Nanomagnetic encoding of shape-morphing micromach

Nature 575, 164-168 DOI: 10.1038/s41586-019-1713-2

Citation Report

#	Article	IF	CITATIONS
1	Soft microbots programmed by nanomagnets. Nature, 2019, 575, 58-59.	13.7	36
2	Magnetic behaviour of 3D metalâ~'organic frameworks constructed via 1,2,4,5-benzenetetracarboxylate linker and 4f Ce(III) or 3d Fe(III) metal nodes. Inorganic Chemistry Communication, 2020, 122, 108261.	1.8	0
3	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
4	Tandem actuation of legged locomotion and grasping manipulation in soft robots using magnetic fields. Extreme Mechanics Letters, 2020, 41, 101023.	2.0	31
5	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	3.1	27
6	Synthetic chiral magnets promoted by the Dzyaloshinskii–Moriya interaction. Applied Physics Letters, 2020, 117, .	1.5	22
7	Entropy Production in an Elementary, Light Driven Micro-Machine. Frontiers in Physics, 2020, 8, .	1.0	2
8	Atomic origami. Current Opinion in Solid State and Materials Science, 2020, 24, 100882.	5.6	1
9	4D Multimodal Nanomedicines Made of Nonequilibrium Au–Fe Alloy Nanoparticles. ACS Nano, 2020, 14, 12840-12853.	7.3	53
10	Finger directed surface charges for local droplet motion. Soft Matter, 2020, 16, 9176-9182.	1.2	9
11	Untethered and ultrafast soft-bodied robots. Communications Materials, 2020, 1, .	2.9	86
12	Tuning the Upstream Swimming of Microrobots by Shape and Cargo Size. Physical Review Applied, 2020, 14, .	1.5	11
13	Structural Innovations in Printed, Flexible, and Stretchable Electronics. Advanced Materials Technologies, 2020, 5, .	3.0	57
14	Untethered control of functional origami microrobots with distributed actuation. Proceedings of the United States of America, 2020, 117, 24096-24101.	3.3	166
15	Biodegradable Untethered Magnetic Hydrogel Milliâ€Grippers. Advanced Functional Materials, 2020, 30, 2004975.	7.8	115
16	Simultaneous polydirectional transport of colloidal bipeds. Nature Communications, 2020, 11, 4670.	5.8	11
17	Reprogrammable shape morphing of magnetic soft machines. Science Advances, 2020, 6, .	4.7	224
18	Towards artificial molecular factories from framework-embedded molecular machines. Nature Reviews Chemistry, 2020, 4, 550-562.	13.8	97

ATION REDO

#	Article	IF	CITATIONS
19	Fabrication and Magnetic Actuation of 3Dâ€Microprinted Multifunctional Hybrid Microstructures. Advanced Materials Technologies, 2020, 5, 2000535.	3.0	9
20	Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances, 2020, 8, 100119.	2.5	32
21	Programmable Transformation and Controllable Locomotion of Magnetoactive Soft Materials with 3D-Patterned Magnetization. ACS Applied Materials & amp; Interfaces, 2020, 12, 58179-58190.	4.0	37
22	Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Science Robotics, 2020, 5, .	9.9	163
23	Bioinspired cilia arrays with programmable nonreciprocal motion and metachronal coordination. Science Advances, 2020, 6, .	4.7	103
24	Ferrofluid Droplets as Liquid Microrobots with Multiple Deformabilities. Advanced Functional Materials, 2020, 30, 2000138.	7.8	69
25	Multifunctional surface microrollers for targeted cargo delivery in physiological blood flow. Science Robotics, 2020, 5, .	9.9	234
26	Reprogrammable Ferromagnetic Domains for Reconfigurable Soft Magnetic Actuators. Nano Letters, 2020, 20, 5185-5192.	4.5	96
27	Hybrid Magnetic Micropillar Arrays for Programmable Actuation. Advanced Materials, 2020, 32, e2001879.	11.1	58
28	Evolutionary Algorithmâ€Guided Voxelâ€Encoding Printing of Functional Hardâ€Magnetic Soft Active Materials. Advanced Intelligent Systems, 2020, 2, 2000060.	3.3	93
29	Magnesium-based micromotors for enhanced active and synergistic hydrogen chemotherapy. Applied Materials Today, 2020, 20, 100694.	2.3	37
30	Magnetic cilia carpets with programmable metachronal waves. Nature Communications, 2020, 11, 2637.	5.8	172
31	Bidirectional Self-Folding with Atomic Layer Deposition Nanofilms for Microscale Origami. Nano Letters, 2020, 20, 4850-4856.	4.5	15
32	Complex switching behavior of magnetostatically coupled single-domain nanomagnets probed by micro-Hall magnetometry. Applied Physics Letters, 2020, 116, .	1.5	4
33	Motile microelectronics with wireless power. Nature Electronics, 2020, 3, 139-140.	13.1	4
34	Soft electromagnetic actuator for assembly robots. Smart Materials and Structures, 2020, 29, 067001.	1.8	6
35	Ferromagnetic Liquid Metal Putty‣ike Material with Transformed Shape and Reconfigurable Polarity. Advanced Materials, 2020, 32, e2000827.	11.1	75
36	Micromotor-Based Biosensing Using Directed Transport of Functionalized Beads. ACS Sensors, 2020, 5, 936-942.	4.0	39

