Grandmaster level in StarCraft II using multi-agent reir

Nature 575, 350-354 DOI: 10.1038/s41586-019-1724-z

Citation Report

#	Article	IF	CITATIONS
1	Adaptive FPGA Placement Optimization via Reinforcement Learning. , 2019, , .		11
2	Attention-Based Curiosity in Multi-Agent Reinforcement Learning Environments. , 2019, , .		7
3	The scientific events that shaped the decade. Nature, 2019, 576, 337-338.	27.8	6
4	A Computer Conquers Tactical Combinations. CheM, 2020, 6, 12-13.	11.7	2
5	Neuromorphic Applications of a Multivalued [Snl ₄ {(C ₆ H ₅) ₂ SO} ₂] Memristor Incorporated in the Echo State Machine. ACS Applied Electronic Materials, 2020, 2, 329-338.	4.3	16
6	Artificial intelligence approaches to improve kidney care. Nature Reviews Nephrology, 2020, 16, 71-72.	9.6	35
7	A Review of Kernel Methods for Feature Extraction in Nonlinear Process Monitoring. Processes, 2020, 8, 24.	2.8	69
8	Demystifying Social Bots: On the Intelligence of Automated Social Media Actors. Social Media and Society, 2020, 6, 205630512093926.	3.0	22
9	Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence, 2020, 2, 642-652.	16.0	98
10	Evolutionary Approach to Collectible Arena Deckbuilding using Active Card Game Genes. , 2020, , .		8
11	Overview of Machine Learning: Part 2. Neuroimaging Clinics of North America, 2020, 30, 417-431.	1.0	31
12	Beyond-Visual-Range Air Combat Tactics Auto-Generation by Reinforcement Learning. , 2020, , .		12
13	The present and future role of artificial intelligence and machine learning in anesthesiology. International Anesthesiology Clinics, 2020, 58, 7-16.	0.8	9
14	A Soft Graph Attention Reinforcement Learning for Multi-Agent Cooperation. , 2020, , .		4
15	Dimensions of artificial intelligence anxiety based on the integrated fear acquisition theory. Technology in Society, 2020, 63, 101410.	9.4	64
16	Emerging Memristive Artificial Synapses and Neurons for Energyâ€Efficient Neuromorphic Computing. Advanced Materials, 2020, 32, e2004659.	21.0	175
17	Network Engineering Using Autonomous Agents Increases Cooperation in Human Groups. IScience, 2020, 23, 101438.	4.1	20
18	Forecasting extreme labor displacement: A survey of AI practitioners. Technological Forecasting and Social Change, 2020, 161, 120323.	11.6	25

ITATION REDO

#	Article	IF	Citations
19	Reward design for driver repositioning using multi-agent reinforcement learning. Transportation Research Part C: Emerging Technologies, 2020, 119, 102738.	7.6	25
20	Element Code from Pseudopotential as Efficient Descriptors for a Machine Learning Model to Explore Potential Lead-Free Halide Perovskites. Journal of Physical Chemistry Letters, 2020, 11, 8914-8921.	4.6	11
21	Short-sighted deep learning. Physical Review E, 2020, 102, 013307.	2.1	1
22	Deep Reinforcement Learning and Its Neuroscientific Implications. Neuron, 2020, 107, 603-616.	8.1	102
23	Attentive multi-view reinforcement learning. International Journal of Machine Learning and Cybernetics, 2020, 11, 2461-2474.	3.6	4
24	Towards Game-Playing Al Benchmarks via Performance Reporting Standards. , 2020, , .		3
25	Approximate Soft Policy Iteration Based Reinforcement Learning for Differential Games with Two Pursuers versus One Evader. , 2020, , .		1
26	Can We Ditch Feature Engineering? End-to-End Deep Learning for Affect Recognition from Physiological Sensor Data. Sensors, 2020, 20, 6535.	3.8	28
27	Comparing Reinforcement Learning Methods for Real-Time Optimization of a Chemical Process. Processes, 2020, 8, 1497.	2.8	8
28	Towards Ecosystem Management from Greedy Reinforcement Learning in a Predator-Prey Setting. , 2020, , .		0
29	Multi-task deep learning of near infrared spectra for improved grain quality trait predictions. Journal of Near Infrared Spectroscopy, 2020, 28, 275-286.	1.5	20
30	Batch Prioritization in Multigoal Reinforcement Learning. IEEE Access, 2020, 8, 137449-137461.	4.2	10
31	Landing A Mobile Robot Safely from Tall Walls Using Manipulator Motion Generated from Reinforcement Learning. , 2020, , .		1
32	Manipulating the Distributions of Experience used for Self-Play Learning in Expert Iteration. , 2020, , .		4
33	Rotation, Translation, and Cropping for Zero-Shot Generalization. , 2020, , .		8
34	Cooperative Multi-Agent Deep Reinforcement Learning with Counterfactual Reward. , 2020, , .		2
35	Learning adversarial attack policies through multi-objective reinforcement learning. Engineering Applications of Artificial Intelligence, 2020, 96, 104021.	8.1	11
36	Multi-Agent Reinforcement Learning for Problems with Combined Individual and Team Reward. , 2020, ,		13

#	Article	IF	Citations
37	Robust Reinforcement Learning-based Autonomous Driving Agent for Simulation and Real World. , 2020, , .		10
38	Surgical Tools Detection Based on Training Sample Adaptation in Laparoscopic Videos. IEEE Access, 2020, 8, 181723-181732.	4.2	7
39	Deep Q-learning for the Control of PLC-based Automated Production Systems. , 2020, , .		5
40	Mastering Fighting Game Using Deep Reinforcement Learning With Self-play. , 2020, , .		5
41	Obstacle Tower Without Human Demonstrations: How Far a Deep Feed-Forward Network Goes with Reinforcement Learning. , 2020, , .		1
42	Reinforcement Learning Meets Cognitive Situation Management: A Review of Recent Learning Approaches from the Cognitive Situation Management Perspective. , 2020, , .		2
43	Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning. Sensors, 2020, 20, 4836.	3.8	22
44	An Advanced Actor-Critic Algorithm for Training Video Game Al. Communications in Computer and Information Science, 2020, , 368-380.	0.5	0
45	COLREG-Compliant Collision Avoidance for Unmanned Surface Vehicle Using Deep Reinforcement Learning. IEEE Access, 2020, 8, 165344-165364.	4.2	44
46	Considerations for Comparing Video Game Al Agents with Humans. Challenges, 2020, 11, 18.	1.7	3
47	A Framework for Multi-Agent UAV Exploration and Target-Finding in GPS-Denied and Partially Observable Environments. Sensors, 2020, 20, 4739.	3.8	18
48	Finding the ground state of spin Hamiltonians with reinforcement learning. Nature Machine Intelligence, 2020, 2, 509-517.	16.0	17
49	A Distributed Reward Algorithm for Inverse Kinematics of Arm Robot. , 2020, , .		5
50	Brain-Inspired Computing: Models and Architectures. IEEE Open Journal of Circuits and Systems, 2020, 1, 185-204.	1.9	21
51	Robot Navigation with Map-Based Deep Reinforcement Learning. , 2020, , .		14
52	Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 2020, 588, 604-609.	27.8	570
53	Transforming task representations to perform novel tasks. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32970-32981.	7.1	4
54	Discovering Meaningful Labelings for RTS Game Replays via Replay Embeddings. , 2020, , .		1

#	Article	IF	Citations
55	Developing Combat Behavior through Reinforcement Learning in Wargames and Simulations. , 2020, , .		7
56	Navigating the landscape of multiplayer games. Nature Communications, 2020, 11, 5603.	12.8	11
57	Advances in neural networks and potential for their application to steel metallurgy. Materials Science and Technology, 2020, 36, 1805-1819.	1.6	15
58	Surrogate modelling of VLE: Integrating machine learning with thermodynamic constraints. Chemical Engineering Science: X, 2020, 8, 100080.	1.5	5
59	Learning a Behavioral Repertoire from Demonstrations. , 2020, , .		0
60	Functionally Effective Conscious Al Without Suffering. Journal of Artificial Intelligence and Consciousness, 2020, 07, 39-50.	1.2	6
61	Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Physical Prototyping, 2020, 15, 340-358.	10.4	79
62	Generative Design by Using Exploration Approaches of Reinforcement Learning in Density-Based Structural Topology Optimization. Designs, 2020, 4, 10.	2.4	26
63	Artificial Intelligence Accidentally Learned Ecology through Video Games. Trends in Ecology and Evolution, 2020, 35, 557-560.	8.7	3
64	Al impacts on economy and society: Latest developments, open issues and new policy measures. Telecommunications Policy, 2020, 44, 101987.	5.3	10
65	Alpha C2–An Intelligent Air Defense Commander Independent of Human Decision-Making. IEEE Access, 2020, 8, 87504-87516.	4.2	15
66	Deep reinforcement learning for a color-batching resequencing problem. Journal of Manufacturing Systems, 2020, 56, 175-187.	13.9	25
67	People Copy the Actions of Artificial Intelligence. Frontiers in Psychology, 2020, 11, 1130.	2.1	5
68	Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2020, 2, 305-311.	16.0	473
69	Merging game theory and control theory in the era of AI and autonomy. National Science Review, 2020, 7, 1122-1124.	9.5	8
70	Planning With Uncertain Specifications (PUnS). IEEE Robotics and Automation Letters, 2020, 5, 3414-3421.	5.1	5
71	Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence. Information (Switzerland), 2020, 11, 193.	2.9	205
72	Deep Reinforcement Learning. , 2020, , .		81

#	Article	IF	CITATIONS
73	CHAOPT: A Testbed for Evaluating Human-Autonomy Team Collaboration Using the Video Game Overcooked!2. , 2020, , .		9
74	Spellcaster Control Agent in StarCraft II Using Deep Reinforcement Learning. Electronics (Switzerland), 2020, 9, 996.	3.1	1
75	Efficient Processing of Deep Neural Networks. Synthesis Lectures on Computer Architecture, 2020, 15, 1-341.	1.3	72
76	Learn to Schedule (LEASCH): A Deep Reinforcement Learning Approach for Radio Resource Scheduling in the 5G MAC Layer. IEEE Access, 2020, 8, 108088-108101.	4.2	45
77	Deep learning enabled inverse design in nanophotonics. Nanophotonics, 2020, 9, 1041-1057.	6.0	295
78	From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI. KI - Kunstliche Intelligenz, 2020, 34, 7-17.	3.2	33
79	Deep Reinforcement Learning in Agent Based Financial Market Simulation. Journal of Risk and Financial Management, 2020, 13, 71.	2.3	15
80	Retrieving Quantum Information with Active Learning. Physical Review Letters, 2020, 124, 140504.	7.8	14
81	Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems. IEEE Access, 2020, 8, 71752-71762.	4.2	119
82	Analysis and accurate prediction of ambient PM2.5 in China using Multi-layer Perceptron. Atmospheric Environment, 2020, 232, 117534.	4.1	26
83	Spatial arrangement using deep reinforcement learning to minimise rearrangement in ship block stockyards. International Journal of Production Research, 2020, 58, 5062-5076.	7.5	17
84	Merged Logic and Memory Fabrics for Accelerating Machine Learning Workloads. IEEE Design and Test, 2021, 38, 39-68.	1.2	10
85	NOMA-Enabled Cooperative Computation Offloading for Blockchain-Empowered Internet of Things: A Learning Approach. IEEE Internet of Things Journal, 2021, 8, 2364-2378.	8.7	47
86	SLER: Self-generated long-term experience replay for continual reinforcement learning. Applied Intelligence, 2021, 51, 185-201.	5.3	8
87	Urban Traffic Control in Software Defined Internet of Things via a Multi-Agent Deep Reinforcement Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 3742-3754.	8.0	74
88	Online operations strategies for automated multistory parking facilities. Transportation Research, Part E: Logistics and Transportation Review, 2021, 145, 102135.	7.4	9
89	Multi-agent hierarchical policy gradient for Air Combat Tactics emergence via self-play. Engineering Applications of Artificial Intelligence, 2021, 98, 104112.	8.1	43
90	A non-cooperative meta-modeling game for automated third-party calibrating, validating and falsifying constitutive laws with parallelized adversarial attacks. Computer Methods in Applied Mechanics and Engineering, 2021, 373, 113514.	6.6	17

#	Article	IF	CITATIONS
91	Events and Machine Learning. Topics in Cognitive Science, 2021, 13, 243-247.	1.9	1
92	Interpretable Saliency Map for Deep Reinforcement Learning. Journal of Physics: Conference Series, 2021, 1757, 012075.	0.4	0
94	Motion Planning for Mobile Robots—Focusing on Deep Reinforcement Learning: A Systematic Review. IEEE Access, 2021, 9, 69061-69081.	4.2	42
95	Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER. Lecture Notes in Computer Science, 2021, , 105-130.	1.3	6
96	Detecting and adapting to crisis pattern with context based Deep Reinforcement Learning. , 2021, , .		7
97	Self-propagating Malware Containment via Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 35-50.	1.3	0
98	Trajectory Based Prioritized Double Experience Buffer for Sample-Efficient Policy Optimization. IEEE Access, 2021, 9, 101424-101432.	4.2	4
99	Dropout's Dream Land: Generalization from Learned Simulators to Reality. Lecture Notes in Computer Science, 2021, , 255-270.	1.3	2
100	A State-of-the-Art Review of Deep Reinforcement Learning Techniques for Real-Time Strategy Games. Studies in Computational Intelligence, 2021, , 285-307.	0.9	3
101	A Data-Driven Simulator for Assessing Decision-Making in Soccer. Lecture Notes in Computer Science, 2021, , 687-698.	1.3	2
102	Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows. Proceedings of the Combustion Institute, 2021, 38, 2617-2625.	3.9	59
103	Continuous decisions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190664.	4.0	53
104	An Empirical Survey on Methods for Integrating Scripts into Adversarial Search for RTS Games. IEEE Transactions on Games, 2021, , 1-1.	1.4	2
106	Policy Evaluation and Seeking for Multiagent Reinforcement Learning via Best Response. IEEE Transactions on Automatic Control, 2022, 67, 1898-1913.	5.7	3
107	RobotDrlSim: A Real Time Robot Simulation Platform for Reinforcement Learning and Human Interactive Demonstration Learning. Journal of Physics: Conference Series, 2021, 1746, 012035.	0.4	4
108	A Comparison of Self-Play Algorithms Under a Generalized Framework. IEEE Transactions on Games, 2022, 14, 221-231.	1.4	3
109	Towards sample-efficient policy learning with DAC-ML. Procedia Computer Science, 2021, 190, 256-262.	2.0	1
110	Meta Learning and the Al Learning Process. , 2021, , 1-15.		О

		CITATION RE	PORT	
#	Article		IF	CITATIONS
111	Privacy and Security Issues in Deep Learning: A Survey. IEEE Access, 2021, 9, 4566-459	3.	4.2	120
112	Resource Trading with Hierarchical Game for Computing-Power Network Market. Lectur Computer Science, 2021, , 94-109.	re Notes in	1.3	0
113	Accelerating Deep Reinforcement Learning via Hierarchical State Encoding with ELMs. L Computer Science, 2021, , 665-680.	ecture Notes in	1.3	0
114	Automatic Generation of Interrelated Organisms on Virtual Environments. Lecture Note Science, 2021, , 119-128.	s in Computer	1.3	0
115	Multi-Agent Reinforcement Learning for Thermalling in Updrafts. , 2021, , .			2
116	Self-Play or Group Practice: Learning to Play Alternating Markov Game in Multi-Agent Sy	/stem. , 2021, , .		1
117	Efficient Reinforcement Learning for <i>StarCraft</i> by Abstract Forward Models and T Learning. IEEE Transactions on Games, 2022, 14, 294-307.	ransfer	1.4	3
118	Human locomotion with reinforcement learning using bioinspired reward reshaping stra Medical and Biological Engineering and Computing, 2021, 59, 243-256.	tegies.	2.8	9
119	A Deep Reinforcement Learning Approach to Dynamic Loading Strategy of Repairable M Systems. IEEE Transactions on Reliability, 2022, 71, 484-499.	lultistate	4.6	19
121	Crowd Evacuation Guidance Based on Combined Action Reinforcement Learning. Algori 26.	thms, 2021, 14,	2.1	6
122	Leveraging Deep Reinforcement Learning for Traffic Engineering: A Survey. IEEE Commu Surveys and Tutorials, 2021, 23, 2064-2097.	inications	39.4	36
123	Towards Incorporating Al into the Mission Planning Process. Lecture Notes in Computer , 216-228.	Science, 2021,	1.3	0
124	Quantum optimal control of multilevel dissipative quantum systems with reinforcemen Physical Review A, 2021, 103, .	t learning.	2.5	26
125	Double Deep Reinforcement Learning-Based Energy Management for a Parallel Hybrid E With Engine Start–Stop Strategy. IEEE Transactions on Transportation Electrification 1376-1388.	lectric Vehicle , 2022, 8,	7.8	56
126	Distributed Deep Reinforcement Learning-Based Energy and Emission Management Stra Electric Vehicles. IEEE Transactions on Vehicular Technology, 2021, 70, 9922-9934.	ategy for Hybrid	6.3	74
127	Learning to Play Imperfect-Information Games by Imitating an Oracle Planner. IEEE Tran Games, 2022, 14, 262-272.	sactions on	1.4	0
128	Survey on Machine Learning for Intelligent End-to-End Communication Toward 6G: From Access, Routing to Traffic Control and Streaming Adaption. IEEE Communications Surver Tutorials, 2021, 23, 1578-1598.		39.4	86
129	BiC-DDPG: Bidirectionally-Coordinated Nets for Deep Multi-agent Reinforcement Learnin Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunicatio Engineering, 2021, , 337-354.		0.3	2

#	Article	IF	CITATIONS
130	To Use or Not to Use Artificial Intelligence? A Framework for the Ideation and Evaluation of Problems to Be Solved with Artificial Intelligence. , 0, , .		4
131	Evaluate, explain, and explore the state more exactly: an improved Actor-Critic algorithm for complex environment. Neural Computing and Applications, 2023, 35, 12271-12282.	5.6	3
132	An Improved Reinforcement Learning for Security-Constrained Economic Dispatch of Battery Energy Storage in Microgrids. Communications in Computer and Information Science, 2021, , 303-318.	0.5	6
133	PowerNet: Multi-Agent Deep Reinforcement Learning for Scalable Powergrid Control. IEEE Transactions on Power Systems, 2022, 37, 1007-1017.	6.5	31
134	Selection-Expansion: A Unifying Framework for Motion-Planning andÂDiversity Search Algorithms. Lecture Notes in Computer Science, 2021, , 568-579.	1.3	0
135	A New Open-Source Off-Road Environment for Benchmark Generalization of Autonomous Driving. IEEE Access, 2021, 9, 136071-136082.	4.2	3
136	A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3444-3459.	11.3	7
137	Verification of Neural Network Compression of ACAS Xu Lookup Tables with Star Set Reachability. , 2021, , .		4
138	Distributed Methods for Reinforcement Learning Survey. Studies in Computational Intelligence, 2021, , 151-161.	0.9	10
139	Tackling the Credit Assignment Problem in Reinforcement Learning-Induced Pedagogical Policies with Neural Networks. Lecture Notes in Computer Science, 2021, , 356-368.	1.3	6
140	Automated multi-layer optical design via deep reinforcement learning. Machine Learning: Science and Technology, 2021, 2, 025013.	5.0	37
141	First return, then explore. Nature, 2021, 590, 580-586.	27.8	103
142	Core Placement Optimization for Multi-chip Many-core Neural Network Systems with Reinforcement Learning. ACM Transactions on Design Automation of Electronic Systems, 2021, 26, 1-27.	2.6	10
143	Deep Reinforcement Learning Algorithms for Multiple Arc-Welding Robots. Frontiers in Control Engineering, 2021, 2, .	0.6	3
144	A semi-decentralized feudal multi-agent learned-goal algorithm for multi-intersection traffic signal control. Knowledge-Based Systems, 2021, 213, 106708.	7.1	17
145	Obtaining Robust Control and Navigation Policies for Multi-robot Navigation via Deep Reinforcement Learning. , 2021, , .		6
147	Probing the structure–function relationship with neural networks constructed by solving a system of linear equations. Scientific Reports, 2021, 11, 3808.	3.3	0
148	Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing. Communications Physics, 2021, 4, .	5.3	35

#	Article	IF	CITATIONS
149	Multiagent Hierarchical Cognition Difference Policy for Multiagent Cooperation. Algorithms, 2021, 14, 98.	2.1	0
150	A Statistician Teaches Deep Learning. Journal of Statistical Theory and Practice, 2021, 15, 1.	0.5	3
151	Local Navigation and Docking of an Autonomous Robot Mower Using Reinforcement Learning and Computer Vision. , 2021, , .		3
152	Affordance as general value function: a computational model. Adaptive Behavior, 2022, 30, 307-327.	1.9	2
153	Gaming the beamlines—employing reinforcement learning to maximize scientific outcomes at large-scale user facilities. Machine Learning: Science and Technology, 2021, 2, 025025.	5.0	8
154	Sustainable society based on social gamification using Nova Empire ecology mining. Sustainable Cities and Society, 2021, 66, 102666.	10.4	5
155	An autonomous debating system. Nature, 2021, 591, 379-384.	27.8	127
156	Generalizing universal function approximators. Nature Machine Intelligence, 2021, 3, 192-193.	16.0	8
157	The fundamental principles of reproducibility. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200210.	3.4	17
159	Feature Extraction for StarCraft II League Prediction. Electronics (Switzerland), 2021, 10, 909.	3.1	3
160	Multi-agent deep reinforcement learning: a survey. Artificial Intelligence Review, 2022, 55, 895-943.	15.7	170
161	A survey on autonomous vehicle control in the era of mixed-autonomy: From physics-based to Al-guided driving policy learning. Transportation Research Part C: Emerging Technologies, 2021, 125, 103008.	7.6	108
162	Wait, But Why?: Assessing Behavior Explanation Strategies for Real-Time Strategy Games. , 2021, , .		7
163	How will artificial intelligence and bioinformatics change our understanding of IgA Nephropathy in the next decade?. Seminars in Immunopathology, 2021, 43, 739-752.	6.1	17
164	Co-Evolution of Predator-Prey Ecosystems by Reinforcement Learning Agents. Entropy, 2021, 23, 461.	2.2	4
165	MLDRL: A multi-layer distributed reinforcement learning framework with multiple trainers. Journal of Physics: Conference Series, 2021, 1883, 012160.	0.4	0
166	Introduction of a new dataset and method for location predicting based on deep learning in wargame. Journal of Intelligent and Fuzzy Systems, 2021, 40, 9259-9275.	1.4	2
167	Deep reinforcement learning for feedback control in a collective flashing ratchet. Physical Review Research, 2021, 3, .	3.6	2

	CITATION RE	PORT	
#	Article	IF	CITATIONS
168	Artificial Intelligence and Ambient Intelligence. Electronics (Switzerland), 2021, 10, 941.	3.1	4
169	Comparison of Artificial and Spiking Neural Networks on Digital Hardware. Frontiers in Neuroscience, 2021, 15, 651141.	2.8	52
170	Compositionally restricted attention-based network for materials property predictions. Npj Computational Materials, 2021, 7, .	8.7	68
172	Learning Macromanagement in Starcraft by Deep Reinforcement Learning. Sensors, 2021, 21, 3332.	3.8	2
173	Direct and indirect reinforcement learning. International Journal of Intelligent Systems, 2021, 36, 4439-4467.	5.7	9
174	Review of the progress of communication-based multi-agent reinforcement learning. Scientia Sinica Informationis, 2022, 52, 742.	0.4	6
175	Transfer Learning for Multiagent Reinforcement Learning Systems. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2021, 15, 1-129.	0.8	3
176	Griddly: A platform for Al research in games. Software Impacts, 2021, 8, 100066.	1.4	5
177	Organizations as Artificial Intelligences: The Use of Artificial Intelligence Analogies in Organization Theory. Academy of Management Annals, 2022, 16, 1-37.	9.6	19
178	A strategic decision-making architecture toward hybrid teams for dynamic competitive problems. Decision Support Systems, 2021, 144, 113490.	5.9	9
179	Digital Twin Enhanced Assembly Based on Deep Reinforcement Learning. , 2021, , .		5
180	Adaptive and extendable control of unmanned surface vehicle formations using distributed deep reinforcement learning. Applied Ocean Research, 2021, 110, 102590.	4.1	21
181	Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective. IEEE Transactions on Parallel and Distributed Systems, 2021, 32, 1085-1101.	5.6	66
182	†The names have changed, but the game's the same': artificial intelligence and racial policy in the USA. Al and Ethics, 2021, , 1-6.	6.8	2
183	Integrated Neuromorphic Photonics: Synapses, Neurons, and Neural Networks. Advanced Photonics Research, 2021, 2, 2000212.	3.6	32
184	Improving Pairs Trading Strategies via Reinforcement Learning. , 2021, , .		3
185	Combined Reinforcement Learning via Artificial Potential Field: A Case Study in Pommerman. , 2021, , .		1
186	Ex Situ Transfer of Bayesian Neural Networks to Resistive Memoryâ€Based Inference Hardware. Advanced Intelligent Systems, 2021, 3, 2000103.	6.1	15

