukemia. Experimental Hematology, 2022, 111, 13-24.	0.2	6

ARTICLE

IF CITATIONS

79 Venetoclax resistance: mechanistic insights and future strategies. Cancer Drug Resistance (Alhambra,) Tj ETQq0 0 0 rgBT /Overlock 10 T

80	Combination strategies to target metabolic flexibility in cancer. International Review of Cell and Molecular Biology, 2022, , 159-197.	1.6	5
81	Progress in understanding the mechanisms of resistance to BCL-2 inhibitors. Experimental Hematology and Oncology, 2022, 11, .	2.0	21
82	Shikonin impairs mitochondrial activity to selectively target leukemia cells. Phytomedicine Plus, 2022, 2, 100300.	0.9	2
83	The metabolic enzyme hexokinase 2 localizes to the nucleus in AML and normal haematopoietic stem and progenitor cells to maintain stemness. Nature Cell Biology, 2022, 24, 872-884.	4.6	25
85	Deciphering Metabolic Adaptability of Leukemic Stem Cells. Frontiers in Oncology, 0, 12, .	1.3	2
87	Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies. Cancers, 2022, 14, 3456.	1.7	18
88	Activation of the integrated stress response is a vulnerability for multidrugâ€resistant <scp>FBXW7</scp> â€deficient cells. EMBO Molecular Medicine, 2022, 14, .	3.3	12
89	Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Molecular Cell, 2022, 82, 3321-3332.	4.5	21
90	Glutamine Metabolism Mediates Sensitivity to Respiratory Complex II Inhibition in Acute Myeloid Leukemia. Molecular Cancer Research, 2022, 20, 1659-1673.	1.5	5
91	Genome-wide CRISPR/Cas9 screen identifies etoposide response modulators associated with clinical outcomes in pediatric AML. Blood Advances, 2023, 7, 1769-1783.	2.5	5
92	Mitochondrial metabolic determinants of multiple myeloma growth, survival, and therapy efficacy. Frontiers in Oncology, 0, 12, .	1.3	6
93	An integrative systems biology approach to overcome venetoclax resistance in acute myeloid leukemia. PLoS Computational Biology, 2022, 18, e1010439.	1.5	1
95	Translational alterations in pancreatic cancer: a central role for the integrated stress response. NAR Cancer, 2022, 4, .	1.6	3
96	Targeting the integrated stress response in hematologic malignancies. Experimental Hematology and Oncology, 2022, 11, .	2.0	1
97	A Smart "Energy NanoLock―Selectively Blocks Oral Cancer Energy Metabolism through Synergistic Inhibition of Exogenous Nutrient Supply and Endogenous Energy Production. Advanced Materials, 2023, 35, .	11.1	7
98	The path to venetoclax resistance is paved with mutations, metabolism, and more. Science Translational Medicine, 2022, 14, .	5.8	6
99	Proteogenomic analysis of acute myeloid leukemia associates relapsed disease with reprogrammed energy metabolism both in adults and children. Leukemia, 2023, 37, 550-559.	3.3	6

#	Article	IF	CITATIONS
100	Contribution of metabolic abnormalities to acute myeloid leukemia pathogenesis. Trends in Cell Biology, 2023, 33, 455-462.	3.6	6
101	Acute myeloid leukemia resistant to venetoclax-based therapy: What does the future hold?. Blood Reviews, 2023, 59, 101036.	2.8	13
102	Metabolism in acute myeloid leukemia: mechanistic insights and therapeutic targets. Blood, 2023, 141, 1119-1135.	0.6	7
103	Clustered regularly interspaced short palindromic repeats screens in pediatric tumours: A review. Clinical and Translational Discovery, 2022, 2, .	0.2	0
104	The role of cancer cell bioenergetics in dormancy and drug resistance. Cancer and Metastasis Reviews, 2023, 42, 87-98.	2.7	6
105	Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers, 2023, 15, 1344.	1.7	2
106	Venetoclax in acute myeloid leukemia. Expert Opinion on Investigational Drugs, 2023, 32, 271-276.	1.9	4
107	Targeting mitochondrial transcription factor A sensitizes pancreatic cancer cell to gemcitabine. Hepatobiliary and Pancreatic Diseases International, 2023, , .	0.6	0
108	Side effects of antibiotics and perturbations of mitochondria functions. International Review of Cell and Molecular Biology, 2023, , .	1.6	2
119	The Role of BCL-2/MCL-1 Targeting in Acute Myeloid Leukemia. , 2023, , 133-145.		0