ARTICLE IF CITATIONS # Reversible actuation for self-folding modular machines using liquid crystal elastomer. Smart 37 1.8 22 Materials and Structures, 2020, 29, 105003. Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 2.4 3,032002. Magnetically Driven Bionic Millirobots with a Low-Delay Automated Actuation System for 39 1.4 8 Bioparticles Manipulation. Micromachines, 2020, 11, 231. Magnetic Soft Robot With the Triangular Head–Tail Morphology Inspired By Lateral Undulation. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2688-2699. Lightâ€Gated Manipulation of Micro/Nanoparticles in Electric Fields. Advanced Intelligent Systems, 2020, 41 3.3 11 2, 1900127. Emergence of self-organized multivortex states in flocks of active rollers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9706-9711. 3.3 Mechanical Sciences., 2021,,. 43 1 Smart Polymers for Microscale Machines. Advanced Functional Materials, 2021, 31, 2007125. 44 48 Trends in Microâ€∕Nanorobotics: Materials Development, Actuation, Localization, and System 45 11.1 256 Integration for Biomedical Applications. Advanced Materials, 2021, 33, e2002047. Flexible discretely-magnetized configurable soft robots via laser-tuned selective transfer printing of anisotropic ferromagnetic cells. Materials Today Physics, 2021, 17, 100313. Polarizationâ€Modulated Multidirectional Photothermal Actuators. Advanced Materials, 2021, 33, 47 11.1 35 e2006367. Locomotion of Miniature Soft Robots. Advanced Materials, 2021, 33, e2003558. 11.1 48 Magttice: a lattice model for hard-magnetic soft materials. Soft Matter, 2021, 17, 3560-3568. 49 1.2 27 Recent Progress in Artificial Muscles for Interactive Soft Robotics. Advanced Materials, 2021, 33, 11.1 139 e2003088. Three-Dimensional Direct Laser Writing of PEGda Hydrogel Microstructures with Low Threshold 51 2.2 22 Power using a Green Laser Beam. Light Advanced Manufacturing, 2021, 2, 31. Introduction to 4D printing., 2021, , 303-342. Gaussian-preserved, non-volatile shape morphing in three-dimensional microstructures for 53 5.8 19 dual-functional electronic devices. Nature Communications, 2021, 12, 509. lonic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, 54 5.8 and sampling. Nature Communications, 2021, 12, 411.

