AZD7648 is a potent and selective DNA-PK inhibitor tha and olaparib activity

Nature Communications 10, 5065 DOI: 10.1038/s41467-019-12836-9

Citation Report

#	Article	IF	CITATIONS
1	The Discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5- <i>a</i>]pyridin-6-yl)amino]-9-(tetrahydro-2 <i>H</i> -pyran-4-yl)-7,9-dil (AZD7648), a Potent and Selective DNA-Dependent Protein Kinase (DNA-PK) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 3461-3471.	nydro-8 <i>I</i>	H<∥i≯-purin-8- 44
2	ClC-3/SGK1 regulatory axis enhances the olaparib-induced antitumor effect in human stomach adenocarcinoma. Cell Death and Disease, 2020, 11, 898.	6.3	13
3	Combining PARP and DNA-PK Inhibitors With Irradiation Inhibits HPV-Negative Head and Neck Cancer Squamous Carcinoma Growth. Frontiers in Genetics, 2020, 11, 1036.	2.3	12
4	Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. Ca-A Cancer Journal for Clinicians, 2020, 70, 375-403.	329.8	237
5	Beyond DNA Repair: DNA-PKcs in Tumor Metastasis, Metabolism and Immunity. Cancers, 2020, 12, 3389.	3.7	19
6	DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers, 2020, 12, 2098.	3.7	57
7	Complete loss of ATM function augments replication catastrophe induced by ATR inhibition and gemcitabine in pancreatic cancer models. British Journal of Cancer, 2020, 123, 1424-1436.	6.4	40
8	Inhibitors of DNA double-strand break repair at the crossroads of cancer therapy and genome editing. Biochemical Pharmacology, 2020, 182, 114195.	4.4	9
9	Synthetic Lethality through the Lens of Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 14151-14183.	6.4	31
10	Poxviral Targeting of Interferon Regulatory Factor Activation. Viruses, 2020, 12, 1191.	3.3	7
11	Advances in synthetic lethality for cancer therapy: cellular mechanism and clinical translation. Journal of Hematology and Oncology, 2020, 13, 118.	17.0	95
12	Exploiting DNA repair defects in triple negative breast cancer to improve cell killing. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592095835.	3.2	27
13	A Personal History of Using Crystals and Crystallography to Understand Biology and Advanced Drug Discovery. Crystals, 2020, 10, 676.	2.2	1
14	Meeting report from the Prostate Cancer Foundation PSMA theranostics state of the science meeting. Prostate, 2020, 80, 1273-1296.	2.3	16
15	Gastric cancer: a comprehensive review of current and future treatment strategies. Cancer and Metastasis Reviews, 2020, 39, 1179-1203.	5.9	311
16	PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Frontiers in Cell and Developmental Biology, 2020, 8, 564601.	3.7	315
17	Dual mTOR/DNA-PK Inhibitor CC-115 Induces Cell Death in Melanoma Cells and Has Radiosensitizing Potential. International Journal of Molecular Sciences, 2020, 21, 9321.	4.1	15
18	DNA-PKcs: A Multi-Faceted Plaver in DNA Damage Response. Frontiers in Genetics. 2020. 11. 607428.	2.3	77

#	Article	IF	CITATIONS
19	Targeting DNA Damage Response in Prostate and Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 8273.	4.1	50
20	Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences, 2020, 21, 3233.	4.1	800
21	Emerging Subtypes and New Treatments for Castration-Resistant Prostate Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e319-e332.	3.8	3
22	DNA-PK in human malignant disorders: Mechanisms and implications for pharmacological interventions. , 2020, 215, 107617.		27
23	Exploiting replicative stress in gynecological cancers as a therapeutic strategy. International Journal of Gynecological Cancer, 2020, 30, 1224-1238.	2.5	14
24	Targeting DNA-PK in cancer. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2020, 821, 111692.	1.0	48