#	Article	IF	CITATIONS
187	Toward Causal Representation Learning. Proceedings of the IEEE, 2021, 109, 612-634.	21.3	327
188	Integrating Production Planning with Truck-Dispatching Decisions through Reinforcement Learning While Managing Uncertainty. Minerals (Basel, Switzerland), 2021, 11, 587.	2.0	20
189	Adversarial attacks in consensus-based multi-agent reinforcement learning. , 2021, , .		11
190	Developing Real-Time Scheduling Policy by Deep Reinforcement Learning. , 2021, , .		6
191	Deep reinforcement learning for dynamic control of fuel injection timing in multi-pulse compression ignition engines. International Journal of Engine Research, 2022, 23, 1503-1521.	2.3	9
192	Energy-Efficient Deep Reinforcement Learning Accelerator Designs for Mobile Autonomous Systems. , 2021, , .		2
193	The Agent Web Model: modeling web hacking for reinforcement learning. International Journal of Information Security, 2022, 21, 293-309.	3.4	6
194	Recent advances in leveraging human guidance for sequential decision-making tasks. Autonomous Agents and Multi-Agent Systems, 2021, 35, 1.	2.1	5
195	Towards goal-oriented semantic signal processing: Applications and future challenges. , 2021, 119, 103134.		26
196	Neural Monte Carlo renormalization group. Physical Review Research, 2021, 3, .	3.6	6
197	Playing optical tweezers with deep reinforcement learning: in virtual, physical and augmented environments. Machine Learning: Science and Technology, 2021, 2, 035024.	5.0	7
198	Forecasting the Walking Assistance Rehabilitation Level of Stroke Patients Using Artificial Intelligence. Diagnostics, 2021, 11, 1096.	2.6	10
199	Portfolio Search and Optimization for General Strategy Game-Playing. , 2021, , .		6
200	A Graph Attention Mechanism Based Multi-Agent Reinforcement Learning Method for Efficient Traffic Light Control. , 2021, , .		0
201	Promises and challenges of human computational ethology. Neuron, 2021, 109, 2224-2238.	8.1	37
202	Experimental semi-autonomous eigensolver using reinforcement learning. Scientific Reports, 2021, 11, 12241.	3.3	2
203	Planning and acting in dynamic environments: identifying and avoiding dangerous situations. Journal of Experimental and Theoretical Artificial Intelligence, 0, , 1-24.	2.8	0
204	Neural Network Based Algorithm for Multi-UAV Coverage Path Planning. , 2021, , .		11

#	Article	IF	CITATIONS
205	Utilizing the Switching Stochasticity of HfO2/TiOx-Based ReRAM Devices and the Concept of Multiple Device Synapses for the Classification of Overlapping and Noisy Patterns. Frontiers in Neuroscience, 2021, 15, 661856.	2.8	26
206	Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm. PLoS ONE, 2021, 16, e0252754.	2.5	30
207	Reinforcement Learning Algorithms Performance Comparison on the Game of DeepRTS. , 2021, , .		0
208	DES-HyperNEAT: Towards Multiple Substrate Deep ANNs. , 2021, , .		1
209	Understanding and Avoiding Al Failures: A Practical Guide. Philosophies, 2021, 6, 53.	0.7	11
210	Intelligence and Unambitiousness Using Algorithmic Information Theory. IEEE Journal on Selected Areas in Information Theory, 2021, 2, 678-690.	2.5	1
211	Reward function shape exploration in adversarial imitation learning: an empirical study. , 2021, , .		1
212	Transition Based Discount Factor for Model Free Algorithms in Reinforcement Learning. Symmetry, 2021, 13, 1197.	2.2	2
213	Generative adversarial simulator. International Journal of Artificial Intelligence and Machine Learning, 2021, 1, 31.	0.2	0
214	Memristive Crossbar Arrays for Storage and Computing Applications. Advanced Intelligent Systems, 2021, 3, 2100017.	6.1	80
215	Super-Human Performance in Gran Turismo Sport Using Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2021, 6, 4257-4264.	5.1	37
216	Human Representation Learning. Annual Review of Neuroscience, 2021, 44, 253-273.	10.7	28
217	Attentive Update of Multi-Critic for Deep Reinforcement Learning. , 2021, , .		1
218	Machine Learning Force Fields: Recent Advances and Remaining Challenges. Journal of Physical Chemistry Letters, 2021, 12, 6551-6564.	4.6	58
219	Recent Advances in Deep Reinforcement Learning Applications for Solving Partially Observable Markov Decision Processes (POMDP) Problems: Part 1—Fundamentals and Applications in Games, Robotics and Natural Language Processing. Machine Learning and Knowledge Extraction, 2021, 3, 554-581.	5.0	23
220	Evolutionary reinforcement learning for sparse rewards. , 2021, , .		5
221	DeepComp: Deep reinforcement learning based renewable energy error compensable forecasting. Applied Energy, 2021, 294, 116970.	10.1	12
222	Learning the Fastest RNA Folding Path Based on Reinforcement Learning and Monte Carlo Tree Search. Molecules, 2021, 26, 4420.	3.8	3

#	Article	IF	CITATIONS
224	MADDPG Algorithm for Coordinated Welding of Multiple Robots. , 2021, , .		2
225	Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation. , 2021, , .		1
226	Sequential and Dynamic constraint Contrastive Learning for Reinforcement Learning. , 2021, , .		0
227	Reinforcement Learning for Flooding Mitigation in Complex Stormwater Systems during Large Storms. , 2021, , .		1
228	Towards Resilient Artificial Intelligence: Survey and Research Issues. , 2021, , .		12
229	Test'n'Mo: a collaborative platform for human testers and intelligent monitoring agents. , 2021, , .		1
230	Protein structure prediction by <i>AlphaFold</i> 2: are attention and symmetries all you need?. Acta Crystallographica Section D: Structural Biology, 2021, 77, 982-991.	2.3	33
231	A Marr's Threeâ€Level Analytical Framework for Neuromorphic Electronic Systems. Advanced Intelligent Systems, 2021, 3, 2100054.	6.1	3
232	Wide-Sense Stationary Policy Optimization with Bellman Residual on Video Games. , 2021, , .		3
233	Brownian Cargo Capture in Mazes via Intelligent Colloidal Microrobot Swarms. Advanced Intelligent Systems, 2021, 3, 2100115.	6.1	8
234	AIBPO: Combine the Intrinsic Reward and Auxiliary Task for 3D Strategy Game. Complexity, 2021, 2021, 1-9.	1.6	0
235	Adaptive Supply Chain: Demand–Supply Synchronization Using Deep Reinforcement Learning. Algorithms, 2021, 14, 240.	2.1	25
236	Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation. Journal of NeuroEngineering and Rehabilitation, 2021, 18, 126.	4.6	45
238	Artificial Intelligence for Alzheimer's Disease: Promise or Challenge?. Diagnostics, 2021, 11, 1473.	2.6	38
239	Leveraging Granularity: Hierarchical Reinforcement Learning for Pedagogical Policy Induction. International Journal of Artificial Intelligence in Education, 2022, 32, 454-500.	5.5	2
240	Discovering optimal strategy in tactical combat scenarios through the evolution of behaviour trees. Annals of Operations Research, 0, , 1.	4.1	0
241	Time and Action Co-Training in Reinforcement Learning Agents. Frontiers in Control Engineering, 2021, 2, .	0.6	0
242	KnowRU: Knowledge Reuse via Knowledge Distillation in Multi-Agent Reinforcement Learning. Entropy, 2021, 23, 1043.	2.2	3

#	Article	IF	CITATIONS
243	Competitive physical interaction by reinforcement learning agents using intention estimation. , 2021, , .		0
244	Track-to-Learn: A general framework for tractography with deep reinforcement learning. Medical Image Analysis, 2021, 72, 102093.	11.6	8
245	Multi-object aerodynamic design optimization using deep reinforcement learning. AIP Advances, 2021, 11, .	1.3	12
246	Diversity Evolutionary Policy Deep Reinforcement Learning. Computational Intelligence and Neuroscience, 2021, 2021, 1-11.	1.7	3
247	A deep reinforcement learning-based method applied for solving multi-agent defense and attack problems. Expert Systems With Applications, 2021, 176, 114896.	7.6	39
248	Selective Catalytic Reduction System Ammonia Injection Control Based on Deep Deterministic Policy Reinforcement Learning. Frontiers in Energy Research, 2021, 9, .	2.3	4
249	Selective eye-gaze augmentation to enhance imitation learning in Atari games. Neural Computing and Applications, 0, , 1.	5.6	0
250	Gym-ANM: Open-source software to leverage reinforcement learning for power system management in research and education. Software Impacts, 2021, 9, 100092.	1.4	5
251	A novel forecasting based scheduling method for household energy management system based on deep reinforcement learning. Sustainable Cities and Society, 2022, 76, 103207.	10.4	30
252	Deep Reinforcement Learning of Map-Based Obstacle Avoidance for Mobile Robot Navigation. SN Computer Science, 2021, 2, 1.	3.6	7
253	Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. Jacs Au, 2021, 1, 1330-1341.	7.9	56
254	Fair classification via Monte Carlo policy gradient method. Engineering Applications of Artificial Intelligence, 2021, 104, 104398.	8.1	3
255	Reward Design for Multi-Agent Reinforcement Learning with a Penalty Based on the Payment Mechanism. Transactions of the Japanese Society for Artificial Intelligence, 2021, 36, AG21-H_1-11.	0.1	1
256	Reinforcement Learning for Energy-Storage Systems in Grid-Connected Microgrids: An Investigation of Online vs. Offline Implementation. Energies, 2021, 14, 5688.	3.1	8
257	Gym-ANM: Reinforcement learning environments for active network management tasks in electricity distribution systems. Energy and Al, 2021, 5, 100092.	10.6	11
258	Explainable reinforcement learning in production control of job shop manufacturing system. International Journal of Production Research, 2022, 60, 5812-5834.	7.5	23
259	Policy invariant explicit shaping: an efficient alternative to reward shaping. Neural Computing and Applications, 0, , 1.	5.6	2
260	Design Strategy Network: A deep hierarchical framework to represent generative design strategies in complex action spaces. Journal of Mechanical Design, Transactions of the ASME, 0, , 1-36.	2.9	10

ARTICLE IF CITATIONS # Adversarial Risk via Optimal Transport and Optimal Couplings. IEEE Transactions on Information 261 2.4 8 Theory, 2021, 67, 6031-6052. Knowledge Mapping and Sustainable Development of eSports Research: A Bibliometric and Visualized 3.2 Analysis. Sustainability, 2021, 13, 10354. Simulating SQL injection vulnerability exploitation using Q-learning reinforcement learning agents. 263 2.5 17 Journal of Information Security and Applications, 2021, 61, 102903. Deep reinforcement learning for transportation network combinatorial optimization: A survey. 264 Knowledge-Based Systems, 2021, 233, 107526. Reinforcement Learning for Precision Oncology. Cancers, 2021, 13, 4624. 265 3.7 22 StarCraft strategy classification of a large human versus human game replay dataset., 0, , . Two-stage training algorithm for AI robot soccer. PeerJ Computer Science, 2021, 7, e718. 267 4.5 3 Toward a Psychology of Deep Reinforcement Learning Agents Using a Cognitive Architecture. Topics in 1.9 269 Cognitive Science, 2022, 14, 756-779. Deep replacement: Reinforcement learning based constellation management and autonomous 270 8.1 1 replacement. Engineering Applications of Artificial Intelligence, 2021, 104, 104316. A Review of Optimal Energy Management Strategies Using Machine Learning Techniques for Hybrid 271 1.4 Electric Vehicles. International Journal of Automotive Technology, 2021, 22, 1437-1452. Autonomous Penetration Testing Based on Improved Deep Q-Network. Applied Sciences (Switzerland), 272 2.5 29 2021, 11, 8823. Natural and Artificial Intelligence: A brief introduction to the interplay between AI and neuroscience 273 5.9 50 research. Neural Networks, 2021, 144, 603-613. Navigational Behavior of Humans and Deep Reinforcement Learning Agents. Frontiers in Psychology, 274 2.1 0 2021, 12, 725932. Reward is enough. Artificial Intelligence, 2021, 299, 103535. 5.8 What do reinforcement learning models measure? Interpreting model parameters in cognition and 276 3.9 48 neuroscience. Current Opinion in Behavioral Sciences, 2021, 41, 128-137. Value-free reinforcement learning: policy optimization as a minimal model of operant behavior. 3.9 Current Opinion in Behavioral Sciences, 2021, 41, 114-121. 278 Multi-agent modeling and simulation in the AI age. Tsinghua Science and Technology, 2021, 26, 608-624. 6.1 16 Learning to traverse over graphs with a Monte Carlo tree search-based self-play framework. 279 8.1 Engineering Applications of Artificial Intelligence, 2021, 105, 104422.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
280	Reinforcement learning of rare diffusive dynamics. Journal of Chemical Physics, 2021, 1	.55, 134105.	3.0	17
281	Animals and AI. The role of animals in AI research and application $\hat{a} \in An$ overview and evaluation. Technology in Society, 2021, 67, 101678.	ethical	9.4	10
282	To err is human, not algorithmic – Robust reactions to erring algorithms. Computers Behavior, 2021, 124, 106879.	in Human	8.5	13
283	A multi-agent simulator for generating novelty in monopoly. Simulation Modelling Prac Theory, 2021, 112, 102364.	tice and	3.8	4
284	Deep deterministic policy gradient algorithm for crowd-evacuation path planning. Com Industrial Engineering, 2021, 161, 107621.	iputers and	6.3	13
285	Deep reinforcement learning based multi-AUVs cooperative decision-making for attack confrontation missions. Ocean Engineering, 2021, 239, 109794.	–defense	4.3	11
286	Forward and inverse reinforcement learning sharing network weights and hyperparame Networks, 2021, 144, 138-153.	rters. Neural	5.9	13
287	Predicting combat outcomes and optimizing armies in StarCraft II by deep learning. Ex With Applications, 2021, 185, 115592.	pert Systems	7.6	9
288	Hierarchical control of multi-agent reinforcement learning team in real-time strategy (R Expert Systems With Applications, 2021, 186, 115707.	:TS) games.	7.6	8
289	Deep Reinforcement Learning-Based Effective Coverage Control With Connectivity Col 6, 283-288.	nstraints. , 2022,		7
290	Deep Reinforcement Learning Model for Blood Bank Vehicle Routing Multi-Objective O Computers, Materials and Continua, 2022, 70, 3955-3967.	ptimization.	1.9	2
291	Finding and removing Clever Hans: Using explanation methods to debug and improve on Information Fusion, 2022, 77, 261-295.	deep models.	19.1	42
292	A Preliminary Study on the Application of Reinforcement Learning for Predictive Proces Lecture Notes in Business Information Processing, 2021, , 124-135.	s Monitoring.	1.0	4
293	Which Heroes to Pick? Learning to Draft in MOBA Games With Neural Networks and Tr Transactions on Games, 2021, 13, 410-421.	ree Search. IEEE	1.4	6
294	Generalization-Based Acquisition of Training Data for Motor Primitive Learning by Neur Applied Sciences (Switzerland), 2021, 11, 1013.	al Networks.	2.5	10
295	Lifelong Incremental Reinforcement Learning With Online Bayesian Inference. IEEE Trai Neural Networks and Learning Systems, 2022, 33, 4003-4016.	nsactions on	11.3	15
296	Fast Trajectory Generation and Asteroid Sequence Selection in Multispacecraft for Mul Exploration. IEEE Transactions on Cybernetics, 2022, 52, 6071-6082.	tiasteroid	9.5	3
297	Effects of Sampling and Prediction Horizon in Reinforcement Learning. IEEE Access, 20 127611-127618.	21, 9,	4.2	4

#	Article	IF	CITATIONS
298	Leveraging Task Modularity in Reinforcement Learning for Adaptable Industry 4.0 Automation. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	2.9	18
299	<i>DeepRepair:</i> Style-Guided Repairing for Deep Neural Networks in the Real-World Operational Environment. IEEE Transactions on Reliability, 2022, 71, 1401-1416.	4.6	16
301	Deep Reinforcement Learning (DRL) for Portfolio Allocation. Lecture Notes in Computer Science, 2021, , 527-531.	1.3	8
302	DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 197-216.	1.3	6
303	Creating Pro-Level AI for a Real-Time Fighting Game Using Deep Reinforcement Learning. IEEE Transactions on Games, 2022, 14, 212-220.	1.4	28
304	Building a Foundation for Data-Driven, Interpretable, and Robust Policy Design using the Al Economist. SSRN Electronic Journal, 0, , .	0.4	4
305	Synergistic Integration Between Machine Learning and Agent-Based Modeling: A Multidisciplinary Review. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 2170-2190.	11.3	13
306	Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D Environments. Lecture Notes in Computer Science, 2020, , 220-231.	1.3	4
307	Exploring the Impact of Simple Explanations and Agency on Batch Deep Reinforcement Learning Induced Pedagogical Policies. Lecture Notes in Computer Science, 2020, , 472-485.	1.3	11
308	Weighing Counts: Sequential Crowd Counting by Reinforcement Learning. Lecture Notes in Computer Science, 2020, , 164-181.	1.3	40
309	Google AI beats top human players at strategy game StarCraft II. Nature, 2019, , .	27.8	3
310	Computer-inspired quantum experiments. Nature Reviews Physics, 2020, 2, 649-661.	26.6	48
311	Applications of machine learning in spectroscopy. Applied Spectroscopy Reviews, 2021, 56, 733-763.	6.7	46
312	Structure prediction of surface reconstructions by deep reinforcement learning. Journal of Physics Condensed Matter, 2020, 32, 404005.	1.8	16
313	Policy gradient methods for free-electron laser and terahertz source optimization and stabilization at the FERMI free-electron laser at Elettra. Physical Review Accelerators and Beams, 2020, 23, .	1.6	10
314	Dungeons & Replicants: Automated Game Balancing via Deep Player Behavior Modeling. , 2020, , .		27
315	Agent Coordination in Air Combat Simulation using Multi-Agent Deep Reinforcement Learning. , 2020, ,		10
316	Coevolutionary Deep Reinforcement Learning. , 2020, , .		1

	Сіта	tion Report	
#	ARTICLE	IF	CITATIONS
317	Supervised Learning Achieves Human-Level Performance in MOBA Games: A Case Study of Honor of Kings. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 908-918.	11.3	12
318	Online Minimax Q Network Learning for Two-Player Zero-Sum Markov Games. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1228-1241.	11.3	29
319	Semicentralized Deep Deterministic Policy Gradient in Cooperative StarCraft Games. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1584-1593.	11.3	9
320	Covariance matrix adaptation for the rapid illumination of behavior space. , 2020, , .		47
321	XCS classifier system with experience replay. , 2020, , .		22
322	WES. , 2020, , .		18
323	How Al founders on adversarial landscapes of fog and friction. Journal of Defense Modeling and Simulation, 2022, 19, 519-538.	1.7	26
324	The Bias-Variance Tradeoff: How Data Science Can Inform Educational Debates. AERA Open, 2020, 6, 233285842097720.	2.1	21
325	Towards behaviour based testing to understand the black box of autonomous cars. European Transport Research Review, 2020, 12, .	4.8	11
326	The Applicability of Self-Play Algorithms to Trading and Forecasting Financial Markets: A Feasibility Study. SSRN Electronic Journal, 0, , .	0.4	1
327	Using Reinforcement Learning for Optimization of a Workpiece Clamping Position in a Machine Tool. , 2020, , .		5
328	Revealing Robust Oil and Gas Company Macro-Strategies Using Deep Multi-Agent Reinforcement Learning. SSRN Electronic Journal, 0, , .	0.4	1
329	Analyzing Game-Based Training Methods for Selected Esports Titles in Competitive Gaming. Lecture Notes in Computer Science, 2021, , 213-228.	1.3	0
330	Source Task Selection in Time Series via Performance Prediction. Lecture Notes in Computer Science, 2021, , 121-130.	1.3	0
331	Leveraging Expert Demonstrations in Robot Cooperation with Multi-Agent Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 211-222.	1.3	0
332	Long Short-Term Memory. , 2021, , 768-773.		3
333	Policy Gradient-Based Core Placement Optimization for Multichip Many-Core Systems. IEEE Transactions on Neural Networks and Learning Systems, 2021, PP, 1-15.	11.3	1
334	Causal Based Action Selection Policy for Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 213-227.	1.3	1

#	Article	IF	CITATIONS
335	Continuous Transition: Improving Sample Efficiency for Continuous Control Problems via MixUp. , 2021, , .		2
336	Sample Efficient Reinforcement Learning via Model-Ensemble Exploration and Exploitation. , 2021, , .		5
337	Spatial Intention Maps for Multi-Agent Mobile Manipulation. , 2021, , .		9
338	Policy evaluation for reinforcement learning over asynchronous multi-agent networks. , 2021, , .		1
339	Multi-Agent Reinforcement Learning based Distributed Renewable Energy Matching for Datacenters. , 2021, , .		5
340	Missile Defense Decision-Making under Incomplete Information Using The Artificial Neural Network. , 2021, , .		0
341	Multi-Agent Reinforcement Learning for Mobile Crowdsensing Systems with Dedicated Vehicles on Road Networks. , 2021, , .		5
342	Meta-learning, social cognition and consciousness in brains and machines. Neural Networks, 2022, 145, 80-89.	5.9	15
343	A hierarchical reinforcement learning method on multi UCAV air combat. , 2021, , .		1
344	Discovering Catalytic Reaction Networks Using Deep Reinforcement Learning from First-Principles. Journal of the American Chemical Society, 2021, 143, 16804-16812.	13.7	17
345	Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nature Methods, 2021, 18, 1169-1180.	19.0	44
346	Intelligent autonomous agents and trust in virtual reality. Computers in Human Behavior Reports, 2021, 4, 100146.	4.0	10
347	Model-free reinforcement learning from expert demonstrations: a survey. Artificial Intelligence Review, 2022, 55, 3213-3241.	15.7	30
349	Evolutionary Strategies with Analogy Partitions in P-Guessing Games. SSRN Electronic Journal, 0, , .	0.4	0
350	Challenges of Reinforcement Learning. , 2020, , 249-272.		17
351	A Survey of End-to-End Driving: Architectures and Training Methods. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1364-1384.	11.3	70
352	Multi-agent Cooperation andÂCompetition with Two-Level AttentionÂNetwork. Lecture Notes in Computer Science, 2020, , 524-535.	1.3	1
355	Planning Algorithms for Zero-Sum Games with Exponential Action Spaces: A Unifying Perspective. , 2020, , .		3

	Сг	TATION REPORT	
#	Article	IF	CITATIONS
356	StarCraft agent strategic training on a large human versus human game replay dataset. , 0, , .		1
357	Mission Engineering and Design using Real-Time Strategy Games: An Explainable-Al Approach. Journal Mechanical Design, Transactions of the ASME, 0, , 1-15.	of 2.9	3
358	Adaptive dynamic programming for nonaffine nonlinear optimal control problem with state constraints. Neurocomputing, 2022, 484, 128-141.	5.9	33
359	The neural mechanisms of manual dexterity. Nature Reviews Neuroscience, 2021, 22, 741-757.	10.2	73
360	Tricks of Implementation. , 2020, , 467-482.		0
361	A Quality- Time Model of Heterogeneous Agents Measure for Crowd Intelligence. , 2020, , .		1
362	Coordinating Multi-Agent Deep Reinforcement Learning in Wargame. , 2020, , .		2
363	AlphaGo's Deep Play: Technological Breakthrough as Social Drama. , 2021, , 167-195.		3
364	Large Scale Deep Reinforcement Learning in War-games. , 2020, , .		3
365	Machine Learning in Automotive Software. , 2021, , 171-188.		0
366	On the Potential of Rocket League for Driving Team Al Development. , 2020, , .		1
367	Multi-UCAV Air Combat in Short-Range Maneuver Strategy Generation using Reinforcement Learning and Curriculum Learning. , 2020, , .		6
368	Ranked Communication Channel Confidence for Multi-Agent Reinforcement Learning. , 2020, , .		0
369	Robotic architectural assembly with tactile skills: Simulation and optimization. Automation in Construction, 2022, 133, 104006.	9.8	22
370	Event-Triggered Communication Network With Limited-Bandwidth Constraint for Multi-Agent Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 3966-3978.	11.3	14
371	Diversity-Based Trajectory and Coal Selection with Hindsight Experience Replay. Lecture Notes in Computer Science, 2021, , 32-45.	1.3	4
373	Hierarchical Reinforcement Learning. , 2020, , 317-333.		1
375	LEMMA: A Multi-view Dataset for L Earning Multi-agent Multi-task Activities. Lecture Notes in Computer Science, 2020, , 767-786.	1.3	13