#	Article	IF	CITATIONS
55	4D Printing of Magnetoactive Soft Materials for On-Demand Magnetic Actuation Transformation. ACS Applied Materials & amp; Interfaces, 2021, 13, 4174-4184.	4.0	108
56	Sensing Materials: Bio-inspired Materials. , 2021, , .		0
58	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
59	Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms. ACS Applied Materials & Interfaces, 2021, 13, 8929-8939.	4.0	22
60	Core–Shell Magnetic Micropillars for Reprogrammable Actuation. ACS Nano, 2021, 15, 4747-4758.	7.3	30
61	Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
62	Magnetically Driven Micro and Nanorobots. Chemical Reviews, 2021, 121, 4999-5041.	23.0	345
63	Reconfigurable Threeâ€Dimensional Mesotructures of Spatially Programmed Liquid Crystal Elastomers and Their Ferromagnetic Composites. Advanced Functional Materials, 2021, 31, 2100338.	7.8	36
64	Active carpets drive non-equilibrium diffusion and enhanced molecular fluxes. Nature Communications, 2021, 12, 1906.	5.8	14
65	Magnetic Actuation of Hollow Swarming Spheres for Dynamic Catalysis. ACS Applied Materials & Interfaces, 2021, 13, 11424-11432.	4.0	6
66	Dual-responsive biohybrid neutrobots for active target delivery. Science Robotics, 2021, 6, .	9.9	227
67	Additive manufacturing of structural materials. Materials Science and Engineering Reports, 2021, 145, 100596.	14.8	254
68	Acousticallyâ€₽ropelled Rodlike Liquid Metal Colloidal Motors. ChemNanoMat, 2021, 7, 1025-1029.	1.5	9
69	Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Science Robotics, 2021, 6, .	9.9	133
70	Programmable Self‣ocking Micromachines with Tunable Couplings. Advanced Intelligent Systems, 2021, 3, 2000232.	3.3	2
71	Onâ€Board Mechanical Control Systems for Untethered Microrobots. Advanced Intelligent Systems, 0, , 2000233.	3.3	10
72	Tailoring magnetization reversal of a single-domain bar nanomagnet via its end geometry. AIP Advances, 2021, 11, .	0.6	3
73	Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mechanics Letters, 2021, 44, 101268.	2.0	44

#	Article	IF	CITATIONS
74	Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation. Science Robotics, 2021, 6, .	9.9	70
75	Engineering Magnetic Micro/Nanorobots for Versatile Biomedical Applications. Advanced Intelligent Systems, 2021, 3, 2000267.	3.3	41
76	Intelligent Shape-Morphing Micromachines. Research, 2021, 2021, 9806463.	2.8	6
77	Smallâ€5cale Magnetic Actuators with Optimal Six Degreesâ€ofâ€Freedom. Advanced Materials, 2021, 33, e2100170.	11.1	32
78	Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation. ACS Applied Materials & Interfaces, 2021, 13, 30106-30117.	4.0	9
79	Engineering Active Micro and Nanomotors. Micromachines, 2021, 12, 687.	1.4	11
80	3D Printing of Functional Magnetic Materials: From Design to Applications. Advanced Functional Materials, 2021, 31, 2102777.	7.8	91
81	Magnetic soft micromachines made of linked microactuator networks. Science Advances, 2021, 7, .	4.7	57
82	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
83	Magnetism in curved geometries. Journal of Applied Physics, 2021, 129, .	1.1	29
84	Autonomous Low-Reynolds-Number Soft Robots with Structurally Encoded Motion and Their Thermodynamic Efficiency. Langmuir, 2021, 37, 8148-8156.	1.6	1
85	Untethered Soft Crawling Robots Driven by Magnetic Anisotropy. , 2021, , .		0
86	Artificial out-of-plane Ising antiferromagnet on the kagome lattice with very small farther-neighbor couplings. Physical Review B, 2021, 104, .	1.1	10
87	3D Propulsions of Rodâ€Shaped Micropropellers. Advanced Intelligent Systems, 0, , 2100083.	3.3	0
88	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
89	Dynamic analysis and active control of hard-magnetic soft materials. International Journal of Smart and Nano Materials, 2021, 12, 429-449.	2.0	8
90	MnO ₂ -Based Nanomotors with Active Fenton-like Mn ²⁺ Delivery for Enhanced Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2021, 13, 38050-38060.	4.0	77
91	Versatile microparticle propulsion system by light-guided dielectrophoresis: Proposed method and theoretical calculation. Journal of Applied Physics, 2021, 130, 054902.	1.1	1