25	DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduction and Targeted Therapy, 2020, 5, 60.	17.1	474
26	PARP Inhibitors in Cancer Diagnosis and Therapy. Clinical Cancer Research, 2021, 27, 1585-1594.	7.0	53
27	A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. Annals of Oncology, 2021, 32, 103-112.	1.2	98
28	A first-in-man phase 1 study of the DNA-dependent protein kinase inhibitor peposertib (formerly M3814) in patients with advanced solid tumours. British Journal of Cancer, 2021, 124, 728-735.	6.4	64
29	SLFN11 informs on standard of care and novel treatments in a wide range of cancer models. British Journal of Cancer, 2021, 124, 951-962.	6.4	40
30	Small molecule DNA-PK inhibitors as potential cancer therapy: a patent review (2010–present). Expert Opinion on Therapeutic Patents, 2021, 31, 435-452.	5.0	37
32	Activation of DNA damage response signaling in mammalian cells by ionizing radiation. Free Radical Research, 2021, 55, 814-827.	3.3	13
33	Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy. , 2021, 4, 244-263.		14
34	A Decade of FDA-Approved Drugs (2010–2019): Trends and Future Directions. Journal of Medicinal Chemistry, 2021, 64, 2312-2338.	6.4	145
35	Glycogen synthase kinase 3Î ² inhibition synergizes with PARP inhibitors through the induction of homologous recombination deficiency in colorectal cancer. Cell Death and Disease, 2021, 12, 183.	6.3	15
36	Genomic, Transcriptomic, and Functional Alterations in DNA Damage Response Pathways as Putative Biomarkers of Chemotherapy Response in Ovarian Cancer. Cancers, 2021, 13, 1420.	3.7	7
37	Alternative approaches to target Myc for cancer treatment. Signal Transduction and Targeted Therapy, 2021, 6, 117.	17.1	86

		CITATION REPORT	
#	Article	IF	CITATIONS
38	Inhibition of DNA-PK with AZD7648 Sensitizes Tumor Cells to Radiotherapy and Induces Type I IFN-Dependent Durable Tumor Control. Clinical Cancer Research, 2021, 27, 4353-4366.	7.0	27
39	Recent Advances in Therapeutic Application of DNA Damage Response Inhibitors against Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 469-484.	1.7	3
40	Radiopotentiation Profiling of Multiple Inhibitors of the DNA Damage Response for Early Clinical Development. Molecular Cancer Therapeutics, 2021, 20, 1614-1626.	4.1	12
41	Nonhomologous end joining: new accessory factors fine tune the machinery. Trends in Genetics, 2021, 37, 582-599.	6.7	44
42	High Expression of Cancer-IgG Is Associated With Poor Prognosis and Radioresistance via PI3K/AKT/DNA-PKcs Pathway Regulation in Lung Adenocarcinoma. Frontiers in Oncology, 2021, 11, 675397.	2.8	10
43	Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annual Review of Biochemistry, 2021, 90, 137-164.	11.1	76
44	DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduction and Targeted Therapy, 2021, 6, 254.	17.1	239
45	Loss of Cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription-associated replication stress. Nucleic Acids Research, 2021, 49, 8665-8683.	14.5	25
46	Targeted Mass Spectrometry Enables Quantification of Novel Pharmacodynamic Biomarkers of ATM Kinase Inhibition. Cancers, 2021, 13, 3843.	3.7	7
47	Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers, 2021, 13, 3438.	3.7	11
48	PSMA Theranostics: Current Landscape and Future Outlook. Cancers, 2021, 13, 4023.	3.7	33
49	BAY-8400: A Novel Potent and Selective DNA-PK Inhibitor which Shows Synergistic Efficacy in Combination with Targeted Alpha Therapies. Journal of Medicinal Chemistry, 2021, 64, 12723-12737.	6.4	6
