Optimal Interfacial Engineering with Different Length of Efficient and Stable Perovskite Solar Cells

Advanced Energy Materials 9, 1902740 DOI: 10.1002/aenm.201902740

Citation Report

#	Article	IF	CITATIONS
1	Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366, 749-753.	6.0	936
2	A data review on certified perovskite solar cells efficiency and I-V metrics: Insights into materials selection and process scaling up. Solar Energy, 2020, 209, 21-29.	2.9	5
3	In Situ Formation of Mixedâ€Dimensional Surface Passivation Layers in Perovskite Solar Cells with Dualâ€Isomer Alkylammonium Cations. Small, 2020, 16, e2005022.	5.2	34
4	Compositional optimization of a 2D–3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 25831-25841.	5.2	59
5	Understanding and harnessing the potential of layered perovskite-based absorbersÂfor solar cells. Emergent Materials, 2020, 3, 751-778.	3.2	13
6	Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. Journal of the American Chemical Society, 2020, 142, 20134-20142.	6.6	414
7	Surface Passivation of Allâ€Inorganic CsPbI ₂ Br with a Fluorinated Organic Ammonium Salt for Perovskite Solar Cells with Efficiencies over 16%. Solar Rrl, 2020, 4, 2000321.	3.1	61
8	Barrier Designs in Perovskite Solar Cells for Longâ€Term Stability. Advanced Energy Materials, 2020, 10, 2001610.	10.2	84
9	Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects. Solar Rrl, 2020, 4, 2000308.	3.1	31
10	The surface of halide perovskites from nano to bulk. Nature Reviews Materials, 2020, 5, 809-827.	23.3	224
11	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	5.2	27
12	Outstanding Passivation Effect by a Mixed-Salt Interlayer with Internal Interactions in Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3159-3167.	8.8	47
13	Recent Progress in 2D/3D Multidimensional Metal Halide Perovskites Solar Cells. Frontiers in Materials, 2020, 7, .	1.2	33
14	Structured Perovskite Light Absorbers for Efficient and Stable Photovoltaics. Advanced Materials, 2020, 32, e1903937.	11.1	69
15	Surface Treatment of Perovskite Layer with Guanidinium Iodide Leads to Enhanced Moisture Stability and Improved Efficiency of Perovskite Solar Cells. Advanced Materials Interfaces, 2020, 7, 2000105.	1.9	39
16	Dion-Jacobson 2D-3D perovskite solar cells with improved efficiency and stability. Nano Energy, 2020, 75, 104892.	8.2	99
17	Unravelling the Mechanism of Ionic Fullerene Passivation for Efficient and Stable Methylammonium-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 2015-2022.	8.8	38
18	A Review on Solutionâ€Processable Dopantâ€Free Small Molecules as Holeâ€Transporting Materials for Efficient Perovskite Solar Cells. Small Methods, 2020, 4, 2000254.	4.6	64