#	Article	IF	Citations
377	Scalable Multi-agent Reinforcement Learning Architecture for Semi-MDP Real-Time Strategy Games. Communications in Computer and Information Science, 2020, , 433-446.	0.5	1
378	Structural and Functional Representativity of GANs for Data Generation in Sequential Decision Making. Lecture Notes in Computer Science, 2020, , 458-471.	1.3	0
379	Pareto Multi-task Deep Learning. Lecture Notes in Computer Science, 2020, , 132-141.	1.3	1
380	Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging. IEEE Transactions on Parallel and Distributed Systems, 2020, , 1-1.	5.6	2
381	Warm-Start AlphaZero Self-play Search Enhancements. Lecture Notes in Computer Science, 2020, , 528-542.	1.3	6
383	Long- and Short-Term Approaches for Power Consumption Prediction Using Neural Networks. Contributions To Statistics, 2020, , 219-236.	0.2	0
385	Conceptual Challenges for Interpretable Machine Learning. SSRN Electronic Journal, 0, , .	0.4	1
386	Normalizing Flow Policies for Multi-agent Systems. Lecture Notes in Computer Science, 2020, , 277-296.	1.3	5
387	Enforcing Constraints over Learned Policies via Nonlinear MPC: Application to the Pendubot. IFAC-PapersOnLine, 2020, 53, 9502-9507.	0.9	6
388	Machine Learning for Realised Volatility Forecasting. SSRN Electronic Journal, 0, , .	0.4	4
389	Separated Proportional-Integral Lagrangian for Chance Constrained Reinforcement Learning. , 2021, , .		7
390	Learning from Gamettes: Imitating Human Behavior in Supply Chain Decisions. , 2020, , .		2
391	Artificial Intelligence Methodologies for Data Management. Symmetry, 2021, 13, 2040.	2.2	10
392	Rethinking Intelligent Behavior as Competitive Games for Handling Adversarial Challenges to Machine Learning. , 2021, , 3-16.		1
393	Design Adaptive AI for RTS Game by Learning Player's Build Order. , 2020, , .		1
394	Towards a Taxonomy of AI in Hybrid Board Games. , 2020, , .		0
395	The Case for Usable AI. , 2020, , .		7
398	A Review of Mahjong Al Research. , 2020, , .		4

		CITATION REPORT		
#	Article		IF	CITATIONS
399	Finding Effective Security Strategies through Reinforcement Learning and Self-Play. , 2	020, , .		22
400	Behavioral Cues of Humanness in Complex Environments: How People Engage With Hu Artificially Intelligent Agents in a Multiplayer Videogame. Frontiers in Robotics and AI, 2		3.2	3
401	Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning. I Transactions on Neural Networks and Learning Systems, 2023, 34, 4776-4790.	EE	11.3	4
402	Communication-Efficient and Federated Multi-Agent Reinforcement Learning. IEEE Tran Cognitive Communications and Networking, 2022, 8, 311-320.	nsactions on	7.9	7
403	Self-attention-based multi-agent continuous control method in cooperative environme Information Sciences, 2022, 585, 454-470.	nts.	6.9	11
404	Probabilistic Reward-Based Reinforcement Learning for Multi-Agent Pursuit and Evasion	n., 2021, , .		0
405	Research directions for Aggregate Computing with Machine Learning. , 2021, , .			5
406	Trace It Like You Believe It: Time-Continuous Believability Prediction. , 2021, , .			4
407	Harnessing intrinsic memristor randomness with Bayesian neural networks. , 2021, , .			2
408	Deep reinforcement learning with credit assignment for combinatorial optimization. Pa Recognition, 2022, 124, 108466.	attern	8.1	10
409	Deep reinforcement learning-designed radiofrequency waveform in MRI. Nature Machin 2021, 3, 985-994.	ne Intelligence,	16.0	12
410	Quantum-enhanced reinforcement learning for control: a preliminary study. Control Th Technology, 2021, 19, 455-464.	eory and	1.6	1
411	Addressing partial observability in reinforcement learning for energy management. , 20)21,,.		2
412	Avoiding collaborative paradox in multiâ€agent reinforcement learning. ETRI Journal, 20	021, 43, 1004-1012.	2.0	4
413	Future Challenges in Plant. Methods in Molecular Biology, 2022, 2395, 325-337.		0.9	0
414	Parallel learner: A practical deep reinforcement learning framework for multi-scenario g Knowledge-Based Systems, 2022, 236, 107753.	ames.	7.1	1
415	Deep Reinforcement Learning Algorithms for Path Planning Domain in Grid-like Environ Sciences (Switzerland), 2021, 11, 11335.	ment. Applied	2.5	2
417	Applications of artificial intelligence in dentistry: A comprehensive review. Journal of Es Restorative Dentistry, 2022, 34, 259-280.	thetic and	3.8	71

#	Article	IF	Citations
418	VARL: a variational autoencoder-based reinforcement learning Framework for vehicle routing problems. Applied Intelligence, 2022, 52, 8910-8923.	5.3	6
420	Adaptive Warm-Start MCTS inÂAlphaZero-Like Deep ReinforcementÂLearning. Lecture Notes in Computer Science, 2021, , 60-71.	1.3	4
421	Recent Advances in Reinforcement Learning in Finance. SSRN Electronic Journal, 0, , .	0.4	14
422	Deep Reinforcement Learning for Flocking Motion of Multi-UAV Systems: Learn From a Digital Twin. IEEE Internet of Things Journal, 2022, 9, 11141-11153.	8.7	23
423	Vision Processing for Assistive Vision: A Deep Reinforcement Learning Approach. IEEE Transactions on Human-Machine Systems, 2022, 52, 123-133.	3.5	18
424	Using Simple Design Features to Recapture the Essence of Real-Time Strategy Games. IEEE Transactions on Games, 2022, 14, 569-578.	1.4	4
425	Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey. IEEE Access, 2021, 9, 155161-155196.	4.2	91
427	NAEM: Noisy Attention Exploration Module for Deep Reinforcement Learning. IEEE Access, 2021, 9, 154600-154611.	4.2	0
428	Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games. Dynamic Games and Applications, 0, , 1.	1.9	5
429	Self-play learning strategies for resource assignment in Open-RAN networks. Computer Networks, 2022, 206, 108682.	5.1	8
430	Uncertainty-Aware Low-Rank Q-Matrix Estimation forÂDeep Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 21-37.	1.3	0
431	Parameter estimation in quantum sensing based on deep reinforcement learning. Npj Quantum Information, 2022, 8, .	6.7	24
432	Fully asynchronous policy evaluation in distributed reinforcement learning over networks. Automatica, 2022, 136, 110092.	5.0	3
433	Exploration-exploitation in multi-agent learning: Catastrophe theory meets game theory. Artificial Intelligence, 2022, 304, 103653.	5.8	9
434	Learning Cooperative Multi-Agent Policies With Partial Reward Decoupling. IEEE Robotics and Automation Letters, 2022, 7, 890-897.	5.1	2
435	A Simulation-based Online Evolutionary Algorithm for Combat in StarCraft II. , 2020, , .		0
436	Learning to Modulate Action of Deterministic Policy for Autonomous Navigation. , 2020, , .		0
437	Towards a Distributed Framework for Multi-Agent Reinforcement Learning Research. , 2020, , .		Ο

#	Article	IF	CITATIONS
438	Game Al Competitions: Motivation for the Imitation Game-Playing Competition. , 0, , .		5
439	A Deep Reinforcement Learning Approach for the Pursuit Evasion Game in the Presence of Obstacles. , 2020, , .		4
440	Adaptive Average Exploration in Multi-Agent Reinforcement Learning. , 2020, , .		0
441	Reinforcement Learning-based Parameter Tuning for Virtual Synchronous Machine on Grid Transient Stability Enhancement. , 2020, , .		2
442	Learning to Play Robot Soccer from Partial Observations. , 2020, , .		0
443	Interpretable Visualizations of Deep Neural Networks for Domain Generation Algorithm Detection. , 2020, , .		8
444	Deep Adversarial Reinforcement Learning for Object Disentangling. , 2020, , .		1
445	Online RPG Environment for Reinforcement Learning. , 2020, , .		0
446	A Generalized Circle Agent Based on the Deep Reinforcement Learning for the Game of Geometry Friends. , 2020, , .		1
447	Integrate multi-agent simulation environment and multi-agent reinforcement learning (MARL) for real-world scenario. , 2020, , .		2
448	Glue: Enhancing Compatibility and Flexibility of Reinforcement Learning Platforms by Decoupling Algorithms and Environments. , 2020, , .		0
449	Distributed Reinforcement Learning of Targeted Grasping with Active Vision for Mobile Manipulators. , 2020, , .		5
450	Investigating Deep Q-Network Agent Sensibility to Texture Changes on FPS Games. , 2020, , .		0
451	Reinforcement Learning-Based Solution to Power Grid Planning and Operation Under Uncertainties. , 2020, , .		0
452	Intelligent decision-making based on neural network and simulation in two Islands air defense operation. , 2020, , .		0
453	WD3: Taming the Estimation Bias in Deep Reinforcement Learning. , 2020, , .		11
454	SEM: Adaptive Staged Experience Access Mechanism for Reinforcement Learning. , 2020, , .		1
455	Formal Verification for Safe Deep Reinforcement Learning in Trajectory Generation. , 2020, , .		4

#	Article	IF	CITATIONS
456	Drafting in Collectible Card Games via Reinforcement Learning. , 2020, , .		3
457	A Gospel for MOBA Game: Ranking-Preserved Hero Change Prediction in <i>Dota 2</i> . IEEE Transactions on Games, 2022, 14, 191-201.	1.4	1
458	Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning. IEEE Transactions on Computers, 2022, 71, 2449-2461.	3.4	51
459	An Approach to Partial Observability in Games: Learning to Both Act and Observe. , 2021, , .		1
460	A Future-Oriented Cache Management for Mobile Games. , 2021, , .		0
461	Distilling Reinforcement Learning Tricks for Video Games. , 2021, , .		1
462	Generalising Discrete Action Spaces with Conditional Action Trees. , 2021, , .		2
463	Honey. I Shrunk The Actor: A Case Study on Preserving Performance with Smaller Actors in Actor-Critic RL. , 2021, , .		1
464	Inventory Management with Attention-Based Meta Actions. , 2021, , .		0
465	MAIDRL: Semi-centralized Multi-Agent Reinforcement Learning using Agent Influence. , 2021, , .		3
466	Policy Fusion for Adaptive and Customizable Reinforcement Learning Agents. , 2021, , .		3
467	Procedural Content Generation: Better Benchmarks for Transfer Reinforcement Learning. , 2021, , .		4
468	Demonstration-Efficient Inverse Reinforcement Learning in Procedurally Generated Environments. , 2021, , .		1
469	A New Challenge: Approaching Tetris Link with Al. , 2021, , .		2
470	Capacity-Limited Decentralized Actor-Critic for Multi-Agent Games. , 2021, , .		2
471	Carle's Game: An Open-Ended Challenge in Exploratory Machine Creativity. , 2021, , .		0
472	Toward Automated Game Balance: A Systematic Engineering Design Approach. , 2021, , .		2
473	Al solutions for drafting in Magic: the Gathering. , 2021, , .		0

#	Article	IF	CITATIONS
474	Gym-µRTS: Toward Affordable Full Game Real-time Strategy Games Research with Deep Reinforcement Learning. , 2021, , .		7
475	Agents that Listen: High-Throughput Reinforcement Learning with Multiple Sensory Systems. , 2021, , .		5
476	General Board Game Concepts. , 2021, , .		7
477	Learning on a Budget via Teacher Imitation. , 2021, , .		0
478	Imitation Learning with Approximated Behavior Cloning Loss. , 2021, , .		0
479	Sample-efficient Reinforcement Learning Representation Learning with Curiosity Contrastive Forward Dynamics Model. , 2021, , .		7
480	Explaining the Decisions of Deep Policy Networks for Robotic Manipulations. , 2021, , .		2
481	Discrete versus Ordinal Time-Continuous Believability Assessment. , 2021, , .		1
482	Development and research of learning algorithms for neural networks with reinforcement in the gaming industry. , 2021, , .		0
483	Aggregation Transfer Learning for Multi-Agent Reinforcement learning. , 2021, , .		2
484	Centralized Critic per Knowledge for Cooperative Multi-Agent Game Environments. , 2021, , .		0
485	Distributed Reinforcement Learning with Self-Play in Parameterized Action Space. , 2021, , .		1
486	Infrared Air Combat Simulation Model for Deep Reinforcement Learning. , 2021, , .		1
487	Deep Reinforcement Learning for Modeling Market-Oriented Grid User Behavior in Active Distribution Grids. , 2021, , .		1
488	Multi-Agent Reinforcement Learning for Distributed Cooperative Targets Search. , 2021, , .		0
489	Assessing the Robustness of Deep Q-Network Agents to Changes on Game Object Textures. , 2021, , .		0
490	Gym Hero: A Research Environment for Reinforcement Learning Agents in Rhythm Games. , 2021, , .		0
491	Cooperative Pursuit of UAV Cluster Based on Graph Embedding Reinforcement Learning. , 2021, , .		О

#	Article	IF	Citations
492	Combining Hindsight with Goal-enhanced Prediction for Multi-goal Reinforcement Learning. , 2021, , .		1
493	Behavior Trees in Robot Control Systems. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 81-107.	11.8	6
495	Market Making Strategy Optimization via Deep Reinforcement Learning. IEEE Access, 2022, 10, 9085-9093.	4.2	3
496	Reconfigurable Intelligent Surface Aided Cellular Networks With Device-to-Device Users. IEEE Transactions on Communications, 2022, 70, 1808-1819.	7.8	12
497	Unsupervised Domain Transfer for Task Automation in Unmanned Underwater Vehicle Intervention Operations. IEEE Journal of Oceanic Engineering, 2022, 47, 312-321.	3.8	0
499	OmniDRL: An Energy-Efficient Deep Reinforcement Learning Processor With Dual-Mode Weight Compression and Sparse Weight Transposer. IEEE Journal of Solid-State Circuits, 2022, 57, 999-1012.	5.4	Ο
500	Online Intention Recognition With Incomplete Information Based on a Weighted Contrastive Predictive Coding Model in Wargame. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 7515-7528.	11.3	4
501	Neural-Guided, Bidirectional Program Search forÂAbstraction andÂReasoning. Studies in Computational Intelligence, 2022, , 657-668.	0.9	1
502	Integrated Traffic Control for Freeway Recurrent Bottleneck Based on Deep Reinforcement Learning. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 15522-15535.	8.0	10
503	Identifying optimal cycles in quantum thermal machines with reinforcement-learning. Npj Quantum Information, 2022, 8, .	6.7	57
505	Transfer Learning and Curriculum Learning in Sokoban. Communications in Computer and Information Science, 2022, , 187-200.	0.5	4
506	CrabNet for Explainable Deep Learning in Materials Science: Bridging the Gap Between Academia and Industry. Integrating Materials and Manufacturing Innovation, 2022, 11, 41-56.	2.6	3
507	Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme. Quantum Machine Intelligence, 2022, 4, 1.	4.8	4
508	An Intelligent Mission Planning Model for the Air Strike Operations against Islands Based on Neural Network and Simulation. Discrete Dynamics in Nature and Society, 2022, 2022, 1-7.	0.9	0
509	Autonomous Convoying: A Survey on Current Research and Development. IEEE Access, 2022, 10, 13663-13683.	4.2	9
510	Visual Detection and Deep Reinforcement Learning-Based Car Following and Energy Management for Hybrid Electric Vehicles. IEEE Transactions on Transportation Electrification, 2022, 8, 2501-2515.	7.8	33
512	Tensors for deep learning theory. , 2022, , 215-248.		2
513	Run Time Assured Reinforcement Learning for Safe Satellite Docking. , 2022, , .		7

#	Article	IF	CITATIONS
514	Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 2022, 7, eabk2822.	17.6	222
515	Flexible cylinder flow-induced vibration. Physics of Fluids, 2022, 34, .	4.0	24
516	Supply Chain Synchronization Through Deep Reinforcement Learning. Lecture Notes in Intelligent Transportation and Infrastructure, 2022, , 490-498.	0.5	1
517	A Survey of Domain-Specific Architectures for Reinforcement Learning. IEEE Access, 2022, 10, 13753-13767.	4.2	30
518	Artificial Interactionism: Avoiding Isolating Perception From Cognition in Al. Frontiers in Artificial Intelligence, 2022, 5, 806041.	3.4	2
519	Toward the biological model of the hippocampus as the successor representation agent. BioSystems, 2022, 213, 104612.	2.0	5
520	Advanced Lanchester Combat Model for Inhomogeneous Armies in RTS Games. IEEE Transactions on Games, 2023, 15, 148-156.	1.4	1
521	Outracing champion Gran Turismo drivers with deep reinforcement learning. Nature, 2022, 602, 223-228.	27.8	122
522	Research on Anti-Jamming Algorithm of Massive MIMO Communication System Based on Multi-User Game Theory. Mobile Networks and Applications, 0, , 1.	3.3	0
523	RLupus: Cooperation through emergent communication in The Werewolf social deduction game. Intelligenza Artificiale, 2022, 15, 55-70.	1.6	1
524	On reliability of reinforcement learning based production scheduling systems: a comparative survey. Journal of Intelligent Manufacturing, 2022, 33, 911-927.	7.3	13
525	Multi-agent reinforcement learning for Markov routing games: A new modeling paradigm for dynamic traffic assignment. Transportation Research Part C: Emerging Technologies, 2022, 137, 103560.	7.6	19
526	Handling Realistic Noise in Multi-Agent Systems with Self-Supervised Learning and Curiosity. Journal of Artificial Intelligence and Soft Computing Research, 2021, 12, 135-148.	4.3	0
527	Transfer Dynamics in Emergent Evolutionary Curricula. IEEE Transactions on Games, 2023, 15, 157-170.	1.4	0
528	Meta Learning and the AI Learning Process. , 2022, , 407-421.		0
530	Attention Enhanced Reinforcement Learning for Multi agent Cooperation. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8235-8249.	11.3	6
531	Policy Gradient From Demonstration and Curiosity. IEEE Transactions on Cybernetics, 2023, 53, 4923-4933.	9.5	0
532	Robust Lane Change Decision Making for Autonomous Vehicles: An Observation Adversarial Reinforcement Learning Approach. IEEE Transactions on Intelligent Vehicles, 2023, 8, 184-193.	12.7	52

#	Article	IF	CITATIONS
533	Game of Drones: Multi-UAV Pursuit-Evasion Game With Online Motion Planning by Deep Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 7900-7909.	11.3	25
535	How Does AI Play Football? An Analysis of RL and Real-world Football Strategies. , 2022, , .		4
536	Learning a World Model With Multitimescale Memory Augmentation. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8493-8502.	11.3	1
537	Security Analysis of Poisoning Attacks Against Multi-agent Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 660-675.	1.3	1
538	Olivaw: Mastering <i>Othello</i> Without Human Knowledge, nor a Fortune. IEEE Transactions on Games, 2023, 15, 285-291.	1.4	4
539	Distributed Multiagent Deep Reinforcement Learning for Multiline Dynamic Bus Timetable Optimization. IEEE Transactions on Industrial Informatics, 2023, 19, 469-479.	11.3	14
540	Adaptive Interfered Fluid Dynamic System Algorithm Based on Deep Reinforcement Learning Framework. Lecture Notes in Electrical Engineering, 2022, , 1388-1397.	0.4	1
541	Multi-agent Task Coordination Method Based onÂRCRS. Lecture Notes in Electrical Engineering, 2022, , 2582-2593.	0.4	Ο
542	Skill Reward for Safe Deep Reinforcement Learning. Communications in Computer and Information Science, 2022, , 203-213.	0.5	1
543	Integrated Multi-task Agent Architecture with Affect-Like Guided Behavior. Studies in Computational Intelligence, 2022, , 602-612.	0.9	Ο
544	Swarm intelligence capture-the-flag game with imperfect information based on deep reinforcement learning. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53, 405-416.	0.5	2
545	Hierarchical Reinforcement Learning: A Survey and Open Research Challenges. Machine Learning and Knowledge Extraction, 2022, 4, 172-221.	5.0	24
546	Coupled Ionic–Electronic Charge Transport in Organic Neuromorphic Devices. Advanced Theory and Simulations, 0, , 2100492.	2.8	5
547	The Free Energy Principle for Perception and Action: A Deep Learning Perspective. Entropy, 2022, 24, 301.	2.2	15
548	Voltage control of magnetism with magneto-ionic approaches: Beyond voltage-driven oxygen ion migration. Applied Physics Letters, 2022, 120, .	3.3	13
549	Design of simulation-based pilot training systems using machine learning agents. Aeronautical Journal, 2022, 126, 907-931.	1.6	1
550	Protocol for the diagnosis of keratoconus using convolutional neural networks. PLoS ONE, 2022, 17, e0264219.	2.5	2
552	Neuromorphic Engineering Needs Closed-Loop Benchmarks. Frontiers in Neuroscience, 2022, 16, 813555.	2.8	2

		PORT	
#	Article	IF	CITATIONS
553	Deep learning in macroscopic diffuse optical imaging. Journal of Biomedical Optics, 2022, 27, .	2.6	16
554	Artificial intelligence to identify genetic alterations in conventional histopathology. Journal of Pathology, 2022, 257, 430-444.	4.5	49
555	Conceptual challenges for interpretable machine learning. Synthà se, 2022, 200, 1.	1.1	23
556	Train timetabling with the general learning environment and multi-agent deep reinforcement learning. Transportation Research Part B: Methodological, 2022, 157, 230-251.	5.9	20
557	Dinamik Ortamlarda Derin Takviyeli Öğrenme Tabanlı Otonom Yol Planlama Yaklaşımları için Karşı Analiz. , 0, , .	laştırn	ıalı
558	Quantifying the effects of environment and population diversity in multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems, 2022, 36, 1.	2.1	7
559	Generation of Spacecraft Operations Procedures Using Deep Reinforcement Learning. Journal of Spacecraft and Rockets, 2022, 59, 611-626.	1.9	7
560	Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Large-Eddy Simulations of ECN Spray C. SAE International Journal of Advances and Current Practices in Mobility, 0, 4, 2211-2219.	2.0	6
561	Active learning for the optimal design of multinomial classification in physics. Physical Review Research, 2022, 4, .	3.6	3
562	An intelligent generating method for multi-target attacking strategy based on environment-aware deep reinforcement learning. , 2022, , .		0
563	3-Dimensional convolutional neural networks for predicting StarCraft â; results and extracting key game situations. PLoS ONE, 2022, 17, e0264550.	2.5	0
564	Photonic reinforcement learning based on optoelectronic reservoir computing. Scientific Reports, 2022, 12, 3720.	3.3	7
565	Underwater Target Detection Based on Reinforcement Learning and Ant Colony Optimization. Journal of Ocean University of China, 2022, 21, 323-330.	1.2	8
566	A Novel Reinforcement Learning Collision Avoidance Algorithm for USVs Based on Maneuvering Characteristics and COLREGs. Sensors, 2022, 22, 2099.	3.8	15
567	Model-Free Quantum Control with Reinforcement Learning. Physical Review X, 2022, 12, .	8.9	27
568	Multi-agent reinforcement learning for cooperative lane changing of connected and autonomous vehicles in mixed traffic. Autonomous Intelligent Systems, 2022, 2, 1.	3.1	31
569	Queueing Network Controls via Deep Reinforcement Learning. Stochastic Systems, 2022, 12, 30-67.	1.1	11
570	How Active Inference Could Help Revolutionise Robotics. Entropy, 2022, 24, 361.	2.2	16