50	Radionuclide Therapy in Prostate Cancer: From Standalone to Combination PSMA Theranostics. Journal of Nuclear Medicine, 2021, 62, 1660-1668.	5.0	16
52	DNA-PK inhibition by M3814 enhances chemosensitivity in non-small cell lung cancer. Acta Pharmaceutica Sinica B, 2021, 11, 3935-3949.	12.0	15
53	Synergistic Therapy of a Naturally Inspired Glycopolymerâ€Based Biomimetic Nanomedicine Harnessing Tumor Genomic Instability. Advanced Materials, 2021, 33, e2104594.	21.0	42
54	Proteomics-derived basal biomarker DNA-PKcs is associated with intrinsic subtype and long-term clinical outcomes in breast cancer. Npj Breast Cancer, 2021, 7, 114.	5.2	3
55	DNA Double Strand Break Repair Pathways in Response to Different Types of Ionizing Radiation. Frontiers in Genetics, 2021, 12, 738230.	2.3	12
56	DNA Damage Response in Glioblastoma. Cancer Journal (Sudbury, Mass), 2021, 27, 379-385.	2.0	6

ARTICLE IF CITATIONS # Role of DNA-Dependent Protein Kinase in Mediating Cyst Growth in Autosomal Dominant Polycystic 57 4.1 3 Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 10512. Targeting the replication stress response through synthetic lethal strategies in cancer medicine. 7.4 48 Trends in Cancer, 2021, 7, 930-957 Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precision Oncology, 59 3.0 4 2021, 5, 245-264. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient 5.9 119 cancer cells. Oncogene, 2020, 39, 4869-4883. Druggable binding sites in the multicomponent assemblies that characterise DNA double-strand-break 61 4.7 6 repair through non-homologous end joining. Essays in Biochemistry, 2020, 64, 791-806. Target-Based Radiosensitization Strategies: Concepts and Companion Animal Model Outlook. Frontiers 2.8 in Oncology, 2021, 11, 768692. Rad50 promotes ovarian cancer progression through NFâ€₽B activation. Journal of Cellular and 64 3.6 9 Molecular Medicine, 2021, 25, 10961-10972. Pan-cancer Analysis of Homologous Recombination Repair–associated Gene Alterations and 46 Genome-wide Loss-of-Heterozygosity Score. Clinical Cancer Research, 2022, 28, 1412-1421. NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK 67 0 1.4 activation. American Journal of Cancer Research, 2021, 11, 2838-2852. Targeting Non-homologous and Alternative End Joining Repair to Enhance Cancer Radiosensitivity. 2.2 Seminars in Radiation Oncology, 2022, 32, 29-41. Targeting Noncanonical Regulators of the DNA Damage Response to Selectively Overcome Cancer 69 2.2 0 Radiation Resistance. Seminars in Radiation Oncology, 2022, 32, 64-75. Radiosensitisation of SCCVII tumours and normal tissues in mice by the DNA-dependent protein kinase inhibitor AZD7648. Radiotherapy and Oncology, 2022, 166, 162-170. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nature Reviews 71 27.6 76 Clinical Oncology, 2022, 19, 114-131. Targeting of PI3K/AKT signaling and DNA damage response in acute myeloid leukemia: a novel therapeutic strategy to boost chemotherapy response and overcome resistance. , 2021, 4, 984-995. Positive Feedback Regulation of Poly(ADP-ribose) Polymerase 1 and the DNA-PK Catalytic Subunit 73 3.5 1 Affects the Sensitivity of Nasopharyngeal Carcinoma to Etoposide. ACS Omega, 2022, 7, 2571-2582. Improving therapeutic resistance: beginning with targeting the tumor microenvironment. Journal of 74 Chemotherapy, 2022, 34, 492-516. Structural insights into inhibitor regulation of the DNA repair protein DNA-PKcs. Nature, 2022, 601, 75 27.836 643-648. BRCA2 deficiency increases sensitivity of medulloblastoma to Olaparib by inhibiting RAD51-mediated 2.4 DNA damage repair system. Clinical and Translational Oncology, 2022, 24, 919-926.