#	Article	IF	CITATIONS
92	Materials and Schemes of Multimodal Reconfigurable Micro/Nanomachines and Robots: Review and Perspective. Advanced Materials, 2021, 33, e2101965.	11.1	37
93	Miniature Ultralight Deformable Squama Mechanics and Skin Based on Piezoelectric Actuation. Micromachines, 2021, 12, 969.	1.4	3
94	Reconfigurable magnetic soft robots with multimodal locomotion. Nano Energy, 2021, 87, 106169.	8.2	70
95	Micromotor-based localized electroporation and gene transfection of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
96	One-Step, Continuous Three-Dimensional Printing of Multi-Stimuli-Responsive Bilayer Microactuators via a Double-Barreled Theta Pipette. ACS Applied Materials & Interfaces, 2021, 13, 43396-43403.	4.0	8
97	Bioinspired soft microrobots actuated by magnetic field. Biomedical Microdevices, 2021, 23, 52.	1.4	18
98	Reconfiguration of multistable 3D ferromagnetic mesostructures guided by energy landscape surveys. Extreme Mechanics Letters, 2021, 48, 101428.	2.0	8
99	Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano Energy, 2021, 89, 106424.	8.2	42
100	Mechanical design and analytic solution for unfolding deformation of locomotive ferromagnetic robots. International Journal of Mechanical Sciences, 2021, 211, 106799.	3.6	8
101	External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano, 2021, 15, 149-174.	7.3	138
102	Nonreciprocal coherent coupling of nanomagnets by exchange spin waves. Nano Research, 2021, 14, 2133-2138.	5.8	26
103	Magnesium-Based Micromotors as Hydrogen Generators for Precise Rheumatoid Arthritis Therapy. Nano Letters, 2021, 21, 1982-1991.	4.5	74
104	Curved Three-Dimensional Cobalt Nanohelices for Use in Domain Wall Device Applications. ACS Applied Nano Materials, 2020, 3, 6009-6016.	2.4	14
105	Shape-programmable and healable materials and devices using thermo- and photo-responsive vitrimer. Multifunctional Materials, 2020, 3, 045001.	2.4	19
106	Multifunctional magnetic soft composites: a review. Multifunctional Materials, 2020, 3, 042003.	2.4	159
107	Micromechanics Study on Actuation Efficiency of Hard-Magnetic Soft Active Materials. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	1.1	40
108	Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. , 2020, 2020, .		12
109	Size Matters! Issues and Challenges with Nanoparticulate UV Filters. Current Problems in Dermatology, 2021, 55, 203-222.	0.8	6

#	Article	IF	CITATIONS
110	Miniaturized Soft Transformable Swimmer for Evironmentally Friendly and Sustainable Fluidic Carrier. , 2021, , .		0
111	Mechanicallyâ€Guided 4D Printing of Magnetoresponsive Soft Materials across Different Length Scale. Advanced Intelligent Systems, 2022, 4, 2100137.	3.3	23
112	Environmentally Adaptive Shape-Morphing Microrobots for Localized Cancer Cell Treatment. ACS Nano, 2021, 15, 18048-18059.	7.3	94
113	Batch Manufacturing of Split-Actuator Micro Air Vehicle Based on Monolithic Processing Technology. Micromachines, 2021, 12, 1270.	1.4	1
114	The shape – morphing performance of magnetoactive soft materials. Materials and Design, 2021, 211, 110172.	3.3	94
115	Origami MEMS. , 2021, , 197-239.		2
116	Recent Progress in Active Mechanical Metamaterials and Construction Principles. Advanced Science, 2022, 9, e2102662.	5.6	75
117	Miniaturized Origami Robots: Actuation Approaches and Potential Applications. Macromolecular Materials and Engineering, 0, , 2100671.	1.7	3
118	Directional motion of the foam carrying oils driven by the magnetic field. Scientific Reports, 2021, 11, 21282.	1.6	3
119	Evolving from Laboratory Toys towards Life-Savers: Small-Scale Magnetic Robotic Systems with Medical Imaging Modalities. Micromachines, 2021, 12, 1310.	1.4	5
120	Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish. Nature Communications, 2021, 12, 6455.	5.8	72
121	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
122	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173
123	Magnetically propelled soft microrobot navigating through constricted microchannels. Applied Materials Today, 2021, 25, 101237.	2.3	18
124	A comparative review of artificial muscles for microsystem applications. Microsystems and Nanoengineering, 2021, 7, 95.	3.4	21
125	Soft actuators for real-world applications. Nature Reviews Materials, 2022, 7, 235-249.	23.3	296
126	Shape-Programmable Magnetic Miniature Robots: A Critical Review. , 2022, , 211-242.		1
127	A Cut-and-Fold Self-Sustained Compliant Oscillator for Autonomous Actuation of Origami-Inspired Robots. Soft Robotics, 2022, 9, 871-881.	4.6	3