#	Article	IF	CITATIONS
571	Quantum imaginary time evolution steered by reinforcement learning. Communications Physics, 2022, 5, .	5.3	12
572	Quantifying Reinforcement-Learning Agent's Autonomy, Reliance on Memory and Internalisation of the Environment. Entropy, 2022, 24, 401.	2.2	0
573	On games and simulators as a platform for development of artificial intelligence for command and control. Journal of Defense Modeling and Simulation, 2023, 20, 495-508.	1.7	6
574	Deep Reinforcement Learning for UAV Intelligent Mission Planning. Complexity, 2022, 2022, 1-13.	1.6	7
575	Reinforcement learning based edge computing in B5G. Digital Communications and Networks, 2022, , .	5.0	2
576	Understanding Artificial Intelligence and Predictive Analytics. JBJS Reviews, 2022, 10, .	2.0	6
577	The Future of Collaborative Human-Artificial Intelligence Decision-Making for Mission Planning. Frontiers in Psychology, 2022, 13, 850628.	2.1	8
578	Lipschitzness is all you need to tame off-policy generative adversarial imitation learning. Machine Learning, 2022, 111, 1431-1521.	5.4	5
579	SEM: Safe exploration mask for q-learning. Engineering Applications of Artificial Intelligence, 2022, 111, 104765.	8.1	1
580	Aerial combat maneuvering policy learning based on confrontation demonstrations and dynamic quality replay. Engineering Applications of Artificial Intelligence, 2022, 111, 104767.	8.1	8
581	Learning-based airborne sensor task assignment in unknown dynamic environments. Engineering Applications of Artificial Intelligence, 2022, 111, 104747.	8.1	3
582	Reinforcement learning-driven local transactive energy market for distributed energy resources. Energy and Al, 2022, 8, 100150.	10.6	10
583	Scene-adaptive radar tracking with deep reinforcement learning. Machine Learning With Applications, 2022, 8, 100284.	4.4	9
584	Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning. Neural Networks, 2022, 150, 408-421.	5.9	0
585	What Can Knowledge Bring to Machine Learning?—A Survey of Low-shot Learning for Structured Data. ACM Transactions on Intelligent Systems and Technology, 2022, 13, 1-45.	4.5	5
586	Optimal recovery of unsecured debt via interpretable reinforcement learning. Machine Learning With Applications, 2022, 8, 100280.	4.4	1
587	DCLN: Diverse Curriculum Learning with Neuroevolution in Six-Player Poker Tournament. , 2021, , .		0
588	Rules-PPO-QMIX: Multi-Agent Reinforcement Learning with Mixed Rules for Large Scene Tasks. , 2021, , .		Ο

#	Article	IF	CITATIONS
589	Learning to play Football using Distributional Reinforcement Learning and Depthwise separable convolution feature extraction. , 2021, , .		0
590	Randomized Linear Programming for Tabular Average-Cost Multi-agent Reinforcement Learning. , 2021, , .		0
591	Imperfect Information Game in Multiplayer No-limit Texas Hold'em Based on Mean Approximation and Deep CFVnet. , 2021, , .		0
592	MicroMaps: a unified StarCraft 2 micromanagement Al testbed. , 2021, , .		Ο
593	Co-Training an Observer and an Evading Target. , 2021, , .		1
594	Off-Policy Correction for Deep Deterministic Policy Gradient Algorithms via Batch Prioritized Experience Replay. , 2021, , .		2
595	Learning Intra-group Cooperation in Multi-agent Systems. , 2021, , .		0
596	Estimation Error Correction in Deep Reinforcement Learning for Deterministic Actor-Critic Methods. , 2021, , .		4
597	Optimizing High- Throughput Capabilities by Leveraging Reinforcement Learning Methods with the Bluesky Suite. , 2021, , .		1
598	Collision-aware Multi-robot Motion Coordination Deep-RL with Dynamic Priority Strategy. , 2021, , .		1
599	Bridging Heuristic and Deep Learning Approaches to Sensor Tasking. , 2021, , .		1
600	FORK: A FORward-looKing Actor for Model-Free Reinforcement Learning. , 2021, , .		Ο
601	Artificial Intelligence and Machine Learning in Sport Research: An Introduction for Non-data Scientists. Frontiers in Sports and Active Living, 2021, 3, 682287.	1.8	16
602	BrainFreeze: Expanding the Capabilities of Neuromorphic Systems Using Mixed-Signal Superconducting Electronics. Frontiers in Neuroscience, 2021, 15, 750748.	2.8	3
603	Goal-conditioned Behavioral Cloning with Prioritized Sampling. , 2021, , .		0
604	Intermittent Communications in Decentralized Shadow Reward Actor-Critic. , 2021, , .		0
605	Decentralized Multiagent Actor-Critic Algorithm Based on Message Diffusion. Journal of Sensors, 2021, 2021, 1-14.	1.1	1
606	Building Action Sets in a Deep Reinforcement Learner. , 2021, , .		0

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
607	Multi-agent reinforcement learning for character control. Visual Computer, 2021, 37, 3115-3123.		3.5	1
608	Collective minds: social network topology shapes collective cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200315.		4.0	32
609	Model-Based Actor-Critic with Chance Constraint for Stochastic System. , 2021, , .			5
610	Agile Control For Quadruped Robot In Complex Environment Based on Deep Reinforcement Learnin Method. , 2021, , .	g		1
611	Planning Rational Behavior of Cognitive Semiotic Agents in a Dynamic Environment. Scientific and Technical Information Processing, 2021, 48, 502-516.		0.6	2
612	On the Unreasonable Efficiency of State Space Clustering in Personalization Tasks. , 2021, , .			3
613	Dynamic attention network for multi-UAV reinforcement learning. , 2021, , .			0
614	Intelligent train control for cooperative train formation: A deep reinforcement learning approach. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2022, 236, 975-988.		1.0	1
615	Neuroscience of the yogic theory of consciousness. Neuroscience of Consciousness, 2021, 2021, niab030.		2.6	5
616	Notes on the Architecture, League Training and PFSP in AlphaStar. , 2021, , .			0
617	Comparing Decentralized Algorithms for Dynamic Task Sharing among Agents with Limited Resource , 2021, , .	es.		3
618	RTS Game Al Robots Winner Prediction Based on Replay Data by using Deep Learning. , 2021, , .			0
620	Balanced Prioritized Experience Replay. , 2022, , .			1
621	CrowdlM: Crowd-Inspired Intelligent Manufacturing Space Design. IEEE Internet of Things Journal, 2022, 9, 19387-19397.		8.7	1
622	An Empirical Study on Data Distribution-Aware Test Selection for Deep Learning Enhancement. ACN Transactions on Software Engineering and Methodology, 2022, 31, 1-30.	I	6.0	16
623	Development of a Simulator for Prototyping Reinforcement Learning-Based Autonomous Cars. Informatics, 2022, 9, 33.		3.9	0
624	Multicriteria interpretability driven deep learning. Annals of Operations Research, 0, , 1.		4.1	4
625	Molecular dynamics simulation of nanofilament breakage in neuromorphic nanoparticle networks. Nanotechnology, 2022, 33, 275602.		2.6	5

		CITATION REPORT		
#	Article		IF	Citations
626	Shifting Perspectives on AI Evaluation: The Increasing Role of Ethics in Cooperation. AI	, 2022, 3, 331-352.	3.8	1
627	Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Dat	a, 2022, 5, 787421.	2.9	20
629	Research and Challenges of Reinforcement Learning in Cyber Defense Decision-Making Security. Algorithms, 2022, 15, 134.	ş for Intranet	2.1	2
630	Dynamic modulation of inequality aversion in human interpersonal negotiations. Com Biology, 2022, 5, 359.	nunications	4.4	1
631	DDPG-based controller of enhanced adaptive cruise control with lane-change assistance articulated vehicle. Proceedings of the Institution of Mechanical Engineers, Part D: Jour Automobile Engineering, 0, , 095440702210941.	e for an rnal of	1.9	1
632	Knowledge acquisition model of mobile payment based on automatic summary techno Commerce Research, 2024, 24, 131-154.	blogy. Electronic	5.0	1
633	A MADDPG-based multi-agent antagonistic algorithm for sea battlefield confrontation. Systems, 2023, 29, 2991-3000.	Multimedia	4.7	1
634	Motion control for laser machining via reinforcement learning. Optics Express, 2022, 3	0, 20963.	3.4	8
635	Evolving action pre-selection parameters for MCTS in real-time strategy games. Enterta Computing, 2022, 42, 100493.	ainment	2.9	1
636	Robot learning towards smart robotic manufacturing: A review. Robotics and Compute Manufacturing, 2022, 77, 102360.	er-Integrated	9.9	52
639	Dataâ€Ðriven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2	2104113.	21.0	51
640	Fully Decentralized Multiagent Communication via Causal Inference. IEEE Transactions Networks and Learning Systems, 2023, 34, 10193-10202.	on Neural	11.3	1
641	Rinascimento: Playing <i>Splendor</i> -Like Games With Event-Value Functions. IEEE T Games, 2023, 15, 16-25.	ransactions on	1.4	0
642	Generating and Adapting to Diverse Ad-Hoc Partners in Hanabi. IEEE Transactions on C	ames, 2022, , 1-1.	1.4	1
643	Demonstration of WDM-Enabled Ultralow-Energy Photonic Edge Computing. , 2022, ,			3
644	Automating Reinforcement Learning With Example-Based Resets. IEEE Robotics and Au 2022, 7, 6606-6613.	utomation Letters,	5.1	2
646	Multi-Agent Deep Reinforcement Learning to Manage Connected Autonomous Vehicle Intersections. IEEE Transactions on Vehicular Technology, 2022, 71, 7033-7043.	s at Tomorrow's	6.3	41
647	A Comparison of Dynamical Perceptual-Motor Primitives and Deep Reinforcement Lear Human-Artificial Agent Training Systems. Journal of Cognitive Engineering and Decision 155534342210929.	ning for 1 Making, 0, ,	2.3	2

#	ARTICLE	IF	Citations
" 648	A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods. Frontiers in Neurorobotics, 2022, 16, 843267.	2.8	3
649	Tailoring nanoporous graphene via machine learning: Predicting probabilities and formation times of arbitrary nanopore shapes. Journal of Chemical Physics, 2022, 156, .	3.0	2
650	Specialty Grand Challenge: What it Will Take to Cross the Valley of Death: Translational Systems Biology, "True―Precision Medicine, Medical Digital Twins, Artificial Intelligence and In Silico Clinical Trials. Frontiers in Systems Biology, 2022, 2, .	0.7	5
651	An Agile New Research Framework for Hybrid Human-Al Teaming: Trust, Transparency, and Transferability. ACM Transactions on Interactive Intelligent Systems, 2022, 12, 1-36.	3.7	10
652	Measuring the Non-Transitivity in Chess. Algorithms, 2022, 15, 152.	2.1	5
653	Predictive Coding Approximates Backprop Along Arbitrary Computation Graphs. Neural Computation, 2022, 34, 1329-1368.	2.2	23
654	Outsmarting Human Design in Airline Revenue Management. Algorithms, 2022, 15, 142.	2.1	2
655	Federated Reinforcement Learning-Based UAV Swarm System for Aerial Remote Sensing. Wireless Communications and Mobile Computing, 2022, 2022, 1-15.	1.2	6
656	Discriminator Based Resilient Multi-agent Deep Deterministic Policy Gradient Under Uncertain Faulty Agents. Journal of Physics: Conference Series, 2022, 2258, 012064.	0.4	0
657	Dynamic stock-decision ensemble strategy based on deep reinforcement learning. Applied Intelligence, 2022, , 1-19.	5.3	5
658	Adaptive random quantum eigensolver. Physical Review A, 2022, 105, .	2.5	0
659	Efficient and Stable Information Directed Exploration for Continuous Reinforcement Learning. , 2022,		4
660	A Closer Look at Invalid Action Masking in Policy Gradient Algorithms. Proceedings of the International Florida Artificial Intelligence Research Society Conference, 0, 35, .	0.3	51
661	The Al Economist: Taxation policy design via two-level deep multiagent reinforcement learning. Science Advances, 2022, 8, eabk2607.	10.3	19
662	Cooperative and Competitive Multi-Agent Systems: From Optimization to Games. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 763-783.	13.1	40
663	Development of X-ray Wavefront Sensing Techniques for Adaptive Optics Control at the Advanced Photon Source. Synchrotron Radiation News, 0, , 1-6.	0.8	1
664	Ancillary mechanism for autonomous decision-making process in asymmetric confrontation: a view from Gomoku. Journal of Experimental and Theoretical Artificial Intelligence, 2023, 35, 1141-1159.	2.8	1
665	HLifeRL: A hierarchical lifelong reinforcement learning framework. Journal of King Saud University - Computer and Information Sciences, 2022, 34, 4312-4321.	3.9	1

ARTICLE IF CITATIONS # Reinforcement learning explains various conditional cooperation. Applied Mathematics and 2.2 7 666 Computation, 2022, 427, 127182. Learning to select goals in Automated Planning with Deep-Q Learning. Expert Systems With Applications, 2022, 202, 117265. 668 Asynchronous collaborative learning across data silos., 2021, , . 0 fastESN: Fast Echo State Network. IEEE Transactions on Neural Networks and Learning Systems, 2023, 11.3 34, 10487-10501. A digital twins enabled underwater intelligent internet vehicle path planning system via 670 5.0 15 reinforcement learning and edge computing. Digital Communications and Networks, 2022, , . Modular Reinforcement Learning for Playing the Game of Tron. IEEE Access, 2022, 10, 63394-63402. 4.2 ABRaider: Multi-Phase Reinforcement Learning for Environment-Adaptive Video Streaming. IEEE Access, 673 4.2 0 2022, , 1-1. Decision Making in Monopoly Using a Hybrid Deep Reinforcement Learning Approach. IEEE Transactions 674 on Emerging Topics in Computational Intelligence, 2022, 6, 1335-1344. A Dirichlet Process Mixture of Robust Task Models for Scalable Lifelong Reinforcement Learning. IEEE 675 9.5 2 Transactions on Cybernetics, 2023, 53, 7509-7520. Masked Contrastive Representation Learning for Reinforcement Learning. IEEE Transactions on 676 Pattern Analysis and Machine Intelligence, 2022, PP, 1-1. Data-Based Feedback Relearning Control for Uncertain Nonlinear Systems With Actuator Faults. IEEE 678 7 9.5 Transactions on Cybernetics, 2023, 53, 4361-4374. Opponent cart-pole dynamics for reinforcement learning of competing agents. Acta Mechanica 679 3.4 Sinica/Lixue Xuebao, 2022, 38, . Prospects for multi-agent collaboration and gaming: challenge, technology, and application. 680 2.6 6 Frontiers of Information Technology and Electronic Engineering, 2022, 23, 1002-1009. Neural network programming: Integrating first principles into machine learning models. Computers and Chemical Engineering, 2022, 163, 107858. 3.8 Model-Based Chance-Constrained Reinforcement Learning via Separated Proportional-Integral 682 11.36 Lagrangian. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 466-478. Thermodynamically Consistent Vapor-Liquid Equilibrium Modelling with Artificial Neural Networks. SSRN Electronic Journal, 0, , . Recent Developments in Machine Learning Methods for Stochastic Control and Games. SSRN 684 0.4 3 Electronic Journal, 0, , . Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning. Quantum - the Open Journal for Quantum Science, 0, 6, 720.

#	Article	IF	CITATIONS
686	Beyond backpropagate through time: Efficient modelâ€based training through timeâ€splitting. International Journal of Intelligent Systems, 0, , .	5.7	0
687	Artificial intelligence in modern dentistry. International Journal of Health Sciences, 0, , 8086-8098.	0.1	0
688	Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems. Physics Reports, 2022, 974, 1-40.	25.6	22
690	Massively Digitized Power Grid: Opportunities and Challenges of Use-Inspired AI. Proceedings of the IEEE, 2023, 111, 762-787.	21.3	4
691	Empirical Policy Optimization for <i>n</i> -Player Markov Games. IEEE Transactions on Cybernetics, 2023, 53, 6443-6455.	9.5	5
693	Utilizing Skipped Frames in Action Repeats for Improving Sample Efficiency in Reinforcement Learning. IEEE Access, 2022, 10, 64965-64975.	4.2	1
695	Multi-Agent Reinforcement Learning. , 2022, , 219-262.		1
696	Spartus: A 9.4 TOp/s FPGA-Based LSTM Accelerator Exploiting Spatio-Temporal Sparsity. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 1098-1112.	11.3	16
699	PowerGridworld. , 2022, , .		5
700	Designing Traffic Management Strategies using Reinforcement Learning Techniques. , 2022, , .		0
701	Weighted mean field reinforcement learning for large-scale UAV swarm confrontation. Applied Intelligence, 0, , .	5.3	4
702	Centralized reinforcement learning for multi-agent cooperative environments. Evolutionary Intelligence, 2024, 17, 267-273.	3.6	1
703	Sharing Rewards Undermines Coordinated Hunting. Journal of Computational Biology, 2022, 29, 1022-1030.	1.6	4
704	Spiking Memory Policy with Population-encoding for Partially Observable Markov Decision Process Problems. Cognitive Computation, 0, , .	5.2	2
705	A Review: Machine Learning for Combinatorial Optimization Problems in Energy Areas. Algorithms, 2022, 15, 205.	2.1	10
706	A Reproducible Deep-Learning-Based Computer-Aided Diagnosis Tool for Frontotemporal Dementia Using MONAI and Clinica Frameworks. Life, 2022, 12, 947.	2.4	5
707	Data-driven approach to predict the flow boiling heat transfer coefficient of liquid hydrogen aviation fuel. Fuel, 2022, 324, 124778.	6.4	14
708	The Evolutionary Dynamics of Soft-Max Policy Gradient in Multi-Agent Setting. SSRN Electronic Journal, 0, , .	0.4	1

		15	0
#	ARTICLE	IF	CITATIONS
709	Multiagent Reinforcement Learning for Strategic Decision Making and Control in Robotic Soccer Through Self-Play. IEEE Access, 2022, 10, 72628-72642.	4.2	5
710	Incorporating Explanations toÂBalance theÂExploration andÂExploitation ofÂDeep Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 200-211.	1.3	1
712	Exact solving scheduling problems accelerated by graph neural networks. , 2022, , .		1
713	Generalization in Mean Field Games by Learning Master Policies. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36, 9413-9421.	4.9	3
714	Learning-Based Online QoE Optimization in Multi-Agent Video Streaming. Algorithms, 2022, 15, 227.	2.1	2
715	Improved the sample efficiency of episodic reinforcement learning by forcing state representations. , 2022, , .		0
716	Locality Matters: A Scalable Value Decomposition Approach for Cooperative Multi-Agent Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36, 9278-9285.	4.9	2
717	Learning disentangled representation for classical models. Physical Review B, 2022, 105, .	3.2	Ο
718	The signature-testing approach to mapping biological and artificial intelligences. Trends in Cognitive Sciences, 2022, 26, 738-750.	7.8	7
719	Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium. Mathematics of Operations Research, 2023, 48, 433-462.	1.3	1
720	Emerging Memristive Devices for Brain-Inspired Computing and Artificial Perception. Frontiers in Nanotechnology, 0, 4, .	4.8	6
721	Consensus enhancement for multi-agent systems with rotating-segmentation perception. Applied Intelligence, 0, , .	5.3	1
722	Interpreting a deep reinforcement learning model with conceptual embedding and performance analysis. Applied Intelligence, 2023, 53, 6936-6952.	5.3	2
723	Multiagent reinforcement learning for strictly constrained tasks based on Reward Recorder. International Journal of Intelligent Systems, 0, , .	5.7	0
724	Position Control of a Mobile Robot through Deep Reinforcement Learning. Applied Sciences (Switzerland), 2022, 12, 7194.	2.5	5
725	PAnDR: Fast Adaptation to New Environments from Offline Experiences via Decoupling Policy and Environment Representations. , 2022, , .		Ο
726	Artificial Intelligence without Digital Computers: Programming Matter at a Molecular Scale. Advanced Intelligent Systems, 2022, 4, .	6.1	5
727	A novel Long-term degradation trends predicting method for Multi-Formulation Li-ion batteries based on deep reinforcement learning. Advanced Engineering Informatics, 2022, 53, 101665.	8.0	6

#	Article	IF	CITATIONS
728	Reward criteria impact on the performance of reinforcement learning agent for autonomous navigation. Applied Soft Computing Journal, 2022, 126, 109241.	7.2	8
730	Deep reinforcement learning with a critic-value-based branch tree for the inverse design of two-dimensional optical devices. Applied Soft Computing Journal, 2022, 127, 109386.	7.2	8
731	Neuroanatomical predictors of complex skill acquisition during video game training. Frontiers in Neuroscience, 0, 16, .	2.8	1
732	Human-Al cooperation: Modes and their effects on attitudes. Telematics and Informatics, 2022, 73, 101862.	5.8	5
733	Cost-Aware Dynamic Task Sharing Among Decentralized Autonomous Agents: Towards Dynamic Patient Sharing Among Hospitals. Smart Innovation, Systems and Technologies, 2022, , 13-25.	0.6	2
734	Machine Learning Based Relative Orbit Transfer for Swarm Spacecraft Motion Planning. , 2022, , .		1
735	Spatial-Temporal Heterogeneous Graph Modeling for Opponent's Location Prediction in War-game. , 2022, , .		0
736	Challenges and Opportunities of Applying Reinforcement Learning to Autonomous Racing. IEEE Intelligent Systems, 2022, 37, 20-23.	4.0	5
737	Optimizing Nitrogen Management with Deep Reinforcement Learning and Crop Simulations. , 2022, , .		11
738	ICDVAE: An Effective Self-supervised Reinforcement Learning Method for behavior decisions of Non-player Characters in Metaverse Games. , 2022, , .		2
739	Rethinking Adversarial Examples in Wargames. , 2022, , .		1
740	Hierarchical Multi-agent Model for Reinforced Medical Resource Allocation with Imperfect Information. ACM Transactions on Intelligent Systems and Technology, 2023, 14, 1-27.	4.5	0
743	A Novel Decoupled Synchronous Control Method for Multiple Autonomous Unmanned Linear Systems: Bounded L2-Gain for Coupling Attenuation. Applied Sciences (Switzerland), 2022, 12, 7551.	2.5	1
744	Preference communication in multi-objective normal-form games. Neural Computing and Applications, 0, , .	5.6	3
745	The applicability of reinforcement learning for the automatic generation of state preparation circuits. , 2022, , .		0
746	Learn Effective Representation for Deep Reinforcement Learning. , 2022, , .		Ο
747	Neighborhood Focused Critic Policy Gradients for Multi-agent Reinforcement Learning. , 2022, , .		0
748	A System for Sustainable Usage of Computing Resources Leveraging Deep Learning Predictions. Applied Sciences (Switzerland), 2022, 12, 8411.	2.5	1

#	Article	IF	CITATIONS
749	On the principles of Parsimony and Self-consistency for the emergence of intelligence. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 1298-1323.	2.6	21
750	Stochastic cubic-regularized policy gradient method. Knowledge-Based Systems, 2022, , 109687.	7.1	0
751	Deep Reinforcement Learning for Quantum Hamiltonian Engineering. Physical Review Applied, 2022, 18, .	3.8	8
752	A distributed nanocluster based multi-agent evolutionary network. Nature Communications, 2022, 13, .	12.8	3
753	<scp>Conformerâ€RL</scp> : A deep reinforcement learning library for conformer generation. Journal of Computational Chemistry, 2022, 43, 1880-1886.	3.3	2
754	Reinforcement learning as aÂbasis for cross domain fusion of heterogeneous data. Informatik-Spektrum, 2022, 45, 214-217.	1.3	0
755	Temporal Feature and Flexible Modulation in Artificial Synapses Realized by a Combination of Phase Transition and Asymmetric Electric Double Layers. ACS Applied Electronic Materials, 2022, 4, 4129-4139.	4.3	0
756	On-policy learning-based deep reinforcement learning assessment for building control efficiency and stability. Science and Technology for the Built Environment, 2022, 28, 1150-1165.	1.7	3
757	A multi-objective reinforcement learning approach for resequencing scheduling problems in automotive manufacturing systems. International Journal of Production Research, 2023, 61, 5156-5175.	7.5	5
758	Autonomous Maneuver Decisions via Transfer Learning Pigeon-Inspired Optimization for UCAVs in Dogfight Engagements. IEEE/CAA Journal of Automatica Sinica, 2022, 9, 1639-1657.	13.1	13
759	A modified random network distillation algorithm and its application in USVs naval battle simulation. Ocean Engineering, 2022, 261, 112147.	4.3	4
760	CENN: Conservative energy method based on neural networks with subdomains for solving variational problems involving heterogeneous and complex geometries. Computer Methods in Applied Mechanics and Engineering, 2022, 400, 115491.	6.6	5
762	Multilevel development of cognitive abilities in an artificial neural network. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
763	Correcting biased value estimation in mixing value-based multi-agent reinforcement learning by multiple choice learning. Engineering Applications of Artificial Intelligence, 2022, 116, 105329.	8.1	3
764	Thermodynamically consistent vapor-liquid equilibrium modelling with artificial neural networks. Fluid Phase Equilibria, 2023, 564, 113597.	2.5	7
765	Hindsight and Sequential Rationality of Correlated Play. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 5584-5594.	4.9	1
766	Finding and Certifying (Near-)Optimal Strategies in Black-Box Extensive-Form Games. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 5779-5788.	4.9	0
767	Pervasive Al for IoT Applications: A Survey on Resource-Efficient Distributed Artificial Intelligence. IEEE Communications Surveys and Tutorials, 2022, 24, 2366-2418.	39.4	29