#	Article	IF	CITATIONS
77	Epidrugs in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia: Contextualizing a Role for Histone Kinase Inhibition in Neurodegenerative Disease. ACS Pharmacology and Translational Science, 2022, 5, 134-137.	4.9	7
78	Recent advances in DDR (DNA damage response) inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 2022, 230, 114109.	5.5	45
79	Therapeutic Targeting of DNA Damage Response in Cancer. International Journal of Molecular Sciences, 2022, 23, 1701.	4.1	26
80	The DNA-PK Inhibitor AZD7648 Sensitizes Patient-Derived Ovarian Cancer Xenografts to Pegylated Liposomal Doxorubicin and Olaparib Preventing Abdominal Metastases. Molecular Cancer Therapeutics, 2022, 21, 555-567.	4.1	11
81	Inhibition of DNA-PK may improve response to neoadjuvant chemoradiotherapy in rectal cancer. Neoplasia, 2022, 25, 53-61.	5.3	10
82	Synergistic radiosensitizing effect of BR101801, a specific DNA-dependent protein kinase inhibitor, in various human solid cancer cells and xenografts. American Journal of Cancer Research, 2021, 11, 5440-5451.	1.4	0
83	DNA-PK Inhibition and Radiation Promote Antitumoral Immunity through RNA Polymerase III in Pancreatic Cancer. Molecular Cancer Research, 2022, 20, 1137-1150.	3.4	8
84	Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing. Nature Communications, 2022, 13, 1240.	12.8	18
85	DNA repair defects in cancer and therapeutic opportunities. Genes and Development, 2022, 36, 278-293.	5.9	45
86	Central Nervous System Delivery of the Catalytic Subunit of DNA-Dependent Protein Kinase Inhibitor Peposertib as Radiosensitizer for Brain Metastases. Journal of Pharmacology and Experimental Therapeutics, 2022, 381, 217-228.	2.5	7
87	Perspective on the Use of DNA Repair Inhibitors as a Tool for Imaging and Radionuclide Therapy of Glioblastoma. Cancers, 2022, 14, 1821.	3.7	3
88	DNA-PKcs: A Targetable Protumorigenic Protein Kinase. Cancer Research, 2022, 82, 523-533.	0.9	21
89	Preventing and Overcoming Resistance to PARP Inhibitors: A Focus on the Clinical Landscape. Cancers, 2022, 14, 44.	3.7	16
90	Targeting DNA repair pathway in cancer: Mechanisms and clinical application. MedComm, 2021, 2, 654-691.	7.2	34
91	PARP inhibitors as a radiosensitizer: a future promising approach in prostate cancer?. Ecancermedicalscience, 2021, 15, ed118.	1.1	4
92	A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biology Direct, 2021, 16, 25.	4.6	39
93	Discovery of novel 7,8-dihydropteridine-6(5H)-one-based DNA-PK inhibitors as potential anticancer agents via scaffold hopping strategy. European Journal of Medicinal Chemistry, 2022, 237, 114401.	5.5	5
94	Development and Evolution of DNA-Dependent Protein Kinase Inhibitors toward Cancer Therapy. International Journal of Molecular Sciences, 2022, 23, 4264.	4.1	12

#	Article	IF	CITATIONS
98	Targeting the Homologous Recombination Pathway in Cancer With a Novel Class of RAD51 Inhibitors. Frontiers in Oncology, 2022, 12, .	2.8	2
99	A microfluidic system that replicates pharmacokinetic (PK) profiles in vitro improves prediction of in vivo efficacy in preclinical models. PLoS Biology, 2022, 20, e3001624.	5.6	7
100	Effective Radiosensitization of Bladder Cancer Cells by Pharmacological Inhibition of DNA-PK and ATR. Biomedicines, 2022, 10, 1277.	3.2	3
102	An mTOR and DNA-PK dual inhibitor CC-115 hinders non-small cell lung cancer cell growth. Cell Death Discovery, 2022, 8, .	4.7	4
103	cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells, 2022, 11, 2020.	4.1	34
104	ABC transporters in breast cancer: their roles in multidrug resistance andÂbeyond. Journal of Drug Targeting, 2022, 30, 927-947.	4.4	27
105	Chloroquine-Induced DNA Damage Synergizes with Nonhomologous End Joining Inhibition to Cause Ovarian Cancer Cell Cytotoxicity. International Journal of Molecular Sciences, 2022, 23, 7518.	4.1	4
106	Optimization of hERG and Pharmacokinetic Properties for Basic Dihydro-8 <i>H</i> -purin-8-one Inhibitors of DNA-PK. ACS Medicinal Chemistry Letters, 2022, 13, 1295-1301.	2.8	0
107	DNA Damage Response: A Therapeutic Landscape For Breast Cancer Treatment. , 2022, , 62-85.		0
108	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , .		0
108 110	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050.	3.7	0
108 110 111	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050. Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198, .	3.7 1.5	0 7 3