\sim	T A T I	Repo	DT
		REDU	
	/	ILLI U	- C - L

#	Article	IF	CITATIONS
128	Magnetically Steerable Serial and Parallel Structures by Moldâ€Free Origami Templating and Domain Setting. Advanced Materials Technologies, 2022, 7, .	3.0	18
129	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	5.8	150
130	Harnessing the power of chemically active sheets in solution. Nature Reviews Physics, 2022, 4, 125-137.	11.9	13
131	Highly Efficient Magnetic Propulsion of NiFe Nanorod-Based Miniature Swimmers in Three Dimensions. ACS Applied Materials & Interfaces, 2021, 13, 58898-58907.	4.0	3
132	Shape-programmable magneto-active elastomer composites for curve and biomimetic behavior imitation. Soft Matter, 2021, 17, 10730-10735.	1.2	1
133	Smart Adhesives via Magnetic Actuation. Advanced Materials, 2022, 34, e2107748.	11.1	38
134	Magnetic helical micro-/nanomachines: Recent progress and perspective. Matter, 2022, 5, 77-109.	5.0	52
135	Magneto… electroâ€responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Applied Materials Today, 2022, 26, 101306.	2.3	70
136	Origami Logic Gates for Printable Robots. , 2021, , .		1
137	Magnetic Miniature Actuators with Sixâ€Degreesâ€ofâ€Freedom Multimodal Softâ€Bodied Locomotion. Advanced Intelligent Systems, 2022, 4, .	3.3	16
138	Light-modulated liquid crystal elastomer actuator with multimodal shape morphing and multifunction. Journal of Materials Chemistry C, 2022, 10, 3796-3803.	2.7	20
139	Recent advances in the stereolithographic three-dimensional printing of ceramic cores: Challenges and prospects. Journal of Materials Science and Technology, 2022, 117, 79-98.	5.6	29
140	Increasingly Intelligent Micromachines. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 279-310.	7.5	35
141	Magnetic Soft Materials and Robots. Chemical Reviews, 2022, 122, 5317-5364.	23.0	249
142	Magnetic Resonance Imagingâ€Based Tracking and Navigation of Submillimeterâ€6cale Wireless Magnetic Robots. Advanced Intelligent Systems, 2022, 4, .	3.3	22
143	Design of untethered soft material micromachine for life-like locomotion. Materials Today, 2022, 53, 197-216.	8.3	38
144	Decoupling and Reprogramming the Wiggling Motion of Midge Larvae Using a Soft Robotic Platform. Advanced Materials, 2022, 34, e2109126.	11.1	23
145	Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review. Materials, 2022, 15, 2397.	1.3	3