#	Article	IF	CITATIONS
768	CrowdHMT: Crowd Intelligence With the Deep Fusion of Human, Machine, and IoT. IEEE Internet of Things Journal, 2022, 9, 24822-24842.	8.7	11
769	An Improved Off-Policy Actor-Critic Algorithm withÂHistorical Behaviors Reusing forÂRobotic Control. Lecture Notes in Computer Science, 2022, , 449-458.	1.3	0
770	Reinforcement learning with guarantees: a review. IFAC-PapersOnLine, 2022, 55, 123-128.	0.9	8
771	Cooperative Trajectory Design of Multiple UAV Base Stations With Heterogeneous Graph Neural Networks. IEEE Transactions on Wireless Communications, 2023, 22, 1495-1509.	9.2	11
772	A Distributional Perspective on Multiagent Cooperation With Deep Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 4246-4259.	11.3	1
773	Human-Level Control Through Directly Trained Deep Spiking <i>Q</i> -Networks. IEEE Transactions on Cybernetics, 2023, 53, 7187-7198.	9.5	7
774	Unmanned Aerial Vehicle Swarm Cooperative Decision-Making for SEAD Mission: A Hierarchical Multiagent Reinforcement Learning Approach. IEEE Access, 2022, 10, 92177-92191.	4.2	3
775	Training Agents toÂSatisfy Timed andÂUntimed Signal Temporal Logic Specifications withÂReinforcement Learning. Lecture Notes in Computer Science, 2022, , 190-206.	1.3	1
776	Application Prospects of Artificial Intelligence Technology in Joint All-Domain Command and Control. Lecture Notes in Electrical Engineering, 2022, , 331-340.	0.4	0
777	Improved QMIXs forÂMulti-entity Asynchronous Cooperative Learning inÂTactical Wargame. Lecture Notes in Electrical Engineering, 2022, , 551-562.	0.4	Ο
778	A Multi-agent Deep Reinforcement Learning-Based Collaborative Willingness Network for Automobile Maintenance Service. Lecture Notes in Computer Science, 2022, , 84-103.	1.3	1
779	Learning of Long-Horizon Sparse-Reward Robotic Manipulator Tasks With Base Controllers. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 4072-4081.	11.3	4
780	The Optimal Strategy Against the Opponent Adopting Fictitious Play Algorithm in Infinitely Repeated 2 × 2 Games. SSRN Electronic Journal, 0, , .	0.4	1
781	A Deep Learning Game Theoretic Model for Defending Against Large Scale Smart Grid Attacks. IEEE Transactions on Smart Grid, 2023, 14, 1188-1197.	9.0	1
782	Peer Incentive Reinforcement Learning for Cooperative Multiagent Games. IEEE Transactions on Games, 2023, 15, 623-636.	1.4	1
783	Review and analysis of research on Video Games and Artificial Intelligence: a look back and a step forward. Procedia Computer Science, 2022, 204, 315-323.	2.0	Ο
784	AI for Global Climate Cooperation: Modeling Global Climate Negotiations, Agreements, and Long-Term Cooperation in RICE-N. SSRN Electronic Journal, 0, , .	0.4	1
785	Routing inÂReinforcement Learning Markov Chains. , 2022, , 409-414.		0

ARTICLE IF CITATIONS # Construction Method ofÂAir Combat Agent Based onÂReinforcement Learning. Lecture Notes in 786 0.4 1 Electrical Engineering, 2022, , 98-110. Reinforcement Learning Heuristics for Aerospace Control Systems., 2022,,. Genetic Programming + Multi-Agent Reinforcement Learning: Hybrid Approaches for Decision 788 0 Processes. , 2022, , . Towards Secure Multi-Agent Deep Reinforcement Learning: Adversarial Attacks and Countermeasures. 789 Discovering Objects that Can Move., 2022,,. 790 9 791 Unsupervised Hebbian Learning on Point Sets in StarCraft II., 2022, , . 792 Towards Run-time Efficient Hierarchical Reinforcement Learning., 2022, , . 0 L2E: Learning to Exploit Your Opponent., 2022, , . 793 794 Multimedia Meets Deep Reinforcement Learning. IEEE MultiMedia, 2022, 29, 5-7. 1.7 0 Applying Reward Design Based on Payment Mechanism to Shaped-Reward DQN for Beer Game., 2022, , . 795 A Cooperation Graph Approach for Multiagent Sparse Reward Reinforcement Learning., 2022,,. 796 0 797 Mix-up Consistent Cross Representations for Data-Efficient Reinforcement Learning., 2022, , . Compute Trends Across Three Eras of Machine Learning., 2022, , . 798 67 Hierarchical Architecture for Multi-Agent Reinforcement Learning in Intelligent Game., 2022,,. 799 Neurons Perception Dataset for RoboMaster AI Challenge., 2022,,. 800 1 Fast Probabilistic Policy Reuse via Reward Function Fitting., 2022,,. A Robust Offline Reinforcement Learning Algorithm Based on Behavior Regularization Methods. , 2022, 802 0 ,. Towards verifiable Benchmarks for Reinforcement Learning., 2022, , .

43

# 804	ARTICLE Reinforcement Learning using Reward Expectations in Scenarios with Aleatoric Uncertainties. , 2022, ,	IF	CITATIONS
805	From motor control to team play in simulated humanoid football. Science Robotics, 2022, 7, .	17.6	26
806	Task Relabelling for Multi-task Transfer using Successor Features. , 2022, , .		0
807	DouZero+: Improving DouDizhu Al by Opponent Modeling and Coach-guided Learning. , 2022, , .		3
808	A Curriculum Learning Based Multi-agent Reinforcement Learning Method for Realtime Strategy Game. , 2022, , .		1
809	Speedup Training Artificial Intelligence for Mahjong via Reward Variance Reduction. , 2022, , .		1
810	VMAPD: Generate Diverse Solutions for Multi-Agent Games with Recurrent Trajectory Discriminators. , 2022, , .		1
811	Improved Action Prediction through Multiple Model Processing of Player Trajectories. , 2022, , .		0
812	Deep Reinforcement Learning in the Advanced Cybersecurity Threat Detection and Protection. Information Systems Frontiers, 0, , .	6.4	4
813	Supervised and Reinforcement Learning from Observations in Reconnaissance Blind Chess. , 2022, , .		3
814	Mastering the Game of 3v3 Snakes with Rule-Enhanced Multi-Agent Reinforcement Learning. , 2022, , .		1
815	MiaoSuan Wargame: A Multi-Mode Integrated Platform for Imperfect Information Game. , 2022, , .		0
816	Improving DNN-based 2048 Players with Global Embedding. , 2022, , .		0
817	On the Verge of Solving Rocket League using Deep Reinforcement Learning and Sim-to-sim Transfer. , 2022, , .		0
818	Controlling Fleets of Autonomous Mobile Robots with Reinforcement Learning: A Brief Survey. Robotics, 2022, 11, 85.	3.5	5
819	Counter-Strike Deathmatch with Large-Scale Behavioural Cloning. , 2022, , .		3
820	Collective intelligence for deep learning: A survey of recent developments. , 2022, 1, 263391372211148.		15
821	Uncertainty Estimation based Intrinsic Reward For Efficient Reinforcement Learning. , 2022, , .		0

#	Article	IF	CITATIONS
822	Self-supervised Contrastive Learning for Predicting Game Strategies. Lecture Notes in Networks and Systems, 2023, , 136-147.	0.7	1
823	The Use of Artificial Intelligence for Smart Decision-Making in Smart Cities: A Moderated Mediated Model of Technology Anxiety and Internal Threats of IoT. Mathematical Problems in Engineering, 2022, 2022, 1-12.	1.1	11
824	Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond. Knowledge and Information Systems, 2022, 64, 3197-3234.	3.2	74
825	Automatic Breath Analysis System Using Convolutional Neural Networks. Lecture Notes in Networks and Systems, 2023, , 29-41.	0.7	0
826	Structural Optimization of Architectural Environmental Art Design Based on Multiagent Simulation System. Mathematical Problems in Engineering, 2022, 2022, 1-9.	1.1	1
827	A leader-following paradigm based deep reinforcement learning method for multi-agent cooperation games. Neural Networks, 2022, 156, 1-12.	5.9	4
828	Behavior imitation of individual board game players. Applied Intelligence, 0, , .	5.3	0
829	Superiority of quadratic over conventional neural networks for classification of gaussian mixture data. Visual Computing for Industry, Biomedicine, and Art, 2022, 5, .	3.7	0
830	Developing, evaluating and scaling learning agents in multi-agent environments. Al Communications, 2022, 35, 271-284.	1.2	1
832	Adaptive Discount Factor for Deep Reinforcement Learning in Continuing Tasks with Uncertainty. Sensors, 2022, 22, 7266.	3.8	3
833	Introduction to Machine Learning for Hardware Security. Studies in Computational Intelligence, 2023, , 1-7.	0.9	1
834	The Unbelievable Pointlessness of Impact. IEEE Technology and Society Magazine, 2022, 41, 7-12.	0.8	1
835	Hierarchical Planning with Deep Reinforcement Learning for 3D Navigation of Microrobots in Blood Vessels. Advanced Intelligent Systems, 2022, 4, .	6.1	8
836	Toolpath Calculation Using Reinforcement Learning in Machining. Lecture Notes in Mechanical Engineering, 2023, , 1149-1158.	0.4	0
837	Continual portfolio selection in dynamic environments via incremental reinforcement learning. International Journal of Machine Learning and Cybernetics, 2023, 14, 269-279.	3.6	2
838	Towards Augmented Microscopy with Reinforcement Learning-Enhanced Workflows. Microscopy and Microanalysis, 2022, 28, 1952-1960.	0.4	8
839	A Study onÂEfficient Reinforcement Learning Through Knowledge Transfer. Adaptation, Learning, and Optimization, 2023, , 329-356.	0.6	0
840	Event-triggered multi-agent credit allocation pursuit-evasion algorithm. Neural Processing Letters, 0,	3.2	Ο

#	Article	IF	CITATIONS
841	Population-Based Evolutionary Gaming for Unsupervised Person Re-identification. International Journal of Computer Vision, 2023, 131, 1-25.	15.6	1
842	Reinforcement learning as aÂbasis for cross domain fusion of heterogeneous data. Informatik-Spektrum, 0, , .	1.3	0
843	USV path following controller based on DDPG with composite state-space and dynamic reward function. Ocean Engineering, 2022, 266, 112449.	4.3	7
844	Co-Generation of Game Levels and Game-Playing Agents. Proceedings, 2020, 16, 203-209.	0.8	6
845	Your Buddy, the Grandmaster: Repurposing the Game-Playing AI Surplus for Inclusivity. Proceedings, 2020, 16, 17-23.	0.8	1
846	Programmatic Strategies for Real-Time Strategy Games. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 381-389.	4.9	1
847	Reinforcement Learning Based Multi-Agent Resilient Control: From Deep Neural Networks to an Adaptive Law. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 7737-7745.	4.9	3
848	Inference-Based Deterministic Messaging For Multi-Agent Communication. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 11228-11236.	4.9	3
849	Applied Machine Learning for Games: A Graduate School Course. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 15695-15703.	4.9	0
850	Reinforcement Learning-based Product Delivery Frequency Control. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 15355-15361.	4.9	1
851	Heisenbot: A Rule-Based Game Agent for Gin Rummy. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 15489-15495.	4.9	0
852	Foresee then Evaluate: Decomposing Value Estimation with Latent Future Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 9834-9842.	4.9	1
853	Policy Optimization as Online Learning with Mediator Feedback. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 8958-8966.	4.9	2
854	Master Multiple Real-Time Strategy Games withÂaÂUnified Learning Model Using Multi-agent Reinforcement Learning. Communications in Computer and Information Science, 2022, , 27-39.	0.5	1
855	Automatic Curriculum Learning for Large-Scale Cooperative Multiagent Systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 912-930.	4.9	1
856	Shifting Reward Assignment forÂLearning Coordinated Behavior inÂTime-Limited Ordered Tasks. Lecture Notes in Computer Science, 2022, , 294-306.	1.3	0
857	Style-Agnostic Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 604-620.	1.3	0
858	Investigating Effects ofÂCentralized Learning Decentralized Execution onÂTeam Coordination inÂtheÂLevel Based Foraging Environment asÂaÂSequential Social Dilemma. Lecture Notes in Computer Science, 2022, , 15-23.	1.3	1

#	Article	IF	CITATIONS
859	Multiagent Systems on Virtual Games: A Systematic Mapping Study. IEEE Transactions on Games, 2023, 15, 134-147.	1.4	1
860	OptimizingMARL: Developing Cooperative Game Environments Based onÂMulti-agent Reinforcement Learning. Lecture Notes in Computer Science, 2022, , 89-102.	1.3	0
861	Neural Computing with Photonic Media. , 2022, , 199-224.		0
862	Transfer Without Forgetting. Lecture Notes in Computer Science, 2022, , 692-709.	1.3	5
863	Al governance in the system development life cycle. , 2022, , .		5
864	CLIP meets GamePhysics. , 2022, , .		2
865	The optimal strategy against Fictitious Play in infinitely repeated games. , 2022, , .		1
866	Multi-Agent Distributed Cooperation Decision Making Based on Incomplete Information Prediction. , 2022, , .		0
867	Autonomous Vehicles Roundup Strategy by Reinforcement Learning with Prediction Trajectory. , 2022, , .		0
868	å^†å±,å† 3 ç–åﷺ ∞^2 ç \mathbb{O}^2 æ $^{-2}$ å $^{-1}$ 抗æ– 1 æ 3 •. Scientia Sinica Informationis, 2022, , .	0.4	0
869	Mastering construction heuristics with self-play deep reinforcement learning. Neural Computing and Applications, 2023, 35, 4723-4738.	5.6	3
870	Learning multi-agent cooperation. Frontiers in Neurorobotics, 0, 16, .	2.8	0
871	Multi-agent actor-critic with time dynamical opponent model. Neurocomputing, 2023, 517, 165-172.	5.9	3
873	Cooperative multi-target hunting by unmanned surface vehicles based on multi-agent reinforcement learning. Defence Technology, 2022, , .	4.2	6
874	Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey. Physics in Medicine and Biology, 0, , .	3.0	5
875	Neurons in a dish learn to play Pong — what's next?. Nature, 2022, 610, 433-433.	27.8	1
876	Evaluation of Neural Network Verification Methods for Air-to-Air Collision Avoidance. Journal of Air Transportation, 2023, 31, 1-17.	1.5	1
877	Maneuver Decision-Making for Autonomous Air Combat Based on FRE-PPO. Applied Sciences (Switzerland), 2022, 12, 10230.	2.5	5

#	Article	IF	CITATIONS
878	Optimal Tasking of Ground-Based Sensors for Space Situational Awareness Using Deep Reinforcement Learning. Sensors, 2022, 22, 7847.	3.8	4
879	Multi-Agent Deep Reinforcement Learning for Mix-mode Runway Sequencing. , 2022, , .		3
880	Performance Evaluation of Multiagent Reinforcement Learning Based Training Methods for Swarm Fighting. Wireless Communications and Mobile Computing, 2022, 2022, 1-11.	1.2	0
881	Steadily Learn to Drive with Virtual Memory. , 0, , .		Ο
882	Deep multiagent reinforcement learning: challenges and directions. Artificial Intelligence Review, 2023, 56, 5023-5056.	15.7	25
883	Delocalized photonic deep learning on the internet's edge. Science, 2022, 378, 270-276.	12.6	46
884	Run Time Assured Reinforcement Learning for Safe Satellite Docking. Journal of Aerospace Information Systems, 2023, 20, 25-36.	1.4	4
885	Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search. Frontiers in Neurorobotics, 0, 16, .	2.8	3
886	Training quantum embedding kernels on near-term quantum computers. Physical Review A, 2022, 106, .	2.5	26
887	Learning controlled and targeted communication with the centralized critic for the multi-agent system. Applied Intelligence, 2023, 53, 14819-14837.	5.3	1
888	Data-efficient deep reinforcement learning with expert demonstration for active flow control. Physics of Fluids, 2022, 34, .	4.0	8
889	Deep reinforcement learning based optimization for a tightly coupled nuclear renewable integrated energy system. Applied Energy, 2022, 328, 120113.	10.1	14
890	Multiagent Reinforcement Learning With Heterogeneous Graph Attention Network. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6851-6860.	11.3	2
891	TOPS: Transition-Based Volatility-Reduced Policy Search. Lecture Notes in Computer Science, 2022, , 3-47.	1.3	0
892	Hidden Information General Game Playing withÂDeep Learning andÂSearch. Lecture Notes in Computer Science, 2022, , 161-172.	1.3	0
893	Deep Reinforcement Learning Task Assignment Based on Domain Knowledge. IEEE Access, 2022, 10, 114402-114413.	4.2	3
894	Path Planning of Unmanned Surface Vehicle Port Docking Based on Improved Double Deep Q-Network. , 2022, , .		1
895	Incorporating rivalry in reinforcement learning for a competitive game. Neural Computing and Applications, 0, , .	5.6	2

#	Article	IF	CITATIONS
896	Wasserstein gradient flows policy optimization via input convex neural networks. , 2022, , .		0
897	Multi-agent reinforcement learning for autonomous vehicles: a survey. Autonomous Intelligent Systems, 2022, 2, .	3.1	8
898	Attributation Analysis of Reinforcement Learning-Based Highway Driver. Electronics (Switzerland), 2022, 11, 3599.	3.1	1
899	Data-driven control of spatiotemporal chaos with reduced-order neural ODE-based models and reinforcement learning. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	2.1	6
900	Redox memristors with volatile threshold switching behavior for neuromorphic computing. Journal of Electronic Science and Technology, 2022, 20, 100177.	3.6	4
901	Mapping Citizen Science through the Lens of Human-Centered Al. Human Computation, 2022, 9, 66-95.	1.4	8
902	Where Reinforcement Learning Meets Process Control: Review and Guidelines. Processes, 2022, 10, 2311.	2.8	11
903	Harnessing interpretable machine learning for holistic inverse design of origami. Scientific Reports, 2022, 12, .	3.3	1
904	APInf: Adaptive Policy Inference Based on Hierarchical Framework. Journal of Physics: Conference Series, 2022, 2363, 012001.	0.4	1
905	Cooperative and competitive multi-agent deep reinforcement learning. , 2022, , .		0
906	Selective reinforcement graph mining approach for smart building energy and occupant comfort optimization. Building and Environment, 2023, 228, 109806.	6.9	0
907	Researches advanced in credit assignment in reinforcement learning. , 2022, , .		0
908	Learning to Design Without Prior Data: Discovering Generalizable Design Strategies Using Deep Learning and Tree Search. Journal of Mechanical Design, Transactions of the ASME, 2023, 145, .	2.9	2
910	Complex relationship graph abstraction for autonomous air combat collaboration: A learning and expert knowledge hybrid approach. Expert Systems With Applications, 2023, 215, 119285.	7.6	6
911	Evolution Strategies for Sparse Reward Gridworld Environments. Lecture Notes in Computer Science, 2022, , 266-278.	1.3	0
912	Modern Value Based Reinforcement Learning: A Chronological Review. IEEE Access, 2022, 10, 134704-134725.	4.2	1
913	Hybrid-scale contextual fusion network for medical image segmentation. Computers in Biology and Medicine, 2023, 152, 106439.	7.0	8
914	Assessing seismic-like events prediction in model knits with unsupervised machine learning. Extreme Mechanics Letters, 2023, 58, 101932.	4.1	0

#	Article	IF	CITATIONS
915	Representation learning for continuous action spaces is beneficial for efficient policy learning. Neural Networks, 2023, 159, 137-152.	5.9	1
916	GAIL-PT: An intelligent penetration testing framework with generative adversarial imitation learning. Computers and Security, 2023, 126, 103055.	6.0	7
917	Beyond explaining: Opportunities and challenges of XAI-based model improvement. Information Fusion, 2023, 92, 154-176.	19.1	22
918	Robust Decision Making for Autonomous Vehicles at Highway On-Ramps: A Constrained Adversarial Reinforcement Learning Approach. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 4103-4113.	8.0	21
919	Research on Collision Avoidance Algorithm of Unmanned Surface Vehicle Based on Deep Reinforcement Learning. IEEE Sensors Journal, 2023, 23, 11262-11273.	4.7	5
920	Multi-Agent Reinforcement Learning-Based Coordinated Dynamic Task Allocation for Heterogenous UAVs. IEEE Transactions on Vehicular Technology, 2023, 72, 4372-4383.	6.3	5
921	A Joint Operation Simulation Environment forÂReinforcement Learning. Communications in Computer and Information Science, 2022, , 561-572.	0.5	0
922	Towards Understanding Metaverse Engagement via Social Patterns and Reward Mechanism: A Case Study of <i>Nova Empire</i> . IEEE Transactions on Computational Social Systems, 2023, 10, 2165-2176.	4.4	4
923	Intelligent Decision-Making and Human Language Communication Based on Deep Reinforcement Learning in a Wargame Environment. IEEE Transactions on Human-Machine Systems, 2023, 53, 201-214.	3.5	7
924	MARL Sim2real Transfer: Merging Physical Reality With Digital Virtuality in Metaverse. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 2107-2117.	9.3	11
925	WagerWin: An Efficient Reinforcement Learning Framework for Gambling Games. IEEE Transactions on Games, 2023, 15, 483-491.	1.4	1
926	Multi-Agent Reinforcement Learning Based Actuator Control for EV HVAC Systems. IEEE Access, 2023, 11, 7574-7587.	4.2	3
927	OSTTD: Offloading of Splittable Tasks With Topological Dependence in Multi-Tier Computing Networks. IEEE Journal on Selected Areas in Communications, 2023, 41, 555-568.	14.0	4
928	Artificial Intelligence in Education as a Rawlsian Massively Multiplayer Game: A Thought Experiment on Al Ethics. , 2023, , 297-316.		1
929	EFDO: Solving Extensive-Form Games Based On Double Oracle. , 2022, , .		0
930	Effects of Auxiliary Knowledge on Continual Learning. , 2022, , .		1
931	Data-Efficient Deep Reinforcement Learning with Symmetric Consistency. , 2022, , .		0
932	Reinforcement Learning based Adaptive Resource Allocation Scheme for Multi-User Augmented Reality Service. , 2022, , .		1

#	Article	IF	CITATIONS
933	Over-the-Horizon Air Combat Environment Modeling and Deep Reinforcement Learning Application. , 2022, , .		1
934	Virtual Skinner Box for the Test of Operant Conditioning. , 2022, , .		0
935	Advanced Mechanisms of Perception in the Digital Hide and Seek Game Based on Deep Learning. , 2022, , .		0
936	Play with Emotion: Affect-Driven Reinforcement Learning. , 2022, , .		2
937	The Impact of Batch Deep Reinforcement Learning on Student Performance: A Simple Act of Explanation Can Go A Long Way. International Journal of Artificial Intelligence in Education, 0, , .	5.5	0
938	Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction. Horticulturae, 2022, 8, 1124.	2.8	2
939	Preparing for the next pandemic: Simulation-based deep reinforcement learning to discover and test multimodal control of systemic inflammation using repurposed immunomodulatory agents. Frontiers in Immunology, 0, 13, .	4.8	2
940	End-to-end Reinforcement Learning of Robotic Manipulation with Robust Keypoints Representation. , 2022, , .		3
941	Applications of AI in game plug-ins detection. , 2022, 2, 120-122.		0
942	Mastering the game of Stratego with model-free multiagent reinforcement learning. Science, 2022, 378, 990-996.	12.6	36
943	AlphaStar: an integrated application of reinforcement learning algorithms. , 2022, , .		1
944	Hierarchical multiâ€agent reinforcement learning for multiâ€aircraft closeâ€range air combat. IET Control Theory and Applications, 2023, 17, 1840-1862.	2.1	2
945	Human-level play in the game of <i>Diplomacy</i> by combining language models with strategic reasoning. Science, 2022, 378, 1067-1074.	12.6	42
946	A Data-Efficient Training Method for Deep Reinforcement Learning. Electronics (Switzerland), 2022, 11, 4205.	3.1	Ο
947	Negotiation and honesty in artificial intelligence methods for the board game of Diplomacy. Nature Communications, 2022, 13, .	12.8	2
948	The Modern Mathematics of Deep Learning. , 2022, , 1-111.		21
949	Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments. Sensors, 2022, 22, 9574.	3.8	6
950	Extensible Hierarchical Multi-Agent Reinforcement-Learning Algorithm in Traffic Signal Control. Applied Sciences (Switzerland), 2022, 12, 12783.	2.5	0