108 110 111 112	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050. Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198,. Combined ataxia telangiectasia mutated and DNA-dependent protein kinase inhibition radiosensitizes Madinâ€"Darby canine kidney cells. Journal of Veterinary Medical Science, 2022, , .	3.7 1.5 0.9	0 7 3 0
108 110 111 112 113	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050. Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198,. Combined ataxia telangiectasia mutated and DNA-dependent protein kinase inhibition radiosensitizes Madin–Darby canine kidney cells. Journal of Veterinary Medical Science, 2022, , . Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Frontiers in Oncology, 0, 12, .	3.7 1.5 0.9 2.8	0 7 3 0
108 110 111 112 113 114	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050. Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198, . Combined ataxia telangiectasia mutated and DNA-dependent protein kinase inhibition radiosensitizes Madin–Darby canine kidney cells. Journal of Veterinary Medical Science, 2022, , . Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Frontiers in Oncology, 0, 12, . Drug–gene Interaction Screens Coupled to Tumor Data Analyses Identify the Most Clinically Relevant Cancer Vulnerabilities Driving Sensitivity to PARP Inhibition. Cancer Research Communications, 2022, 2, 1244-1254.	3.7 1.5 0.9 2.8 1.7	0 7 3 0 15 7
108 110 111 112 113 114	Nonhomologous DNA End Joining in Mammalian Cells. , 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050. Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198, . Combined ataxia telangiectasia mutated and DNA-dependent protein kinase inhibition radiosensitizes Madinã€"Darby canine kidney cells. Journal of Veterinary Medical Science, 2022, , . Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Frontiers in Oncology, 0, 12, . Drugã€" gene Interaction Screens Coupled to Tumor Data Analyses Identify the Most Clinically Relevant Cancer Vulnerabilities Driving Sensitivity to PARP Inhibition. Cancer Research Communications, 2022, 2, 1244-1254. Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks. Nature Communications, 2022, 13, .	 3.7 1.5 0.9 2.8 1.7 12.8 	0 7 3 0 15 7 21
108 110 111 112 113 114 116 117	Nonhomologous DNA End Joining in Mammalian Cells., 2022, , . Targeting Histone Epigenetic Modifications and DNA Damage Responses in Synthetic Lethality Strategies in Cancer?. Cancers, 2022, 14, 4050. Targeted Inhibition of DNA-PKcs, ATM, ATR, PARP, and Rad51 Modulate Response to X Rays and Protons. Radiation Research, 2022, 198, . Combined ataxia telangiectasia mutated and DNA-dependent protein kinase inhibition radiosensitizes Madina€"Darby canine kidney cells. Journal of Veterinary Medical Science, 2022, , . Enhancing anti-tumour innate immunity by targeting the DNA damage response and pattern recognition receptors in combination with radiotherapy. Frontiers in Oncology, 0, 12, . Drugâ€"gene Interaction Screens Coupled to Tumor Data Analyses Identify the Most Clinically Relevant Cancer Vulnerabilities Driving Sensitivity to PARP Inhibition. Cancer Research Communications, 2022, 2, 1244-1254. Multi-pathway DNA-repair reporters reveal competition between end-joining, single-strand annealing and homologous recombination at Cas9-induced DNA double-strand breaks. Nature Communications, 2022, 13, . Hyperactive Akt1 Signaling Increases Tumor Progression and DNA Repair in Embryonal Rhabdomyosarcoma RD Line and Confers Susceptibility to Glycolysis and Mevalonate Pathway Inhibitors. Cells, 2022, 11, 2859.	 3.7 1.5 0.9 2.8 1.7 12.8 4.1 	0 7 3 0 15 7 21 4

#	Article	IF	CITATIONS
119	Targeting the DNA Damage Response and DNA Repair Pathways to Enhance Radiosensitivity in Colorectal Cancer. Cancers, 2022, 14, 4874.	3.7	11
120	Exploiting DNA Replication Stress as a Therapeutic Strategy for Breast Cancer. Biomedicines, 2022, 10, 2775.	3.2	5
121	Leveraging the replication stress response to optimize cancer therapy. Nature Reviews Cancer, 2023, 23, 6-24.	28.4	33
122	Exploring the DNA damage response pathway for synthetic lethality. Genome Instability & Disease, 2023, 4, 98-120.	1.1	2
123	Intron-encoded cistronic transcripts for minimally invasive monitoring of coding and non-coding RNAs. Nature Cell Biology, 2022, 24, 1666-1676.	10.3	3