# 146	ARTICLE Field-Induced Assembly and Propulsion of Colloids. Langmuir, 2022, 38, 3001-3016.	lF 1.6	CITATIONS 27
147	Programmable Lightâ€Ðriven Liquid Crystal Elastomer Kirigami with Controlled Molecular Orientations. Advanced Intelligent Systems, 2022, 4, .	3.3	9
148	Multiscale numerical modeling of magneto-hyperelasticity of magnetorheological elastomeric composites. Composites Science and Technology, 2022, 224, 109443.	3.8	7
149	Liquid-Metal Magnetic Soft Robot With Reprogrammable Magnetization and Stiffness. IEEE Robotics and Automation Letters, 2022, 7, 4535-4541.	3.3	49
150	Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Materials Today Chemistry, 2022, 24, 100855.	1.7	5
151	Trimer-like microrobots with multimodal locomotion and reconfigurable capabilities. Materials Today Advances, 2022, 14, 100231.	2.5	25
152	Development of Cell-Carrying Magnetic Microrobots with Bioactive Nanostructured Titanate Surface for Enhanced Cell Adhesion. Micromachines, 2021, 12, 1572.	1.4	4
153	Reprogrammable Soft Robot Actuation by Synergistic Magnetic and Light Fields. Advanced Functional Materials, 2022, 32, .	7.8	31
154	A Dataâ€Driven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	28
155	Plasmonic 3D Selfâ€Folding Architectures via Vacuum Microforming. Small, 2022, 18, 2105843.	5.2	1
156	CeFlowBot: A Biomimetic Flowâ€Driven Microrobot that Navigates under Magnetoâ€Acoustic Fields. Small, 2022, 18, e2105829.	5.2	22
157	An aquatic microrobot for microscale flow manipulation. Scientific Reports, 2022, 12, 5041.	1.6	4
158	Giant Magnetoelastic Effect Enabled Stretchable Sensor for Self-Powered Biomonitoring. ACS Nano, 2022, 16, 6013-6022.	7.3	59
159	Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nature Communications, 2022, 13, 2016.	5.8	30
160	Magneto-deformation and transverse elastic waves in hard-magnetic soft laminates. Mechanics of Materials, 2022, 169, 104325.	1.7	18
161	A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010–2021). Frontiers in Robotics and Al, 2022, 9, .	2.0	12
162	Self-Sensing Magnetic Response Flexible Actuators. SSRN Electronic Journal, 0, , .	0.4	0
163	Analysis of Core-Shell Magnetic Micropillars for Reconfigurable Bending Actuation. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
164	Multistable shape programming of variable-stiffness electromagnetic devices. Science Advances, 2022, 8, .	4.7	17
167	Tunable magnetization of single domain M-type barium hexagonal ferrite nano powders by Co–Ti substitution via chemical co-precipitation plus molten salts method. Ceramics International, 2022, 48, 27779-27784.	2.3	10
168	Spinning-enabled wireless amphibious origami millirobot. Nature Communications, 2022, 13, .	5.8	68
169	Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Science Advances, 2022, 8, .	4.7	57
170	Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Science Advances, 2022, 8, .	4.7	105
171	Solid–Liquid State Transformable Magnetorheological Millirobot. ACS Applied Materials & Interfaces, 2022, 14, 30007-30020.	4.0	29
172	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	23.3	80
173	Elastically-mediated collective organisation of magnetic microparticles. Soft Matter, O, , .	1.2	3
174	Deployable mechanical metamaterials with multistep programmable transformation. Science Advances, 2022, 8, .	4.7	43
175	Deep Learning-Accelerated Designs of Tunable Magneto-Mechanical Metamaterials. ACS Applied Materials & Interfaces, 2022, 14, 33892-33902.	4.0	33
176	Shape Memory Alloy Helical Microrobots with Transformable Capability towards Vascular Occlusion Treatment. Research, 2022, 2022, .	2.8	4
177	Magnetic microswarm for MRI contrast enhancer. Chemistry - an Asian Journal, 2022, 17, .	1.7	8
178	Buckling of circular rings and its applications in thin-film electronics. International Journal of Mechanical Sciences, 2022, 228, 107477.	3.6	5
179	Magnetic soft robots: Design, actuation, and function. Journal of Alloys and Compounds, 2022, 922, 166219.	2.8	22
180	Artificial microtubules for rapid and collective transport of magnetic microcargoes. Nature Machine Intelligence, 2022, 4, 678-684.	8.3	22
181	Magnetically encoded 3D mesostructure with high-order shape morphing and high-frequency actuation. National Science Review, 2022, 9, .	4.6	8
182	A 3D hard-magnetic rod model based on co-rotational formulations. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	7
183	Rapid and Multimaterial 4D Printing of Shapeâ€Morphing Micromachines for Narrow Micronetworks Traversing. Small, 2022, 18, .	5.2	9