#	Article	IF	CITATIONS
951	Competition-level code generation with AlphaCode. Science, 2022, 378, 1092-1097.	12.6	123
952	LearningGroup: A Real-Time Sparse Training on FPGA via Learnable Weight Grouping for Multi-Agent Reinforcement Learning. , 2022, , .		1
953	Dynamic Storage Location Assignment in Warehouses Using Deep Reinforcement Learning. Technologies, 2022, 10, 129.	5.1	2
954	MASAC-based confrontation game method of UAV clusters. Scientia Sinica Informationis, 2022, 52, 2254.	0.4	2
955	Towards New Generation, Biologically Plausible Deep Neural Network Learning. Sci, 2022, 4, 46.	3.0	0
956	An Adaptive Updating Method of Target Network Based on Moment Estimates for Deep Reinforcement Learning. Neural Processing Letters, 0, , .	3.2	0
958	Multi-Agent Deep Reinforcement Learning Based Resource Allocation for Ultra-Reliable Low-Latency Internet of Controllable Things. IEEE Transactions on Wireless Communications, 2023, 22, 5414-5430.	9.2	4
959	Interpretable Learned Emergent Communication for Human–Agent Teams. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1801-1811.	3.8	2
960	An Overview of In Vitro Biological Neural Networks for Robot Intelligence. Cyborg and Bionic Systems, 2023, 4, .	7.9	11
961	Replay and compositional computation. Neuron, 2023, 111, 454-469.	8.1	14
962	Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist. Pediatric Neurology, 2023, 141, 42-51.	2.1	7
963	Network-aware compute and memory allocation in optically composable data centers with deep reinforcement learning and graph neural networks. Journal of Optical Communications and Networking, 2023, 15, 133.	4.8	3
964	Machine and quantum learning for diamond-based quantum applications. Materials for Quantum Technology, 2023, 3, 012001.	3.1	2
965	Artificial intelligence and machine learning for quantum technologies. Physical Review A, 2023, 107, .	2.5	23
966	Al Super-Resolution: Application to Turbulence and Combustion. Lecture Notes in Energy, 2023, , 279-305.	0.3	1
967	Standing on the Shoulders of Al Giants. Computer, 2023, 56, 97-101.	1.1	2
968	Computational Performance of Deep Reinforcement Learning to Find Nash Equilibria. Computational Economics, 2024, 63, 529-576.	2.6	0
969	Deep reinforcement learning empowers automated inverse design and optimization of photonic crystals for nanoscale laser cavities. Nanophotonics, 2023, 12, 319-334.	6.0	9

#	Article	IF	CITATIONS
970	Vision-Based Efficient Robotic Manipulation with a Dual-Streaming Compact Convolutional Transformer. Sensors, 2023, 23, 515.	3.8	1
971	Toward the third generation artificial intelligence. Science China Information Sciences, 2023, 66, .	4.3	28
972	Al in Human-computer Gaming: Techniques, Challenges and Opportunities. , 2023, 20, 299-317.		4
974	Uncertainty, Evidence, and the Integration of Machine Learning into Medical Practice. Journal of Medicine and Philosophy, 2023, 48, 84-97.	0.8	3
975	Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning. Applied Energy, 2023, 332, 120563.	10.1	34
976	Modeling collective motion for fish schooling via multi-agent reinforcement learning. Ecological Modelling, 2023, 477, 110259.	2.5	4
977	lmitation of piping warm-up operation and estimation of operational intention by inverse reinforcement learning. Journal of Process Control, 2023, 122, 41-48.	3.3	0
978	Overfitting-avoiding goal-guided exploration for hard-exploration multi-goal reinforcement learning. Neurocomputing, 2023, 525, 76-87.	5.9	1
979	Online portfolio management via deep reinforcement learning with high-frequency data. Information Processing and Management, 2023, 60, 103247.	8.6	6
980	Sample-Efficient Multi-Agent Reinforcement Learning with Demonstrations for Flocking Control. , 2022, , .		3
981	Multi-step prediction in linearized latent state spaces for representation learning. System Research and Information Technologies, 2022, , 139-148.	0.3	0
982	Safe adaptation in multiagent competition. , 2022, , .		0
983	Scalable Model-based Policy Optimization for Decentralized Networked Systems. , 2022, , .		1
984	GRU-Attention based TD3 Network for Mobile Robot Navigation. , 2022, , .		2
985	Learning multi-agent coordination through connectivity-driven communication. Machine Learning, 0, ,	5.4	1
986	Constructing a DRL Decision Making Scheme for Multi-Path Routing in All-IP Access Network. , 2022, , .		2
987	Convergence Rates of Average-Reward Multi-agent Reinforcement Learning via Randomized Linear Programming. , 2022, , .		2
988	Multi-Robot Real-time Game Strategy Learning based on Deep Reinforcement Learning. , 2022, , .		0

#	Article	IF	CITATIONS
989	A Mobile Robot Experiment System with Lightweight Simulator Generator for Deep Reinforcement Learning Algorithm. , 2022, , .		0
990	Joint Optimization of Jamming Link and Power Control in Communication Countermeasures: A Multiagent Deep Reinforcement Learning Approach. Wireless Communications and Mobile Computing, 2022, 2022, 1-18.	1.2	2
991	A Homotopic Approach to Policy Gradients for Linear Quadratic Regulators with Nonlinear Controls. , 2022, , .		1
992	I Shop Therefore I Am: The Artificial Consumer. Journal of Artificial Intelligence and Consciousness, 0, , 1-22.	1.2	Ο
994	Towards Improving Exploration in Self-Imitation Learning using Intrinsic Motivation. , 2022, , .		1
995	Towards Deadlock Handling with Machine Learning in a Simulation-Based Learning Environment. , 2022, , .		2
996	Online Markov decision processes with non-oblivious strategic adversary. Autonomous Agents and Multi-Agent Systems, 2023, 37, .	2.1	0
997	DPRoute. , 2023, , .		1
998	Learning to Play <i>Koi-Koi</i> Hanafuda Card Games With Transformers. IEEE Transactions on Artificial Intelligence, 2023, 4, 1449-1460.	4.7	0
999	Systems Theoretic Process Analysis of a Run Time Assured Neural Network Control System. , 2023, , .		2
1000	Explainable Artificial Intelligence Techniques for the Analysis of Reinforcement Learning in Non-Linear Flight Regimes. , 2023, , .		1
1001	Introduction to Artificial Intelligence and Machine Learning in Nephrology. Clinical Journal of the American Society of Nephrology: CJASN, 2023, 18, 392-393.	4.5	1
1002	Statistical Modeling: The Three Cultures. , 2023, 5, .		5
1003	Artificial Intelligence Foundation ofÂSmart Ocean. , 2023, , 1-44.		0
1004	Reinforcement Learning for Quantitative Trading. ACM Transactions on Intelligent Systems and Technology, 2023, 14, 1-29.	4.5	3
1005	Scalable Planning and Learning Framework Development for Swarm-to-Swarm Engagement Problems. , 2023, , .		0
1006	Mitigating Catastrophic Forgetting with Complementary Layered Learning. Electronics (Switzerland), 2023, 12, 706.	3.1	1
1007	Reinforcement Learning based Coverage Planning for UAVs Fleets. , 2023, , .		1

#	Article	IF	CITATIONS
1008	Improving Sample Efficiency of Multiagent Reinforcement Learning With Nonexpert Policy for Flocking Control. IEEE Internet of Things Journal, 2023, 10, 14014-14027.	8.7	2
1009	Optimization ofÂParameterized Behavior Trees inÂRTS Games. Lecture Notes in Computer Science, 2023, , 387-398.	1.3	0
1010	Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics. Nature Reviews Materials, 2023, 8, 241-260.	48.7	33
1011	Automated machine learning: Al-driven decision making in business analytics. Intelligent Systems With Applications, 2023, 18, 200188.	3.0	6
1012	GPU Acceleration of Monte Carlo Tree Search Algorithm for Amazon chess and Its Evaluation Function. , 2022, , .		0
1013	EnsembleCard : A Strategy Ensemble Bot For Two-Player No-Limit Texas Hold'em Poker. , 2022, , .		0
1014	Graph-QMIX: Addressing the Partial Observation Issues via Graph Neural Network in Multi-Agent Reinforcement Learning. , 2022, , .		0
1015	A Mapless Navigation Method Based on Reinforcement Learning and Local Obstacle Map. , 2022, , .		0
1016	Optimal strategy selection for attack graph games using deep reinforcement learning. , 2022, , .		0
1017	DeepHoldem: An Efficient End-to-End Texas Hold'em Artificial Intelligence Fusion of Algorithmic Game Theory and Game Information. , 2022, , .		0
1018	Cycle-Consistent World Models forÂDomain Independent Latent Imagination. Lecture Notes in Computer Science, 2023, , 561-574.	1.3	0
1019	A Novel Deep Reinforcement Learning Approach to Traffic Signal Control with Connected Vehicles. Applied Sciences (Switzerland), 2023, 13, 2750.	2.5	5
1020	Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization. Neural Networks, 2023, 161, 228-241.	5.9	5
1021	Visual language integration: A survey and open challenges. Computer Science Review, 2023, 48, 100548.	15.3	0
1022	TEMGYM Advanced – NanoMi lens characterisation. Micron, 2023, 169, 103450.	2.2	0
1023	TEMGYM Advanced: Software for electron lens aberrations and parallelised electron ray tracing. Ultramicroscopy, 2023, 250, 113738.	1.9	1
1024	Heterogeneous Multi-unit Control withÂCurriculum Learning forÂMulti-agent Reinforcement Learning. Communications in Computer and Information Science, 2022, , 3-16.	0.5	0
1025	A Deep Reinforcement Learning Approach forÂCooperative Target Defense. Communications in Computer and Information Science, 2022, , 17-26.	0.5	Ο

#	Article	IF	CITATIONS
1026	SMPG: Adaptive Soft Update forÂMasked MADDPG. Communications in Computer and Information Science, 2022, , 50-61.	0.5	0
1027	Al-Based Military Decision Support Using Natural Language. , 2022, , .		0
1028	Glyph-Based Visual Analysis of Q-Leaning Based Action Policy Ensembles on Racetrack. , 2022, , .		1
1029	Multiple Tiered Treatments Optimization with Causal Inference on Response Distribution. , 2022, , .		0
1030	Approximating Nash equilibrium for anti-UAV jamming Markov game using a novel event-triggered multi-agent reinforcement learning. Neural Networks, 2023, 161, 330-342.	5.9	4
1031	High-accuracy model-based reinforcement learning, a survey. Artificial Intelligence Review, 2023, 56, 9541-9573.	15.7	6
1032	High-dynamic intelligent maneuvering guidance strategy via deep reinforcement learning. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 0, , 095441002311556.	1.3	0
1033	Uncertainty-aware transfer across tasks using hybrid model-based successor feature reinforcement learningâ~†. Neurocomputing, 2023, 530, 165-187.	5.9	0
1034	Autonomous Single-Molecule Manipulation Based on Reinforcement Learning. Journal of Physical Chemistry A, 2023, 127, 2041-2050.	2.5	4
1035	Certificates of quantum many-body properties assisted by machine learning. Physical Review Research, 2023, 5, .	3.6	0
1036	A deep semi-dense compression network for reinforcement learning based on information theory. Neurocomputing, 2023, 530, 81-90.	5.9	0
1037	BRCR: Multi-agent cooperative reinforcement learning with bidirectional real-time gain representation. Applied Intelligence, 0, , .	5.3	0
1038	Survey on Machine Learning for Traffic-Driven Service Provisioning in Optical Networks. IEEE Communications Surveys and Tutorials, 2023, 25, 1412-1443.	39.4	11
1039	FEMA-CL: Fair Efficient Multi-Agent Course learning. Journal of Physics: Conference Series, 2023, 2425, 012007.	0.4	0
1040	Applying physics-informed enhanced super-resolution generative adversarial networks to turbulent premixed combustion and engine-like flame kernel direct numerical simulation data. Proceedings of the Combustion Institute, 2023, 39, 5289-5298.	3.9	5
1041	Approaches That Use Domain-Specific Expertise: Behavioral-Cloning-Based Advantage Actor-Critic in Basketball Games. Mathematics, 2023, 11, 1110.	2.2	3
1043	FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment. Sensors, 2023, 23, 2494.	3.8	1
1045	DAGA: Dynamics Aware Reinforcement Learning With Graph-Based Rapid Adaptation. IEEE Robotics and Automation Letters, 2023, 8, 2189-2196.	5.1	0

#	Article	IF	CITATIONS
1046	A Generalized Stacked Reinforcement Learning Method for Sampled Systems. IEEE Transactions on Automatic Control, 2023, 68, 7006-7013.	5.7	2
1047	Machine Learning in Unmanned Systems for Chemical Synthesis. Molecules, 2023, 28, 2232.	3.8	2
1048	Model-Based Deep Learning. Proceedings of the IEEE, 2023, 111, 465-499.	21.3	34
1049	A Survey on the Control Lyapunov Function and Control Barrier Function for Nonlinear-Affine Control Systems. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 584-602.	13.1	6
1050	Reinforced MOOCs Concept Recommendation in Heterogeneous Information Networks. ACM Transactions on the Web, 2023, 17, 1-27.	2.5	2
1051	Inertia-Constrained Reinforcement Learning to Enhance Human Motor Control Modeling. Sensors, 2023, 23, 2698.	3.8	2
1052	Adversarial agent-learning for cybersecurity: a comparison of algorithms. Knowledge Engineering Review, 2023, 38, .	2.6	3
1053	Learning robotic manipulation skills with multiple semantic goals by conservative curiosity-motivated exploration. Frontiers in Neurorobotics, 0, 17, .	2.8	0
1054	Hic Sunt Dracones: Molecular Docking in Uncharted Territories with Structures from AlphaFold2 and RoseTTAfold. Journal of Chemical Information and Modeling, 2023, 63, 2218-2225.	5.4	6
1055	Deep Reinforcement Learning: A New Beacon for Intelligent Active Flow Control. , 0, 1, .		1
1056	State of the Art of Adaptive Dynamic Programming and Reinforcement Learning. , 2022, 1, 93-110.		2
1057	Multi-Spacecraft Fly-Around Control Method for Mixed Cooperative-Competitive Scenarios. , 2022, , .		0
1058	Development of a Cascade Intelligent System for Path Planning of the Group of Marine Robotic Complexes. Journal of Marine Science and Engineering, 2023, 11, 610.	2.6	0
1059	A combat game model with inter-network confrontation and intra-network cooperation. Chaos, 2023, 33, 033123.	2.5	1
1060	Prediction of Peak Pressure by Blast Wave Propagation Between Buildings Using a Conditional 3D Convolutional Neural Network. IEEE Access, 2023, 11, 26114-26124.	4.2	2
1061	An overview and a roadmap for artificial intelligence in hematology and oncology. Journal of Cancer Research and Clinical Oncology, 2023, 149, 7997-8006.	2.5	13
1062	Imitation Learning withÂSinkhorn Distances. Lecture Notes in Computer Science, 2023, , 116-131.	1.3	0
1063	Deep Reinforcement Learning-Based Air-to-Air Combat Maneuver Generation in a Realistic Environment. IEEE Access, 2023, 11, 26427-26440.	4.2	9

ARTICLE IF CITATIONS # A Game-Theoretic Approach toÂMulti-agent Trust Region Optimization. Lecture Notes in Computer 1064 1.3 0 Science, 2023, , 74-87. Research and applications of game intelligence. Scientia Sinica Informationis, 2023, 53, 1892. 1066 0.4 Scaling multi-agent reinforcement learning to full 11 versus 11 simulated robotic football. 1067 2.1 1 Autonomous Agents and Multi-Agent Systems, 2023, 37, . Runtime Assurance for Safety-Critical Systems: An Introduction to Safety Filtering Approaches for 1068 0.8 Complex Control Systems. IÉEE Control Systems, 2023, 43, 28-65. Time-aware deep reinforcement learning with multi-temporal abstraction. Applied Intelligence, 0, , . 1069 5.3 0 A two-stage RNN-based deep reinforcement learning approach for solving the parallel machine scheduling problem with due dates and family setups. Journal of Intelligent Manufacturing, 2024, 35, 7.3 1107-1140 A reinforcement learning-based strategy updating model for the cooperative evolution. Physica A: 1071 2.6 3 Statistical Mechanics and Its Applications, 2023, 618, 128699. MLPs: Efficient Training of MiniGo on Large-scale Heterogeneous Computing System., 2023, , . Mastering First-person Shooter Game with Imitation Learning., 2022, , . 0 1073 Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine. IEEE/CAA Journal of 1074 13.1 Automatica Sinica, 2023, 10, 859-876. Modeling Collective Behavior for Fish School With Deep Q-Networks. IEEE Access, 2023, 11, 36630-36641. 1075 4.2 0 Data Center HVAC Control Harnessing Flexibility Potential via Real-Time Pricing Cost Optimization 8.7 Using Reinforcement Learning. IEEE Internet of Things Journal, 2023, 10, 13876-13894. AO2DS: A Method of Auxiliary Operational Decision-making Based on System Dynamics Simulation., 1077 0 2023,,. When architecture meets AI: A deep reinforcement learning approach for system of systems design. 8.0 Advanced Engineering Informatics, 2023, 56, 101965. 1079 Evolving Neuromorphic Systems on the Ethereum Smart Contract Platform., 2022, , . 0 Modeling Interactions of Autonomous/Manual Vehicles and Pedestrians with a Multi-Agent Deep 3.2 Deterministic Policy Gradient. Sustainability, 2023, 15, 6156. Neural Symbolic AI For POMDP Games., 2022, , . 1081 1 Representational formats of human memory traces. Brain Structure and Function, 0, , . 2.3

		CITATION R	EPORT	
#	Article		IF	Citations
1084	Recent advances in reinforcement learning in finance. Mathematical Finance, 2023, 33	, 437-503.	1.8	19
1085	Al Super-Resolution-Based Subfilter Modeling for Finite-Rate-Chemistry Flows: A Jet Flo 0, , .	w Case Study. ,		1
1086	A Review of Deep Reinforcement Learning Methods and Military Application Research. Problems in Engineering, 2023, 2023, 1-16.	Mathematical	1.1	1
1087	Efficient Policy Generation inÂMulti-agent Systems viaÂHypergraph Neural Network. Le Computer Science, 2023, , 219-230.	ecture Notes in	1.3	1
1088	Multi-Agent Hyper-Attention Policy Optimization. Lecture Notes in Computer Science,	2023, , 76-87.	1.3	0
1089	An Intelligent Algorithm for USVs Collision Avoidance Based on Deep Reinforcement Le Approach with Navigation Characteristics. Journal of Marine Science and Engineering, 2	earning 2023, 11, 812.	2.6	3
1090	Asymmetric Self-Play-Enabled Intelligent Heterogeneous Multirobot Catching System L Multiagent Reinforcement Learning. IEEE Transactions on Robotics, 2023, 39, 2603-26	Jsing Deep 522.	10.3	2
1091	Efficient Double Oracle forÂExtensive-Form Two-Player Zero-Sum Games. Lecture Note Science, 2023, , 414-424.	s in Computer	1.3	0
1092	Deep Reinforcement Learning for Two-Player DouDizhu. , 2022, , .			0
1093	Knowledge Transfer fromÂSituation Evaluation toÂMulti-agent Reinforcement Learning Communications in Computer and Information Science, 2023, , 3-14.	g.	0.5	0
1094	Minimizing Energy Cost in PV Battery Storage Systems Using Reinforcement Learning. 11, 39855-39865.	IEEE Access, 2023,	4.2	2
1095	Exploring Policy Diversity in Parallel Actor-Critic Learning. , 2022, , .			0
1096	Turbulence control in plane Couette flow using low-dimensional neural ODE-based mo reinforcement learning. International Journal of Heat and Fluid Flow, 2023, 101, 10913	dels and deep 39.	2.4	5
1097	Sample Efficient Reinforcement Learning Using Graph-Based Memory Reconstruction. Transactions on Artificial Intelligence, 2024, 5, 751-762.	IEEE	4.7	0
1099	Computational Neuroscience Models of Working Memory. , 2023, , 611-663.			0
1100	The power of typed affine decision structures: a case study. International Journal on Sc for Technology Transfer, 0, , .	ftware Tools	1.9	3
1101	Towards rigorous understanding of neural networks via semantics-preserving transforr International Journal on Software Tools for Technology Transfer, 0, , .	nations.	1.9	4
1103	DRL-Based Joint Path Planning and Jamming Power Allocation Optimization for Suppre Radar System. IEEE Signal Processing Letters, 2023, 30, 548-552.	ssing Netted	3.6	3

		CITATION RE	PORT	
#	Article		IF	Citations
1104	Ensemble strategy learning for imperfect information games. Neurocomputing, 2023,	546, 126241.	5.9	0
1105	Research on Lightweight Algorithms for Deep Reinforcement Learning. Computer Scie Application, 2023, 13, 779-788.	nce and	0.1	0
1106	Decomposing shared networks for separate cooperation with multi-agent reinforceme Information Sciences, 2023, 641, 119085.	nt learning.	6.9	2
1107	Adversarial competition and collusion in algorithmic markets. Nature Machine Intellige 497-504.	nce, 2023, 5,	16.0	1
1108	Solving job shop scheduling problems via deep reinforcement learning. Applied Soft Co Journal, 2023, 143, 110436.	omputing	7.2	5
1109	A Reinforcement Learning Approach for Scheduling Problems with Improved Generaliz Order Swapping. Machine Learning and Knowledge Extraction, 2023, 5, 418-430.	ation through	5.0	2
1110	Self-Preserving Genetic Algorithms for Safe Learning in Discrete Action Spaces. , 2023	,,.		0
1111	A Hierarchical Deep Reinforcement Learning Framework for 6-DOF UCAV Air-to-Air Cor Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 5417-5429.	nbat. IEEE	9.3	6
1112	AlphaZeâ^—â^—: AlphaZero-like baselines for imperfect information games are surprisi in Artificial Intelligence, 0, 6, .	ngly strong. Frontiers	3.4	1
1113	Multi-Agent Reinforcement Learning-Based Decision Making for Twin-Vehicles Cooper Stochastic Dynamic Highway Environments. IEEE Transactions on Vehicular Technolog 12615-12627.		6.3	0
1114	On the Optimization Landscape of Dynamic Output Feedback Linear Quadratic Contro Transactions on Automatic Control, 2024, 69, 920-935.	ol. IEEE	5.7	1
1115	Collaborative museum heist with reinforcement learning. Computer Animation and Vir 2023, 34, .	tual Worlds,	1.2	0
1116	Provable distributed adaptive temporal-difference learning over time-varying networks Systems With Applications, 2023, 228, 120406.	. Expert	7.6	0
1117	Review of Deep Reinforcement Learning and Its Application in Modern Renewable Pow Control. Energies, 2023, 16, 4143.	ver System	3.1	2
1118	Reinforcement learning algorithms: A brief survey. Expert Systems With Applications, 2	2023, 231, 120495.	7.6	15
1119	Promoting human-Al interaction makes a better adoption of deep reinforcement learn application in game industry. Multimedia Tools and Applications, 2024, 83, 6161-6182		3.9	0
1120	Regularization ofÂtheÂPolicy Updates forÂStabilizing Mean Field Games. Lecture Note Science, 2023, , 361-372.	s in Computer	1.3	0
1121	Precise chirp control with model-based reinforcement learning for broadband frequence of LiDAR. Optics Express, 2023, 31, 20286.	:y-swept laser	3.4	1

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1122	The neuroconnectionist research programme. Nature Reviews Neuroscience, 2023, 24, 431-450.	10.2	30
1123	A Brief Review of Recent Hierarchical Reinforcement Learning for Robotic Manipulation. , 2022, , .		Ο
1124	SC-MAIRL: Semi-Centralized Multi-Agent Imitation Reinforcement Learning. IEEE Access, 2023, 11, 57965-57976.	4.2	0
1125	Reinforcement Learning in Few-Shot Scenarios: A Survey. Journal of Grid Computing, 2023, 21, .	3.9	0
1126	A brief analysis of ChatGPT:historical evolution, current applications,and future prospects. , 2023, 28, 893-902.		2
1127	Deep reinforcement learning for a multi-objective operation in a nuclear power plant. Nuclear Engineering and Technology, 2023, 55, 3277-3290.	2.3	3
1128	Artificial Intelligence Applications for Traumatic Brain Injury Research and Clinical Management. Contemporary Clinical Neuroscience, 2023, , 391-402.	0.3	0
1129	A Hierarchical Game-Theoretic Decision-Making for Cooperative Multiagent Systems Under the Presence of Adversarial Agents. , 2023, , .		0
1130	MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities. Applied Energy, 2023, 346, 121323.	10.1	8
1131	Real-time planning and collision avoidance control method based on deep reinforcement learning. Ocean Engineering, 2023, 281, 115018.	4.3	2
1132	Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target. Neural Networks, 2023, 165, 677-688.	5.9	1
1133	Stone masonry design automation via reinforcement learning. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2023, 37, .	1.1	0
1134	Artificial Intelligence and Automation. Springer Handbooks, 2023, , 205-231.	0.6	0
1135	Spatial–temporal recurrent reinforcement learning for autonomous ships. Neural Networks, 2023, 165, 634-653.	5.9	0
1136	Collaborative Control and E-work Automation. Springer Handbooks, 2023, , 405-432.	0.6	1
1137	RM-FSP: Regret minimization optimizes neural fictitious self-play. Neurocomputing, 2023, 549, 126471.	5.9	0
1138	Integrated Demand Response in Multi-Energy Microgrids: A Deep Reinforcement Learning-Based Approach. Energies, 2023, 16, 4769.	3.1	0
1139	Mystique: Enabling Accurate and Scalable Generation of Production Al Benchmarks. , 2023, , .		0

ARTICLE IF CITATIONS # DeepLS: Local Search for Network Optimization Based on Lightweight Deep Reinforcement Learning. 1140 4.9 0 IEEE Transactions on Network and Service Management, 2024, 21, 108-119. Survey of imitation learning: tradition and new advances., 2023, 28, 1585-1607. 1141 Hedging using reinforcement learning: Contextual k-armed bandit versus Q-learning. Journal of 1142 3.2 2 Finance and Data Science, 2023, 9, 100101. Deep ensemble learning of tactics to control the main force in a real-time strategy game. Multimedia 1143 3.9 Tools and Applications, 2024, 83, 12059-12087. Powered Landing Control of Reusable Rockets Based on Softmax Double DDPG. Aerospace, 2023, 10, 1144 2.2 0 590. Memory Unlocks the Future of Biomolecular Dynamics: Transformative Tools to Uncover Physical 13.7 Insights Accurately and Efficiently. Journal of the American Chemical Society, 2023, 145, 9916-9927. DESEM: Depthwise Separable Convolution-Based Multimodal Deep Learning for In-Game Action 1146 4.2 0 Anticipation. IEEE Access, 2023, 11, 46504-46512. A Brief Overview of ChatGPT: The History, Status Quo and Potential Future Development. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 1122-1136. 13.1 95 A novel policy based on action confidence limit to improve exploration efficiency in reinforcement 1148 6.9 7 learning. Information Sciences, 2023, 640, 119011. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the 1149 task space. Neural Networks, 2023, 164, 419-427 Promoting Cooperation in Multi-Agent Reinforcement Learning via Mutual Help., 2023, , . 1150 0 A Survey on Population-Based Deep Reinforcement Learning. Mathematics, 2023, 11, 2234. 2.2 MixCode: Enhancing Code Classification by Mixup-Based Data Augmentation., 2023,,. 1152 6 SpaceGym: Discrete and Differential Games in Non-Cooperative Space Operations., 2023, , . Policy Evaluation in Decentralized POMDPs With Belief Sharing., 2023, 2, 125-145. 1155 0 Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1.8 2023, 7, 1-60. Algorithms to estimate Shapley value feature attributions. Nature Machine Intelligence, 2023, 5, 1157 16.0 23 590-601. Evolving population method for real-time reinforcement learning. Expert Systems With Applications, 2023, 229, 120493.