125	Development and Manufacture of a Curtius Rearrangement Using Continuous Flow towards the Large-Scale Manufacture of AZD7648. Organic Process Research and Development, 2022, 26, 3312-3322.	2.7	3
126	Phenotypic Discovery of Triazolo[1,5- <i>c</i>]quinazolines as a First-In-Class Bone Morphogenetic Protein Amplifier Chemotype. Journal of Medicinal Chemistry, 2022, 65, 15263-15281.	6.4	6
127	Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomedicine and Pharmacotherapy, 2023, 158, 114126.	5.6	1
128	Radiation Sensitizers. Medical Radiology, 2022, , .	0.1	0
129	Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers, 2022, 14, 5795.	3.7	4
130	Polî» promotes microhomology-mediated end-joining. Nature Structural and Molecular Biology, 2023, 30, 107-114.	8.2	6
132	Targeting DNA damage response pathways in cancer. Nature Reviews Cancer, 2023, 23, 78-94.	28.4	158
133	DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers, 2023, 15, 448.	3.7	7
134	Ku–DNA binding inhibitors modulate the DNA damage response in response to DNA double-strand breaks. NAR Cancer, 2023, 5, .	3.1	1
136	DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair. Molecules and Cells, 2023, 46, 200-205.	2.6	2
137	Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Frontiers in Immunology, 0, 14, .	4.8	2
138	Hafnium oxide nanoparticles coated ATR inhibitor to enhance the radiotherapy and potentiate antitumor immune response. Chemical Engineering Journal, 2023, 461, 142085.	12.7	4
140	Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlentherapie Und Onkologie, 2023, 199, 1091-1109.	2.0	3

#	Article	IF	CITATIONS
142	Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	35
143	Chemical inhibition of <scp>DNAâ€PKcs</scp> impairs the activation and cytotoxicity of <scp>CD4</scp> ⁺ helper and <scp>CD8</scp> ⁺ effector T cells. Immunology and Cell Biology, 2023, 101, 663-671.	2.3	1
144	Radiation-induced tumor immune microenvironments and potential targets for combination therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	13
146	PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Frontiers in Pharmacology, 0, 14, .	3.5	3
147	Molecular mechanisms of tumor resistance to radiotherapy. Molecular Cancer, 2023, 22, .	19.2	25
148	Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. International Journal of Molecular Sciences, 2023, 24, 10212.	4.1	2
149	Paediatric Strategy Forum for medicinal product development of DNA damage response pathway inhibitors in children and adolescents with cancer: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. European Journal of Cancer, 2023, 190, 112950.	2.8	1
150	Simultaneous Delivery of Dual Inhibitors of DNA Damage Repair Sensitizes Pancreatic Cancer Response to Irreversible Electroporation. ACS Nano, 0, , .	14.6	0
151	Therapeutic Targeting of DNA Replication Stress in Cancer. Genes, 2023, 14, 1346.	2.4	2
152	Radiation in Combination with Immune Checkpoint Blockade and DNA Damage Response Inhibitors in Mice: Dosage Optimization in MC38 Syngeneic Tumors via Modelling and Simulation. Journal of Pharmacology and Experimental Therapeutics, 2023, 387, 44-54.	2.5	3
153	Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nature Communications, 2023, 14, .	12.8	4
154	High-efficiency transgene integration by homology-directed repair in human primary cells using DNA-PKcs inhibition. Nature Biotechnology, 0, , .	17.5	12
155	Discovery and Characterization of ZL-2201, a Potent, Highly Selective, and Orally Bioavailable Small-molecule DNA-PK Inhibitor. Cancer Research Communications, 2023, 3, 1731-1742.	1.7	0
156	Simultaneous inhibition of DNA-PK and Poll̈́ improves integration efficiency and precision of genome editing. Nature Communications, 2023, 14, .	12.8	10
157	Inhibition of non-homologous end joining mitigates paclitaxel resistance resulting from mitotic slippage in non-small cell lung cancer. Cell Cycle, 2023, 22, 1854-1864.	2.6	0
159	A new wave of innovations within the DNA damage response. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	6
160	Inhibition of DNA-dependent protein kinase catalytic subunit boosts rAAV transduction of polarized human airway epithelium. Molecular Therapy - Methods and Clinical Development, 2023, 31, 101115.	4.1	1