#	Article	IF	CITATIONS
184	A guide to design the trajectory of active particles: From fundamentals to applications. Current Opinion in Colloid and Interface Science, 2022, 61, 101612.	3.4	10
185	Phototunable, Reconfigurable, and Complex Shape Transformation of Fe ³⁺ -Containing Bilayer Polymer Materials. Chemistry of Materials, 2022, 34, 7481-7492.	3.2	4
186	On-demand anchoring of wireless soft miniature robots on soft surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
187	Multicomponent and multifunctional integrated miniature soft robots. Soft Matter, 2022, 18, 7464-7485.	1.2	7
188	Programming interactions in magnetic handshake materials. Soft Matter, 2022, 18, 6404-6410.	1.2	1
189	A Magnetically Steerable and Automatically Propulsion Guidewire Robot System for Vascular Interventional Surgery. , 2022, , .		0
190	Microscopic robots with onboard digital control. Science Robotics, 2022, 7, .	9.9	26
191	Aligned Magnetic Nanocomposites for Modularized and Recyclable Soft Microrobots. ACS Applied Materials & Materials	4.0	5
192	Light-Controlled Triple-Shape-Memory, High-Permittivity Dynamic Elastomer for Wearable Multifunctional Information Encoding Devices. ACS Nano, 2022, 16, 16954-16965.	7.3	17
193	A dynamically reprogrammable surface with self-evolving shape morphing. Nature, 2022, 609, 701-708.	13.7	45
194	Reprogrammable mechanical metamaterials with heterogeneous assembly of soft shellâ€based voxels. Advanced Engineering Materials, 0, , .	1.6	0
195	Kirigamiâ€Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes. Advanced Science, 2022, 9, .	5.6	16
196	Curvilinear Magnetic Architectures for Biomedical Engineering. Topics in Applied Physics, 2022, , 305-341.	0.4	0
197	Emerging Magnetic Fabrication Technologies Provide Controllable Hierarchicallyâ€Structured Biomaterials and Stimulus Response for Biomedical Applications. Advanced Science, 2022, 9, .	5.6	11
198	A Review of Soft Actuator Motion: Actuation, Design, Manufacturing and Applications. Actuators, 2022, 11, 331.	1.2	15
199	Arthritic Microenvironment Actuated Nanomotors for Active Rheumatoid Arthritis Therapy. Advanced Science, 2023, 10, .	5.6	22
200	On-Demand Maneuver of Millirobots with Reprogrammable Motility by a Hard-Magnetic Coating. ACS Applied Materials & Interfaces, 2022, 14, 52370-52378.	4.0	3
201	Magnetoâ€Thermomechanically Reprogrammable Mechanical Metamaterials. Advanced Materials, 2023, 35, .	11.1	14