0			-	
(17	ΔΤΙ	ON	REE	PORT
\sim				

#	Article	IF	CITATIONS
1159	Performance comparison of reinforcement learning and metaheuristics for factory layout planning. CIRP Journal of Manufacturing Science and Technology, 2023, 45, 10-25.	4.5	4
1160	Multi-UAV Cooperative Air Combat Decision-Making Based on Multi-Agent Double-Soft Actor-Critic. Aerospace, 2023, 10, 574.	2.2	2
1161	Multi-objective ω-Regular Reinforcement Learning. Formal Aspects of Computing, 2023, 35, 1-24.	1.8	1
1162	Map-based experience replay: a memory-efficient solution to catastrophic forgetting in reinforcement learning. Frontiers in Neurorobotics, 0, 17, .	2.8	0
1163	Reinforcement Learning Applied to Al Bots in First-Person Shooters: A Systematic Review. Algorithms, 2023, 16, 323.	2.1	2
1164	Effective control of two-dimensional Rayleigh–Bénard convection: Invariant multi-agent reinforcement learning is all you need. Physics of Fluids, 2023, 35, .	4.0	5
1165	Multi-Agent Cooperative Attacker-Defender-Target Task Decision Based on PF-MADDPG. , 2023, , .		0
1166	Robust nonlinear set-point control with reinforcement learning. , 2023, , .		0
1167	Enhanced deep soft interference cancellation for multiuser symbol detection. ETRI Journal, 2023, 45, 929-938.	2.0	0
1168	Real World Offline Reinforcement Learning with Realistic Data Source. , 2023, , .		1
1169	Stackelberg Games for Learning Emergent Behaviors During Competitive Autocurricula. , 2023, , .		0
1170	Meta-Reinforcement Learning via Language Instructions. , 2023, , .		1
1171	Off-policy Imitation Learning from Visual Inputs. , 2023, , .		1
1172	Humans perceive warmth and competence in artificial intelligence. IScience, 2023, 26, 107256.	4.1	5
1173	Policy generation network for zeroâ \in shot policy learning. Computational Intelligence, 0, , .	3.2	0
1174	Multi-agent air combat with two-stage graph-attention communication. Neural Computing and Applications, 2023, 35, 19765-19781.	5.6	1
1175	Deep reinforcement learning for key distribution based on quantum repeaters. Physical Review A, 2023, 108, .	2.5	1
1176	Mixture of personality improved spiking actor network for efficient multi-agent cooperation. Frontiers in Neuroscience, 0, 17, .	2.8	0

# 1177	ARTICLE Integrating short-term stochastic production planning updating with mining fleet management in industrial mining complexes: an actor-critic reinforcement learning approach. Applied Intelligence, 2023, 53, 23179-23202.	IF 5.3	Citations 2
1178	Catch Planner: Catching High-Speed Targets in the Flight. IEEE/ASME Transactions on Mechatronics, 2023, 28, 2387-2398.	5.8	2
1180	Multi-agent Proximal Policy Optimization via Non-fixed Value Clipping. , 2023, , .		0
1181	Visual Summarisations forÂComputer-Assisted Live Color Casting andÂDirection inÂLeague ofÂLegends. Lecture Notes in Computer Science, 2023, , 133-153.	1.3	0
1182	Double DQN-based Power System Transient Stability Emergency Control with Protection Coordinations. , 2023, , .		0
1183	An Empirical Study on Quality Issues of Deep Learning Platform. , 2023, , .		0
1184	Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces. Foundations of Computational Mathematics, 0, , .	2.5	1
1185	MAP-Elites with Descriptor-Conditioned Gradients and Archive Distillation into a Single Policy. , 2023,		0
1186	DSMC Evaluation Stages: Fostering Robust and Safe Behavior in Deep Reinforcement Learning – Extended Version. ACM Transactions on Modeling and Computer Simulation, 2023, 33, 1-28.	0.8	1
1187	Understanding the Synergies between Quality-Diversity and Deep Reinforcement Learning. , 2023, , .		0
1188	Prediction error in dopamine neurons during associative learning. Neuroscience Research, 2024, 199, 12-20.	1.9	0
1189	Improving artificial intelligence with games. Science, 2023, 381, 147-148.	12.6	0
1190	Deep Reinforcement Learning-Based Holding Control for Bus Bunching under Stochastic Travel Time and Demand. Sustainability, 2023, 15, 10947.	3.2	1
1191	TSGS: Two-stage security game solution based on deep reinforcement learning for Internet of Things. Expert Systems With Applications, 2023, 234, 120965.	7.6	1
1192	Forecasting Transitions in Digital Society: From Social Norms to Al Applications. , 0, , .		0
1193	Aries: Efficient Testing of Deep Neural Networks via Labeling-Free Accuracy Estimation. , 2023, , .		3
1194	Refining esports: A quantitative cartography of esports literature. Entertainment Computing, 2023, 47, 100597.	2.9	4
1195	Value Functions Factorization With Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7, 1351-1361.	4.9	2

#	Article	IF	CITATIONS
1196	Reinforcement learning for swarm robotics: An overview of applications, algorithms and simulators. Cognitive Robotics, 2023, 3, 226-256.	5.4	1
1197	Toward Better Digital Advertising: The Role of the Anthropomorphic Virtual Agent. Journal of Current Issues and Research in Advertising, 2023, 44, 295-331.	4.3	2
1198	Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph Attention Network for UAV Swarms. Drones, 2023, 7, 476.	4.9	2
1199	Generative Adversarial Neuroevolution for Control Behaviour Imitation. , 2023, , .		0
1200	Representation ofÂObservations inÂReinforcement Learning forÂPlaying Arcade Fighting Game. Lecture Notes in Networks and Systems, 2023, , 45-55.	0.7	0
1201	Generating synthetic multidimensional molecular time series data for machine learning: considerations. Frontiers in Systems Biology, 0, 3, .	0.7	3
1202	Stock Trading Strategy Developing Based on Reinforcement Learning. , 2023, , 156-164.		0
1203	Behavioural Cloning for Serious Games in Support of Pediatric Neurorehabilitation. , 2023, , .		0
1204	An Extensible, Data-Oriented Architecture for High-Performance, Many-World Simulation. ACM Transactions on Graphics, 2023, 42, 1-13.	7.2	1
1205	Cooperative Reinforcement Learning-based Damping of Lane-Change-Induced Waves. , 2023, , .		0
1206	The Art of Losing to Win: Using Lossy Image Compression to Improve Data Loading in Deep Learning Pipelines. , 2023, , .		0
1207	Optimal Strategy Selection for Cyber Deception via Deep Reinforcement Learning. , 2022, , .		0
1208	High-throughput Sampling, Communicating and Training for Reinforcement Learning Systems. , 2023, , .		0
1209	Centralised Vehicle Routing for Optimising Urban Traffic: A Scalability Perspective. , 2023, , .		1
1210	Grasping Unstructured Objects with Full Convolutional Network in Clutter. Electronics (Switzerland), 2023, 12, 3100.	3.1	0
1211	Multi-Agent Reinforcement Learning With Policy Clipping and Average Evaluation for UAV-Assisted Communication Markov Game. IEEE Transactions on Intelligent Transportation Systems, 2023, 24, 14281-14293.	8.0	2
1212	Stable Control Policy and Transferable Reward Function via Inverse Reinforcement Learning. , 2023, , .		0
1214	A Deep Reinforcement Learning-based Routing Algorithm for Unknown Erroneous Cells in DMFBs. , 2023, , .		1

#	Article	IF	CITATIONS
1215	Ask-AC: An Initiative Advisor-in-the-Loop Actor–Critic Framework. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 7403-7414.	9.3	1
1216	When Do Humans Heed AI Agentsâ \in $^{\mathrm{M}}$ Advice? When Should They?. Human Factors, 0, , .	3.5	1
1217	Semantic Communication for Partial Observation Multi-agent Reinforcement Learning. , 2023, , .		0
1218	Innovation design oriented functional knowledge integration framework based on reinforcement learning. Advanced Engineering Informatics, 2023, 58, 102122.	8.0	0
1219	Evaluation and learning in two-player symmetric games via best and better responses. Information Sciences, 2023, 647, 119459.	6.9	0
1220	Routing optimization with Monte Carlo Tree Search-based multi-agent reinforcement learning. Applied Intelligence, 2023, 53, 25881-25896.	5.3	2
1221	Recent Applications and Future Research. , 2023, , 79-85.		0
1222	Automated gadget discovery in the quantum domain. Machine Learning: Science and Technology, 0, , .	5.0	0
1223	Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning. Journal of the Korea Institute of Military Science and Technology, 2023, 26, 361-370.	0.2	0
1224	A Systematic Collection of Medical Image Datasets for Deep Learning. ACM Computing Surveys, 2024, 56, 1-51.	23.0	1
1225	Progressive decision-making framework for power system topology control. Expert Systems With Applications, 2024, 235, 121070.	7.6	0
1226	Optimized Feature Extraction for Sample Efficient Deep Reinforcement Learning. Electronics (Switzerland), 2023, 12, 3508.	3.1	0
1227	An Actor-Critic Framework for Online Control With Environment Stability Guarantee. IEEE Access, 2023, 11, 89188-89204.	4.2	0
1228	A reinforcement learning-based transformed inverse model strategy for nonlinear process control. Computers and Chemical Engineering, 2023, 178, 108386.	3.8	0
1229	A multilayered bidirectional associative memory model for learning nonlinear tasks. Neural Networks, 2023, 167, 244-265.	5.9	1
1230	Simultaneous shovel allocation and grade control decisions for short-term production planning of industrial mining complexes – an actor-critic approach. International Journal of Mining, Reclamation and Environment, 0, , 1-26.	2.8	0
1231	Decentralized Decision Making over Random Graphs*. , 2023, , .		0
1232	A Phaseâ€Change Memristive Reinforcement Learning for Rapidly Outperforming Champion Streetâ€Fighter Players. Advanced Intelligent Systems, 2023, 5, .	6.1	2

#	Article	IF	CITATIONS
1233	Action Encoding inÂAlgorithms forÂLearning Controllable Environment. Studies in Computational Intelligence, 2023, , 271-287.	0.9	0
1234	Predicting Frags in Tactic Games using Machine Learning Techniques and Intuitive Knowledge. , 2023, , .		0
1235	Do Artificial Agents Reproduce Human Strategies in the Advisers' Game?. , 2023, , 603-609.		0
1236	Champion-level drone racing using deep reinforcement learning. Nature, 2023, 620, 982-987.	27.8	24
1237	Model-Based Reinforcement Learning using Model Mediator in Dynamic Multi-Agent Environment. Transactions of the Japanese Society for Artificial Intelligence, 2023, 38, A-MB1_1-14.	0.1	0
1238	Multi-Agent Deep Reinforcement Learning for Distributed Load Restoration. IEEE Transactions on Smart Grid, 2024, 15, 1749-1760.	9.0	1
1239	Machine learning for quantum-enhanced gravitational-wave observatories. Physical Review D, 2023, 108, .	4.7	1
1240	Hyperparameter Selection in Reinforcement Learning Using the "Design of Experiments―Method. Procedia Computer Science, 2023, 222, 11-24.	2.0	0
1241	Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning. , 2023, 2, .		2
1242	Simulating all archetypes of SQL injection vulnerability exploitation using reinforcement learning agents. International Journal of Information Security, 0, , .	3.4	0
1243	The transformative potential of machine learning for experiments in fluid mechanics. Nature Reviews Physics, 2023, 5, 536-545.	26.6	7
1244	Training Spiking Neural Networks Using Lessons From Deep Learning. Proceedings of the IEEE, 2023, 111, 1016-1054.	21.3	40
1245	SC2EGSet: StarCraft II Esport Replay and Game-state Dataset. Scientific Data, 2023, 10, .	5.3	1
1246	Organic Resistive Memories for Neuromorphic Electronics. , 2023, , 60-120.		0
1248	Toward personalized decision making for autonomous vehicles: A constrained multi-objective reinforcement learning technique. Transportation Research Part C: Emerging Technologies, 2023, 156, 104352.	7.6	2
1249	Reaching the limit in autonomous racing: Optimal control versus reinforcement learning. Science Robotics, 2023, 8, .	17.6	7
1250	A 3D/2D Coronary Artery Registration Method Based on Deep Reinforcement Learning. , 2023, , .		0
1251	Learning Superior Cooperative Policy in Adversarial Multi-Team Reinforcement Learning. , 2023, , .		Ο

#	Article	IF	CITATIONS
1252	SEA: A Spatially Explicit Architecture for Multi-Agent Reinforcement Learning. , 2023, , .		0
1253	Causal Mean Field Multi-Agent Reinforcement Learning. , 2023, , .		0
1254	Mnemonic Dictionary Learning for Intrinsic Motivation in Reinforcement Learning. , 2023, , .		0
1255	NeuronsMAE: A Novel Multi-Agent Reinforcement Learning Environment for Cooperative and Competitive Multi-Robot Tasks. , 2023, , .		1
1256	Variational Skill Embeddings for Meta Reinforcement Learning. , 2023, , .		1
1257	Large sequence models for sequential decision-making: a survey. Frontiers of Computer Science, 2023, 17, .	2.4	3
1258	Ablation Study of How Run Time Assurance Impacts the Training and Performance of Reinforcement Learning Agents. , 2023, , .		1
1259	Multi-actor mechanism for actor-critic reinforcement learning. Information Sciences, 2023, 647, 119494.	6.9	1
1260	Classifying ambiguous identities in hidden-role Stochastic games with multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems, 2023, 37, .	2.1	0
1261	Deep Reinforcement Learning Processor Design for Mobile Applications. , 2023, , 1-93.		0
1262	RARSMSDou: Master the Game of DouDiZhu With Deep Reinforcement Learning Algorithms. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8, 427-439.	4.9	0
1263	Standing Still Is Not anÂOption: Alternative Baselines forÂAttainable Utility Preservation. Lecture Notes in Computer Science, 2023, , 239-257.	1.3	0
1264	Maneuver Decision-Making through Automatic Curriculum Reinforcement Learning without Handcrafted Reward Functions. Applied Sciences (Switzerland), 2023, 13, 9421.	2.5	0
1265	LJIR: Learning Joint-Action Intrinsic Reward in cooperative multi-agent reinforcement learning. Neural Networks, 2023, 167, 450-459.	5.9	0
1266	Cooperative Carrier Aircraft Support Operation Scheduling via Multi-Agent Reinforcement Learning. , 2023, , .		0
1267	Frustratingly Easy Regularization on Representation Can Boost Deep Reinforcement Learning. , 2023, , .		1
1268	DADE-DQN: Dual Action and Dual Environment Deep Q-Network for Enhancing Stock Trading Strategy. Mathematics, 2023, 11, 3626.	2.2	0
1269	Open-World Multi-Task Control Through Goal-Aware Representation Learning and Adaptive Horizon Prediction. , 2023, , .		1

#	Article	IF	CITATIONS
1270	StarCraft adversary-agent challenge for pursuit–evasion game. Journal of the Franklin Institute, 2023, 360, 10893-10916.	3.4	1
1271	Minimizing Computational Overhead while Retaining Gameplay Effectiveness in Starcraft Bots. , 2022, ,		0
1272	Predictive reinforcement learning: map-less navigation method for mobile robot. Journal of Intelligent Manufacturing, 0, , .	7.3	0
1273	The Coming of Age of Al/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Design, Development and Therapy, 0, Volume 17, 2691-2725.	4.3	4
1274	Context-Aware Meta-RL With Two-Stage Constrained Adaptation for Urban Driving. IEEE Transactions on Vehicular Technology, 2024, 73, 1567-1581.	6.3	0
1275	Mastering air combat game with deep reinforcement learning. Defence Technology, 2023, , .	4.2	0
1276	A novel intelligent collision avoidance algorithm based on deep reinforcement learning approach for USV. Ocean Engineering, 2023, 287, 115649.	4.3	2
1277	GTLMA: Generalizable Hierarchical Learning for Tasks with Variable Entities. , 2023, , .		0
1278	Dynamic sparse coding-based value estimation network for deep reinforcement learning. Neural Networks, 2023, 168, 180-193.	5.9	0
1279	Research on Efficient Multiagent Reinforcement Learning for Multiple UAVs' Distributed Jamming Strategy. Electronics (Switzerland), 2023, 12, 3874.	3.1	0
1281	Transfer Learning andÂEnsemble Learning. Texts in Computer Science, 2023, , 191-203.	0.7	0
1284	Eigensubspace ofÂTemporal-Difference Dynamics andÂHow It Improves Value Approximation inÂReinforcement Learning. Lecture Notes in Computer Science, 2023, , 573-589.	1.3	0
1285	Offline Reinforcement Learning withÂOn-Policy Q-Function Regularization. Lecture Notes in Computer Science, 2023, , 455-471.	1.3	0
1286	Multi-Agent Cooperation Decision-Making by Reinforcement Learning with Encirclement Rewards. , 2023, , .		0
1287	Learning Diverse Control Strategies for Simulated Humanoid Combat via Motion Imitation and Multi-Agent Self-Play. , 2023, , .		0
1288	Enhanced Multi-Agent Proximal Policy Optimization for Multi-UAV Target Offensive-Defensive Decision. , 2023, , .		0
1289	Taking Myopic Best Response Against The Hedge Algorithm. , 2023, , .		0
1290	Arelative position descriptor for multi-agent reinforcement learning. , 2023, , .		0

#	Article	IF	CITATIONS
1291	A Pursuit-Evasion Game on a Real-City Virtual Simulation Platform Based on Multi-Agent Reinforcement Learning. , 2023, , .		0
1292	Efficacy of transformer networks for classification of EEG data. Biomedical Signal Processing and Control, 2024, 87, 105488.	5.7	1
1293	Planning Maneuvers forÂAutonomous Driving Based onÂOffline Reinforcement Learning: Comparative Study. Lecture Notes in Networks and Systems, 2023, , 65-74.	0.7	0
1294	Mastering Cooperative Driving Strategy in Complex Scenarios using Multi-Agent Reinforcement Learning. , 2023, , .		0
1295	Diffusion Policies asÂMulti-Agent Reinforcement Learning Strategies. Lecture Notes in Computer Science, 2023, , 356-364.	1.3	0
1296	Improving Generalization ofÂMulti-agent Reinforcement Learning Through Domain-Invariant Feature Extraction. Lecture Notes in Computer Science, 2023, , 49-62.	1.3	0
1297	A Deep Reinforcement Learning Framework for Eco-Driving in Connected and Automated Hybrid Electric Vehicles. IEEE Transactions on Vehicular Technology, 2024, 73, 1713-1725.	6.3	4
1298	Safe Exploration Reinforcement Learning for Load Restoration using Invalid Action Masking. , 2023, , .		0
1299	Deep Learning in Maritime Autonomous Surface Ships: Current Development and Challenges. Journal of Marine Science and Application, 2023, 22, 584-601.	1.7	0
1300	Study on the Clider Soaring Strategy in Random Location Thermal Updraft via Reinforcement Learning. Aerospace, 2023, 10, 834.	2.2	1
1301	Toward Artificial General Intelligence: Deep Reinforcement Learning Method to AI in Medicine. Journal of Computer and Communications, 2023, 11, 84-120.	0.9	0
1302	Model-Based Reinforcement Learning for Robotic Arm Control with Limited Environment Interaction. , 2023, , .		0
1303	Revisiting the Performance-Explainability Trade-Off in Explainable Artificial Intelligence (XAI). , 2023, , .		2
1304	A Hybrid Online Off-Policy Reinforcement Learning Agent Framework Supported by Transformers. International Journal of Neural Systems, 2023, 33, .	5.2	1
1306	Interaction state Q-learning promotes cooperation in the spatial prisoner's dilemma game. Applied Mathematics and Computation, 2024, 463, 128364.	2.2	3
1307	Fear-Neuro-Inspired Reinforcement Learning for Safe Autonomous Driving. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46, 267-279.	13.9	5
1308	Artificial Intelligence Techniques for the effective diagnosis of Alzheimer's Disease: A Review. Multimedia Tools and Applications, 0, , .	3.9	0
1309	Multi-agent graph reinforcement learning for decentralized Volt-VAR control in power distribution systems. International Journal of Electrical Power and Energy Systems, 2024, 155, 109531.	5.5	1