161	Doubleâ€strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm, 2023, 4, .	7.2	0

#	Article	IF	CITATIONS
162	DNA-PK inhibition extends the therapeutic effects of Top2 poisoning to non-proliferating cells, increasing activity at a cost. Scientific Reports, 2023, 13, .	3.3	0
164	Relevance of ATM Status in Driving Sensitivity to DNA Damage Response Inhibitors in Patient-Derived Xenograft Models. Cancers, 2023, 15, 4195.	3.7	0
165	DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives angiotensin II-induced vascular remodeling through regulating mitochondrial fragmentation. Redox Biology, 2023, 67, 102893.	9.0	1
166	Ultra-small radiosensitizers deliver epigenetic drugs to induce pyroptosis and boost triple-negative breast cancer radiotherapy. Nano Today, 2023, 52, 101997.	11.9	2
167	Unleashing the Power of Synthetic Lethality: Augmenting Treatment Efficacy through Synergistic Integration with Chemotherapy Drugs. Pharmaceutics, 2023, 15, 2433.	4.5	1
168	Development and validation of an LC–MS/MS method for the determination of AZD7648 in rat plasma: Application to a pharmacokinetic study. Biomedical Chromatography, 2024, 38, .	1.7	0
169	AZD-7648, a DNA-PK Inhibitor, Induces DNA Damage, Apoptosis, and Cell Cycle Arrest in Chronic and Acute Myeloid Leukemia Cells. International Journal of Molecular Sciences, 2023, 24, 15331.	4.1	1
170	Synergistic antitumor efficacy of rMV-Hu191 and Olaparib in pancreatic cancer by generating oxidative DNA damage and ROS-dependent apoptosis. Translational Oncology, 2024, 39, 101812.	3.7	0
172	Targeting the DNA Damage Response for Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 15907.	4.1	0
173	Molecular medicinal insights into scaffold hopping-based drug discovery success. Drug Discovery Today, 2024, 29, 103845.	6.4	2
174	A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics. Nature Communications, 2023, 14, .	12.8	0
175	Targeting DNA-PK. Cancer Treatment and Research, 2023, , 299-312.	0.5	0
176	Combination DNA Damage Response (DDR) Inhibitors to Overcome Drug Resistance in Ovarian Cancer. Cancer Treatment and Research, 2023, , 189-206.	0.5	0
178	ATM deficiency confers specific therapeutic vulnerabilities in bladder cancer. Science Advances, 2023, 9, .	10.3	0
179	Mapping combinatorial drug effects to DNA damage response kinase inhibitors. Nature Communications, 2023, 14, .	12.8	0
180	Selective DNA-PK inhibition enhances chemotherapy and ionizing radiation activity in soft-tissue sarcomas. Clinical Cancer Research, 0, , .	7.0	0
181	DNA repair in tumor radioresistance: insights from fruit flies genetics. Cellular Oncology (Dordrecht), 0, , .	4.4	0
182	Quantitative, titratable and high-throughput reporter assays to measure DNA double strand break repair activity in cells. Nucleic Acids Research, 2024, 52, 1736-1752.	14.5	0

#	Article	IF	CITATIONS
183	Discovery, Optimization, and Evaluation of Potent and Selective DNA-PK Inhibitors in Combination with Chemotherapy or Radiotherapy for the Treatment of Malignancies. Journal of Medicinal Chemistry, 0, , .	6.4	0
184	DNA-PKcs is required for cGAS/STING-dependent viral DNA sensing in human cells. IScience, 2024, 27, 108760.	4.1	0
185	DNA-Dependent Protein Kinase Inhibitor Peposertib Potentiates the Cytotoxicity of Topoisomerase II Inhibitors in Synovial Sarcoma Models. Cancers, 2024, 16, 189.	3.7	0
186	Combinatorial targeting of telomerase and DNA-PK induces synergistic apoptotic effects against Pre-B acute lymphoblastic leukemia cells. Molecular Biology Reports, 2024, 51, .	2.3	0
189	Different Impacts of DNA-PK and mTOR Kinase Inhibitors in Combination with Ionizing Radiation on HNSCC and Normal Tissue Cells. Cells, 2024, 13, 304.	4.1	0
191	DNA-PKcs suppresses illegitimate chromosome rearrangements. Nucleic Acids Research, 0, , .	14.5	0
192	Next-generation therapies for pancreatic cancer. Expert Review of Gastroenterology and Hepatology, 2024, 18, 55-72.	3.0	0
193	Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells. Scientific Reports, 2024, 14, .	3.3	0
194	Functional screening in human HSPCs identifies optimized protein-based enhancers of Homology Directed Repair. Nature Communications, 2024, 15, .	12.8	0
195	Automating data analysis for hydrogen/deuterium exchange mass spectrometry using data-independent acquisition methodology. Nature Communications, 2024, 15, .	12.8	0