#	Article	IF	CITATIONS
202	Shape programmable magnetic pixel soft robot. Heliyon, 2022, 8, e11415.	1.4	3
203	Detachable electromagnetic actuation system for inverted microscope and its function in motion control of microrobots. Journal of Magnetism and Magnetic Materials, 2022, 564, 170159.	1.0	1
204	Optimization and fabrication of programmable domains for soft magnetic robots: A review. Frontiers in Robotics and AI, 0, 9, .	2.0	5
205	Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization. Nature Communications, 2022, 13, .	5.8	13
206	Biomimetic, Programmable, and Partâ€byâ€Part Maneuverable Singleâ€Body Shapeâ€Morphing Film. Advanced Intelligent Systems, 2023, 5, .	3.3	2
207	Shape Morphing by Topological Patterns and Profiles in Laser-Cut Liquid Crystal Elastomer Kirigami. ACS Applied Materials & Interfaces, 2023, 15, 4538-4548.	4.0	4
209	Self-vectoring electromagnetic soft robots with high operational dimensionality. Nature Communications, 2023, 14, .	5.8	9
210	Analysis of core-shell magnetic micropillars for reconfigurable bending actuation. Journal of Intelligent Material Systems and Structures, 0, , 1045389X2211476.	1.4	0
211	Anisotropic Contraction in a Magnetically Hard but Mechanically Ultraâ€Soft Foam for Precise Drug Delivery. Advanced Materials Technologies, 2023, 8, .	3.0	2
212	Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nature Communications, 2023, 14,	5.8	7
213	Magnetically Driven Modular Mechanical Metamaterials with High Programmability, Reconfigurability, and Multiple Applications. ACS Applied Materials & Interfaces, 2023, 15, 3486-3496.	4.0	3
214	Adaptive Actuation of Magnetic Soft Robots Using Deep Reinforcement Learning. Advanced Intelligent Systems, 2023, 5, .	3.3	8
216	Origami-based integration of robots that sense, decide, and respond. Nature Communications, 2023, 14,	5.8	9
217	Magnetic hydrogel-based flexible actuators: A comprehensive review on design, properties, and applications. Chemical Engineering Journal, 2023, 462, 142193.	6.6	11
218	Microâ€ S cale Mechanical Metamaterial with a Controllable Transition in the Poisson's Ratio and Band Gap Formation. Advanced Materials, 2023, 35, .	11.1	20
219	3D-printed magnetic porous structures with different poisson's ratios and their mechanoelectrical conversion capabilities. Additive Manufacturing, 2023, 69, 103542.	1.7	8
220	Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering, 2023, 24, 21-38.	3.2	7
221	Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization. Small, 2023, 19, .	5.2	4

#	Article	IF	CITATIONS
222	3D Printed Miniaturized Soft Microswimmer for Multimodal 3D Air-Liquid Navigation and Manipulation. , 2023, , .		1
223	Lightâ€Fueled Nonequilibrium and Adaptable Hydrogels for Highly Tunable Autonomous Selfâ€Oscillating Functions. Advanced Functional Materials, 2023, 33, .	7.8	11
224	Accelerating the Design of Self-Guided Microrobots in Time-Varying Magnetic Fields. Jacs Au, 2023, 3, 611-627.	3.6	5
225	Magnetically Actuable Complexâ€Shaped Microgels for Spatioâ€Temporal Flow Control. Advanced Materials Technologies, 0, , .	3.0	2
226	Folding the Energy Storage: Beyond the Limit of Areal Energy Density of Micro upercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	4
227	Direct 4D printing of gradient structure of ceramics. Chemical Engineering Journal, 2023, 465, 142804.	6.6	6
228	3D printing of high-precision and ferromagnetic functional devices. International Journal of Extreme Manufacturing, 2023, 5, 035501.	6.3	7
229	Adaptive path tracking of magnetic microrobot in arterial environments. , 2022, , .		0
230	Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Advanced Materials, 2023, 35, .	11.1	14
231	Soft Multimaterial Magnetic Fibers and Textiles. Advanced Materials, 2023, 35, .	11.1	12
232	Shape memory mechanical metamaterials. Materials Today, 2023, 66, 36-49.	8.3	19
233	Encoding and Storage of Information in Mechanical Metamaterials. Advanced Science, 2023, 10, .	5.6	8
235	Geometry matters: Gamete transport using magnetic microrobots. , 2024, , 540-551.		0
241	Biomedical Applications of Ferrites. Materials Horizons, 2023, , 241-256.	0.3	0
244	Small-scale robots with programmable magnetization profiles. , 2023, , 119-139.		0
255	Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano, 2023, 17, 13081-13109.	7.3	11
270	Soft Magnetoactive Morphing Structures with Self-Sensing Properties, Using Multi-Material Extrusion Additive Manufacturing. Springer Tracts in Additive Manufacturing, 2024, , 365-386.	0.2	0
276	Research Status and Application Prospects of Magnetically Driven Micro- and Nanorobots. Lecture Notes in Computer Science, 2023, , 476-492.	1.0	0

#	Article	IF	CITATIONS
290	Liquid Metal Micro/Nano Magnetic Fluid. , 2024, , 1-31.		0

295 Magnetism and Magnetic Materials. , 2024, , 1-15.