#	Article	IF	CITATIONS
1310	Optimization of job shop scheduling problem based on deep reinforcement learning. Evolutionary Intelligence, 2024, 17, 371-383.	3.6	0
1311	A Reinforcement Learning Method of Solving Markov Decision Processes: An Adaptive Exploration Model Based on Temporal Difference Error. Electronics (Switzerland), 2023, 12, 4176.	3.1	1
1312	Security defense strategy algorithm for Internet of Things based on deep reinforcement learning. High-Confidence Computing, 2023, , 100167.	3.7	0
1313	Evaluation of the Hierarchical Correspondence between the Human Brain and Artificial Neural Networks: A Review. Biology, 2023, 12, 1330.	2.8	1
1314	Fair collaborative vehicle routing: A deep multi-agent reinforcement learning approach. Transportation Research Part C: Emerging Technologies, 2023, 157, 104376.	7.6	0
1315	Joint Recurrent Actor-Critic Model for Partially Observable Control. , 2023, , .		0
1316	Monte Carlo and Temporal Difference Methods in Reinforcement Learning [AI-eXplained]. IEEE Computational Intelligence Magazine, 2023, 18, 64-65.	3.2	0
1317	Conservative network for offline reinforcement learning. Knowledge-Based Systems, 2023, , 111101.	7.1	1
1318	Generative Agents: Interactive Simulacra of Human Behavior. , 2023, , .		31
1319	An Autonomous Player Agent for Game Balance Insight on an Educational Video Game. , 2023, , .		0
1320	A Review on Intelligent Control Theory and Applications in Process Optimization and Smart Manufacturing. Processes, 2023, 11, 3171.	2.8	0
1321	A Deep Reinforcement Learning Approach to Droplet Routing for Erroneous Digital Microfluidic Biochips. Sensors, 2023, 23, 8924.	3.8	1
1322	Credit assignment in heterogeneous multi-agent reinforcement learning for fully cooperative tasks. Applied Intelligence, 2023, 53, 29205-29222.	5.3	1
1323	A social path to human-like artificial intelligence. Nature Machine Intelligence, 2023, 5, 1181-1188.	16.0	1
1324	Advances of machine learning in materials science: Ideas and techniques. Frontiers of Physics, 2024, 19,	5.0	0
1325	Parameter Identification forÂFictitious Play Algorithm inÂRepeated Games. Communications in Computer and Information Science, 2024, , 270-282.	0.5	0
1326	Statistical Learning Theory for Control: A Finite-Sample Perspective. IEEE Control Systems, 2023, 43, 67-97.	0.8	6
1327	Fuzzing with Sequence Diversity Inference for Sequential Decision-making Model Testing. , 2023, , .		Ο

~			-	
	ΙΤΔΤ	10N	Repo	DL.
<u> </u>	/			IX I

#	Article	IF	CITATIONS
1328	Can Deep Reinforcement Learning Solve the Portfolio Allocation Problem? (PhD Manuscript). SSRN Electronic Journal, 0, , .	0.4	0
1329	What is esports? A systematic scoping review and concept analysis of esports. Heliyon, 2023, 9, e23248.	3.2	0
1330	A new age in protein design empowered by deep learning. Cell Systems, 2023, 14, 925-939.	6.2	6
1331	Reinforcement learning approach for optimal control of ice-based thermal energy storage (TES) systems in commercial buildings. Energy and Buildings, 2023, 301, 113696.	6.7	2
1332	Human or Al? The brain knows it! A brain-based Turing Test to discriminate between human and artificial agents , 2023, , .		0
1333	Designing human-Al systems for complex settings: ideas from distributed, joint, and self-organising perspectives of sociotechnical systems and cognitive work analysis. Ergonomics, 2023, 66, 1669-1694.	2.1	1
1334	Research onÂStrategies forÂTripeaks Variant withÂVarious Layouts. Lecture Notes in Computer Science, 2023, , 84-98.	1.3	0
1335	Ensemble reinforcement learning: A survey. Applied Soft Computing Journal, 2023, 149, 110975.	7.2	1
1336	lxDRL: A Novel Explainable Deep Reinforcement Learning Toolkit Based onÂAnalyses ofÂInterestingness. Communications in Computer and Information Science, 2023, , 373-396.	0.5	1
1337	Personalized federated reinforcement learning: Balancing personalization and experience sharing via distance constraint. Expert Systems With Applications, 2024, 238, 122290.	7.6	0
1338	Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach. Technological Forecasting and Social Change, 2024, 198, 122944.	11.6	1
1339	Heterogeneous Multi-Agent Reinforcement Learning for Grid-Interactive Communities. , 2023, , .		0
1340	LSTM-DPPO based deep reinforcement learning controller for path following optimization of unmanned surface vehicle. Journal of Systems Engineering and Electronics, 2023, 34, 1343-1358.	2.2	0
1341	Leveraging Reward Consistency for Interpretable Feature Discovery in Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, , 1-12.	9.3	0
1342	Models of Battle Dynamics in Strategic Computer Games. , 2023, , .		0
1343	Intelligent Modes of Maritime Rights Safeguard Operations and Key Technology. , 2023, , .		0
1344	Towards Safe Autonomous Driving: Decision Making with Observation-Robust Reinforcement Learning. Automotive Innovation, 2023, 6, 509-520.	5.1	0
1345	GVFs in the real world: making predictions online for water treatment. Machine Learning, 0, , .	5.4	0

ARTICLE IF CITATIONS CARL: A Synergistic Framework for Causal Reinforcement Learning. IEEE Access, 2023, 11, 126462-126481. 0 1346 4.2 Towards a Standardized Reinforcement Learning Framework for AAM Contingency Management., 2023, 1347 Mastering Complex Coordination Through Attention-Based Dynamic Graph. Lecture Notes in Computer 1348 0 1.3 Science, 2024, , 305-318. SORA: Improving Multi-agent Cooperation withÂaÂSoft Role Assignment Mechanism. Lecture Notes in 1349 Computer Science, 2024, , 319-331. Learning Adaptable Risk-Sensitive Policies toÂCoordinate inÂMulti-agent General-Sum Games. Lecture 1350 1.30 Notes in Computer Science, 2024, , 27-40. A Reinforcement Learning Method forÂGenerating Class Integration Test Orders Considering Dynamic Couplings. Lecture Notes in Computer Science, 2024, , 95-107. 1.3 Runtime Verification of Learning Properties for Reinforcement Learning Algorithms. Electronic 1352 0.8 0 Proceedings in Theoretical Computer Science, EPTCS, 0, 395, 205-219. Learning One Abstract Bit atÂaÂTime Through Self-invented Experiments Encoded asÂNeural Networks. 0.5 Communications in Computer and Information Science, 2024, 254-274. Student of Games: A unified learning algorithm for both perfect and imperfect information games. 1354 10.3 0 Science Advances, 2023, 9, . Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks. Renewable Energy, 2024, 220, 119565. V-Learningâ€"A Simple, Efficient, Decentralized Algorithm for Multiagent Reinforcement Learning. 1357 0 1.3 Mathematics of Operations Research, 0, , . SaLSa: A Combinatory Approach of Semi-Automatic Labeling and Long Short-Term Memory to Classify Behavioral Syllables. ÉNeuro, 2023, 10, ENEURO.0201-23.2023. Learning Heterogeneous Agent Cooperation via Multiagent League Training. IFAC-PapersOnLine, 2023, 1359 0.9 1 56, 3033-3040. Dynamic Adaptation Using Deep Reinforcement Learning for Digital Microfluidic Biochips. ACM 1360 2.6 Transactions on Design Automation of Electronic Systems, 0, , . Data-Efficient Reinforcement Learning with Data Augmented Episodic Memory. Procedia Computer 1361 2.0 0 Science, 2023, 227, 1120-1126. End-to-End Urban Autonomous Navigation withÂDecision Hindsight. Communications in Computer and Information Science, 2024, , 67-83. Toward Trustworthy Decision-Making for Autonomous Vehicles: A Robust Reinforcement Learning 1363 6.7 1 Approach with Safety Guarantees. Engineering, 2023, , . Container port truck dispatching optimization using Real2Sim based deep reinforcement learning. European Journal of Operational Research, 2024, 315, 161-175. 1364

	СПАПОМ	IKEPORT	
#	Article	IF	CITATIONS
1365	Learning few-shot imitation as cultural transmission. Nature Communications, 2023, 14, .	12.8	0
1366	Progress and summary of reinforcement learning on energy management of MPS-EV. Heliyon, 2024, 10, e23014.	3.2	0
1367	Explainable reinforcement learning (XRL): a systematic literature review and taxonomy. Machine Learning, 0, , .	5.4	0
1368	Subsecond fluctuations in extracellular dopamine encode reward and punishment prediction errors in humans. Science Advances, 2023, 9, .	10.3	3
1369	Continuous Episodic Control. , 2023, , .		0
1370	Complete DouDizhu Agents: Bid Learning from Pretrained Cardplay. , 2023, , .		0
1371	Mastering Strategy Card Game (Hearthstone) with Improved Techniques. , 2023, , .		1
1372	Mastering Curling with RL-revised Decision Tree. , 2023, , .		0
1373	Deep learning applications in games: a survey from a data perspective. Applied Intelligence, 0, , .	5.3	0
1374	DanZero: Mastering GuanDan Game with Reinforcement Learning. , 2023, , .		0
1375	Generating Personas for Games with Multimodal Adversarial Imitation Learning. , 2023, , .		0
1376	Balancing of competitive two-player Game Levels with Reinforcement Learning. , 2023, , .		0
1377	Self-Attention for Visual Reinforcement Learning. , 2023, , .		0
1378	Predicting Chess Player Rating Based on a Single Game. , 2023, , .		0
1379	Neural Categorical Priors for Physics-Based Character Control. ACM Transactions on Graphics, 2023, 42, 1-16.	7.2	0
1380	Towards More Human-like Al Communication: A Review of Emergent Communication Research. IEEE Access, 2023, , 1-1.	4.2	0
1381	Deep Reinforcement Learning for Distribution Power System Cyber-Resilience via Distributed Energy Resource Control. , 2023, , .		0
1382	基于ä,"å®¶ç‱•™èšç±»ç»éªŒæ±çš"é«~æ•^敱度强åŒ−å¦ä¹. Frontiers of Information Technology and El	ectronാമ്ക്Engi	ne e ring, 202

~			<u> </u>	
CĽ	ΓΑΤΙ	ION.	REPC	DRT

#	Article	IF	CITATIONS
1383	IOB: integrating optimization transfer and behavior transfer for multi-policy reuse. Autonomous Agents and Multi-Agent Systems, 2024, 38, .	2.1	0
1384	Algorithmic Innovations in Multi-Agent Reinforcement Learning: A Pathway for Smart Cities. Artificial Intelligence, 0, , .	2.3	0
1385	Management of investment portfolios employing reinforcement learning. PeerJ Computer Science, 0, 9, e1695.	4.5	0
1386	UnifiedGesture: A Unified Gesture Synthesis Model for Multiple Skeletons. , 2023, , .		0
1387	Improved 1vs1 Air Combat Model With Self-Play Soft Actor-Critic and Sparse Rewards. , 2023, , .		0
1388	Offensive and Defensive Attention Reward in Reinforcement Learning for Football Game. , 2023, , .		0
1389	Pareto Deterministic Policy Gradients and Its Application in 6G Networks. Signals and Communication Technology, 2024, , 585-610.	0.5	0
1390	Differential Safety Testing of Deep RL Agents Enabled by Automata Learning. Lecture Notes in Computer Science, 2024, , 138-159.	1.3	0
1391	Hierarchical Imitation Learning for Stochastic Environments. , 2023, , .		0
1392	Accelerating Reinforcement Learning for Autonomous Driving Using Task-Agnostic and Ego-Centric Motion Skills. , 2023, , .		0
1393	Image-based Regularization for Action Smoothness in Autonomous Miniature Racing Car with Deep Reinforcement Learning. , 2023, , .		0
1394	A Multiplicative Value Function for Safe and Efficient Reinforcement Learning. , 2023, , .		0
1395	Improving the Performance of Backward Chained Behavior Trees that use Reinforcement Learning. , 2023, , .		0
1396	Cheat-FlipIt: An Approach toÂModeling andÂPerception ofÂaÂDeceptive Opponent. Lecture Notes in Computer Science, 2024, , 368-384.	1.3	0
1397	Die Computerspielbranche als Innovationstreiber f $ ilde{A}^1$ /4r technologische und gesellschaftliche Entwicklungen. , 2023, , 163-191.		0
1398	Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 2024, 192, 114248.	16.4	1
1399	Uncertainty in Bayesian Reinforcement Learning for Robot Manipulation Tasks with Sparse Rewards. , 2023, , .		0
1400	Selective Freezing for Efficient Continual Learning. , 2023, , .		0

#	Article	IF	CITATIONS
1401	Memory Population in Continual Learning via Outlier Elimination. , 2023, , .		0
1402	An obstacle avoidance-specific reinforcement learning method based on fuzzy attention mechanism and heterogeneous graph neural networks. Engineering Applications of Artificial Intelligence, 2024, 130, 107764.	8.1	0
1403	Resource allocation in <scp>5G cloudâ€RAN</scp> using deep reinforcement learning algorithms: A review. Transactions on Emerging Telecommunications Technologies, 2024, 35, .	3.9	0
1404	A survey on algorithms for Nash equilibria in finite normal-form games. Computer Science Review, 2024, 51, 100613.	15.3	0
1405	Deep reinforcement learning-based air combat maneuver decision-making: literature review, implementation tutorial and future direction. Artificial Intelligence Review, 2024, 57, .	15.7	2
1406	Overview on reinforcement learning of multi-agent game. Journal of Physics: Conference Series, 2023, 2646, 012021.	0.4	0
1407	Solving flexible job shop scheduling problems via deep reinforcement learning. Expert Systems With Applications, 2024, 245, 123019.	7.6	0
1408	H3E: Learning air combat with a three-level hierarchical framework embedding expert knowledge. Expert Systems With Applications, 2024, 245, 123084.	7.6	1
1409	Demonstration-guided deep reinforcement learning for coordinated ramp metering and perimeter control in large scale networks. Transportation Research Part C: Emerging Technologies, 2024, 159, 104461.	7.6	0
1410	Deep learning in computational mechanics: a review. Computational Mechanics, 0, , .	4.0	0
1411	Mosaic: in-memory computing and routing for small-world spike-based neuromorphic systems. Nature Communications, 2024, 15, .	12.8	1
1412	Magnetic Field-Based Reward Shaping for Goal-Conditioned Reinforcement Learning. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 2233-2247.	13.1	1
1413	Competitive Reinforcement Learning Agents with Adaptive Networks. , 2023, , .		0
1414	Using a Drone Swarm/Team for Safety, Security and Protection Against Unauthorized Drones. Lecture Notes in Mechanical Engineering, 2024, , 263-277.	0.4	0
1415	A Definition and a Test for Human-Level Artificial Intelligence. , 2023, , .		0
1416	Artificial Intelligence in Neuroscience. , 2024, , 158-166.		0
1417	Possibilities of reinforcement learning for nuclear power plants: Evidence on current applications and beyond. Nuclear Engineering and Technology, 2024, , .	2.3	0
1418	Actively Learning to Learn Causal Relationships. Computational Brain & Behavior, 2024, 7, 80-105.	1.7	0

#	Article	IF	CITATIONS
1419	Delta robot control by learning systems: Harnessing the power of deep reinforcement learning algorithms. Journal of Intelligent and Fuzzy Systems, 2024, 46, 4881-4894.	1.4	0
1420	An Improved Reinforcement Learning Method Based on Unsupervised Learning. IEEE Access, 2024, 12, 12295-12307.	4.2	0
1421	A novel teacher–student hierarchical approach for learning primitive information. Expert Systems With Applications, 2024, 246, 123129.	7.6	0
1422	On Realization of Intelligent Decision Making in the Real World: A Foundation Decision Model Perspective. , 2023, , 9150026.		0
1423	Distributed Deep Reinforcement Learning: A Survey and a Multi-player Multi-agent Learning Toolbox. , 2024, 21, 411-430.		0
1424	An Empirical Study on Google Research Football Multi-agent Scenarios. , 2024, 21, 549-570.		0
1425	Learning cooperative strategies in StarCraft through role-based monotonic value function factorization. Electronic Research Archive, 2024, 32, 779-798.	0.9	0
1426	Stabilizing Visual Reinforcement Learning via Asymmetric Interactive Cooperation. , 2023, , .		0
1427	Environment Agnostic Representation for Visual Reinforcement learning. , 2023, , .		0
1428	Algorithmic Product Positioning and Pricing: Can Artificial Intelligence Do Strategy?. SSRN Electronic Journal, 0, , .	0.4	0
1429	Neuromorphic photonics: development of the field. , 2024, , 69-110.		0
1430	<i>OmniDrones:</i> An Efficient and Flexible Platform for Reinforcement Learning in Drone Control. IEEE Robotics and Automation Letters, 2024, 9, 2838-2844.	5.1	1
1431	Assessing the value of deep reinforcement learning for irrigation scheduling. Smart Agricultural Technology, 2024, 7, 100403.	5.4	0
1432	VHGN: Cooperative Multiagent Reinforcement Learning with Historical Information Graph. , 2023, , .		0
1433	Towards practical reinforcement learning for tokamak magnetic control. Fusion Engineering and Design, 2024, 200, 114161.	1.9	1
1434	An Optimal Re-parametrization Scheme for Generalization in Reinforcement Learning. , 2023, , .		0
1435	Overview of Game Decision Intelligence. , 2023, , .		0
1436	A New Graph-Based Reinforcement Learning Environment for Targeted Molecular Generation and Optimization✱. , 2023, , .		0

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
1437	Transforming Conversations with Alâ \in "A Comprehensive Study of ChatGPT. Cognitive Computation, 0, , .	5.2	0
1438	A Deep Deterministic Policy Gradient Algorithm Based Controller with Adjustable Learning Rate for DC-AC Inverters. , 2023, , .		0
1440	State-Space Compression for Efficient Policy Learning in Crude Oil Scheduling. Mathematics, 2024, 12, 393.	2.2	0
1441	Multi-objective, Multi-agent Based Approaches for Predication of Sustainable Aviation Rollout , 2024,		0
1442	Learning State-Specific Action Masks for Reinforcement Learning. Algorithms, 2024, 17, 60.	2.1	0
1443	Towards Reinforcement Learning for Non-stationary Environments. Advances in Intelligent Systems and Computing, 2024, , 41-52.	0.6	0
1444	Artificial Intelligence in the Implementation of Didactic Principles in a Novel Mobility Platform: The Case of the eMediator Project. Lecture Notes in Networks and Systems, 2024, , 617-627.	0.7	0
1445	Nachtrag 1 – Weil es so aktuell ist: Künstliche Intelligenz im Metaversum?. , 2024, , 219-226.		0
1446	Deep reinforcement learningâ€based active mass driver decoupled control framework considering control–structure interaction effects. Computer-Aided Civil and Infrastructure Engineering, 0, , .	9.8	0
1448	Decentralized decision making over random graphs for space domain awareness. Advances in Space Research, 2024, 73, 5266-5283.	2.6	0
1449	Air Combat Agent Construction Based on Hybrid Self-play Deep Reinforcement Learning. Lecture Notes in Electrical Engineering, 2024, , 13-21.	0.4	0
1450	Almost surely safe exploration and exploitation for deep reinforcement learning with state safety estimation. Information Sciences, 2024, 662, 120261.	6.9	0
1451	High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit. Nature Communications, 2024, 15, .	12.8	0
1452	Adversarial Search and Tracking with Multiagent Reinforcement Learning in Sparsely Observable Environment. , 2023, , .		0
1453	Research on real-time collision avoidance and path planning of USVs in multi-obstacle ships environment. Ocean Engineering, 2024, 295, 116890.	4.3	0
1454	Refine to the essence: Less-redundant skill learning via diversity clustering. Engineering Applications of Artificial Intelligence, 2024, 133, 107981.	8.1	0
1455	Learning and Repair of Deep Reinforcement Learning Policies from Fuzz-Testing Data. , 2024, , .		0
1456	Deep learning based simulators for the phosphorus removal process control in wastewater treatment via deep reinforcement learning algorithms. Engineering Applications of Artificial Intelligence, 2024, 133, 107992.	8.1	0

#	Article	IF	CITATIONS
1457	JP-DouZero: an enhanced DouDiZhu AI based on reinforcement learning with peasant collaboration and intrinsic rewards. , 2023, , .		0
1458	Shapley value: from cooperative game to explainable artificial intelligence. Autonomous Intelligent Systems, 2024, 4, .	3.1	0
1459	Collective Intrinsic Motivation ofÂaÂMulti-agent System Based onÂReinforcement Learning Algorithms. Lecture Notes in Networks and Systems, 2024, , 655-670.	0.7	0
1460	Are Associations All You Need to Solve the Dimension Change Card Sort and N-bit Parity Task. Studies in Computational Intelligence, 2024, , 730-740.	0.9	0
1461	Traffic Smoothing Controllers for Autonomous Vehicles Using Deep Reinforcement Learning and Real-World Trajectory Data. , 2023, , .		0
1462	Evaluating differential pricing in e-commerce from the perspective of utility. Electronic Commerce Research and Applications, 2024, 64, 101373.	5.0	0
1463	Multi-Agent Hierarchical Decision Optimization Method Based on Curriculum Learning. , 2023, , .		0
1464	ContainerGym: A Real-World Reinforcement Learning Benchmark forÂResource Allocation. Lecture Notes in Computer Science, 2024, , 78-92.	1.3	0
1465	A survey on multi-agent reinforcement learning and its application. , 2024, , .		0
1466	GAGI: Game engine for Artificial General Intelligence experimentation. SoftwareX, 2024, 26, 101665.	2.6	0
1467	A modified evolutionary reinforcement learning for multi-agent region protection with fewer defenders. Complex & Intelligent Systems, 0, , .	6.5	0
1468	Dynamic datasets and market environments for financial reinforcement learning. Machine Learning, 2024, 113, 2795-2839.	5.4	0
1469	Stable training via elastic adaptive deep reinforcement learning for autonomous navigation of intelligent vehicles. , 2024, 3, .		0
1470	Systematic Human Learning and Generalization From a Brief Tutorial With Explanatory Feedback. Open Mind, 2024, 8, 148-176.	1.7	0
1471	Energy Management for Hybrid Electric Vehicles Using Safe Hybrid-Action Reinforcement Learning. Mathematics, 2024, 12, 663.	2.2	0
1472	Learning Scalable Task Assignment with Imperative-Priori Conflict Resolution in Multi-UAV Adversarial Swarm Defense Problem. Journal of Systems Science and Complexity, 2024, 37, 369-388.	2.8	0
1473	Surrogate-assisted Monte Carlo Tree Search for real-time video games. Engineering Applications of Artificial Intelligence, 2024, 133, 108152.	8.1	0
1474	Exploring the optimal cycle for a quantum heat engine using reinforcement learning. Physical Review A, 2024, 109, .	2.5	Ο

#	Article	IF	CITATIONS
1475	Performance of deep reinforcement learning algorithms in two-echelon inventory control systems. International Journal of Production Research, 0, , 1-16.	7.5	0
1476	From mimic to counteract: a two-stage reinforcement learning algorithm for Google research football. Neural Computing and Applications, 2024, 36, 7203-7219.	5.6	0
1477	Heat exchanger control: Using deep-Q network. Thermal Science and Engineering Progress, 2024, 50, 102498.	2.7	0
1478	A frequency-domain approach with learnable filters for image classification. Applied Soft Computing Journal, 2024, 155, 111443.	7.2	0
1479	Modelling building HVAC control strategies using a deep reinforcement learning approach. Energy and Buildings, 2024, 310, 114065.	6.7	0
1480	Knowledge trajectory of eSports as an emerging field of research. Industrial Management and Data Systems, 2024, 124, 1531-1557.	3.7	0
1481	When do employees learn from artificial intelligence? The moderating effects of perceived enjoyment and task-related complexity. Technology in Society, 2024, 77, 102518.	9.4	0
1482	Multi-agent Continuous Control with Generative Flow Networks. Neural Networks, 2024, 174, 106243.	5.9	0
1483	Cross coordination of behavior clone and reinforcement learning for autonomous within-visual-range air combat. Neurocomputing, 2024, 584, 127591.	5.9	0
1484	Mobile User Interface Adaptation Based on Usability Reward Model and Multi-Agent Reinforcement Learning. Multimodal Technologies and Interaction, 2024, 8, 26.	2.5	0
1485	A deep learning method for empirical spectral prediction and inverse design of all-optical nonlinear plasmonic ring resonator switches. Scientific Reports, 2024, 14, .	3.3	0
1486	Hierarchical Method for Cooperative Multiagent Reinforcement Learning in Markov Decision Processes. Doklady Mathematics, 2023, 108, S382-S392.	0.6	0
1487	Game Interactive Learning: A New Paradigm towards Intelligent Decision-Making. , 2023, , 9150027.		0
1488	Learning-based multi-agent MPC for irrigation scheduling. Control Engineering Practice, 2024, 147, 105908.	5.5	0
1489	Causal Meta-Reinforcement Learning for Multimodal Remote Sensing Data Classification. Remote Sensing, 2024, 16, 1055.	4.0	0
1490	Hardware for Deep Learning Acceleration. Advanced Intelligent Systems, 0, , .	6.1	0
1491	Dynamic Fall Recovery Control for Legged Robots via Reinforcement Learning. Biomimetics, 2024, 9, 193.	3.3	0