#	Article	IF	CITATIONS
19	Selfâ€Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1910620.	7.8	68
20	Guanidinium Passivation for Airâ€Stable Rubidiumâ€Incorporated Cs _(1 â^' <i>x</i>) Rb _{<i>x</i>} Pbl ₂ Br Inorganic Perovskite Solar Cel Solar Rrl, 2020, 4, 2000112.	l\$3.1	57
21	A novel 2D perovskite as surface "patches―for efficient flexible perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 7808-7818.	5.2	48
22	Suppressed Interdiffusion and Degradation in Flexible and Transparent Metal Electrode-Based Perovskite Solar Cells with a Graphene Interlayer. Nano Letters, 2020, 20, 3718-3727.	4.5	65
23	Dual effective dopant based hole transport layer for stable and efficient perovskite solar cells. Nano Energy, 2020, 72, 104673.	8.2	78
24	Aryl Diammonium Iodide Passivation for Efficient and Stable Hybrid Organâ€Inorganic Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002366.	7.8	52
25	Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 101359.	1.9	105
26	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	15.6	420
27	Unveiling the Importance of Precursor Preparation for Highly Efficient and Stable Phenethylammoniumâ€Based Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900463.	3.1	2
28	In Situ Analysis Reveals the Role of 2D Perovskite in Preventing Thermal-Induced Degradation in 2D/3D Perovskite Interfaces. Nano Letters, 2020, 20, 3992-3998.	4.5	95
29	Two-dimensional halide perovskite-based solar cells: Strategies for performance and stability enhancement. FlatChem, 2021, 25, 100213.	2.8	4
30	Emerging Perovskite Materials with Different Nanostructures for Photodetectors. Advanced Optical Materials, 2021, 9, 2001637.	3.6	40
31	Surface Engineering of Ambient-Air-Processed Cesium Lead Triiodide Layers for Efficient Solar Cells. Joule, 2021, 5, 183-196.	11.7	308
32	Crown Etherâ€Assisted Growth and Scaling Up of FACsPbI ₃ Films for Efficient and Stable Perovskite Solar Modules. Advanced Functional Materials, 2021, 31, 2008760.	7.8	50
33	Reducing Open ircuit Voltage Deficit in Perovskite Solar Cells via Surface Passivation with Phenylhydroxylammonium Halide Salts. Small Methods, 2021, 5, e2000441.	4.6	15
34	Spectacular Enhancement of the Thermal and Photochemical Stability of MAPbI3 Perovskite Films Using Functionalized Tetraazaadamantane as a Molecular Modifier. Energies, 2021, 14, 669.	1.6	7
35	Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells. Energy and Environmental Science, 2021, 14, 5875-5893.	15.6	180
36	The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chemical Reviews, 2021, 121, 2230-2291.	23.0	506

#	Article	IF	CITATIONS
37	Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. Nature Energy, 2021, 6, 63-71.	19.8	365
38	Stabilizing Formamidinium Lead Iodide Perovskite Precursor Solution with Phenylboric Acid. Solar Rrl, 2021, 5, 2000715.	3.1	11
39	Electron-deficient 4-nitrophthalonitrile passivated efficient perovskite solar cells with efficiency exceeding 22%. Sustainable Energy and Fuels, 2021, 5, 2347-2353.	2.5	18
40	Dion–Jacobson halide perovskites for photovoltaic and photodetection applications. Journal of Materials Chemistry C, 2021, 9, 6378-6394.	2.7	26
41	Efficient and stable wide bandgap perovskite solar cells through surface passivation with long alkyl chain organic cations. Journal of Materials Chemistry A, 2021, 9, 18454-18465.	5.2	32
42	Tuning the Interfacial Dipole Moment of Spacer Cations for Charge Extraction in Efficient and Ultrastable Perovskite Solar Cells. Journal of Physical Chemistry C, 2021, 125, 1256-1268.	1.5	56
43	Surface treatment of ZnO films with carbon nanotubes for efficient and stable perovskite solar cells. Sustainable Energy and Fuels, 2021, 5, 540-548.	2.5	41
44	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	2.5	11
45	Influence of Fluorinated Components on Perovskite Solar Cells Performance and Stability. Small, 2021, 17, e2004081.	5.2	29
46	A Facile Surface Passivation Enables Thermally Stable and Efficient Planar Perovskite Solar Cells Using a Novel IDTTâ€Based Small Molecule Additive. Advanced Energy Materials, 2021, 11, 2003829.	10.2	72
47	Tailoring the Dimensionality of Hybrid Perovskites in Mesoporous Carbon Electrodes for Typeâ€II Band Alignment and Enhanced Performance of Printable Holeâ€Conductorâ€Free Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100292.	10.2	85
48	Origin of Efficiency and Stability Enhancement in Highâ€Performing Mixed Dimensional 2Dâ€3D Perovskite Solar Cells: A Review. Advanced Functional Materials, 2022, 32, 2009164.	7.8	96
49	Acid Dissociation Constant: A Criterion for Selecting Passivation Agents in Perovskite Solar Cells. ACS Energy Letters, 0, , 1612-1621.	8.8	99
50	Universal Passivation Strategy for the Hole Transport Layer/Perovskite Interface via an Alkali Treatment for Highâ€Efficiency Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000793.	3.1	14
51	High stability of photovoltaic cells with phenethylammonium iodide-passivated perovskite layers and printable copper phthalocyanine-modified carbon electrodes. Nanotechnology, 2021, 32, 225701.	1.3	4
52	Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 20043-20050.	4.0	21
53	Efficient and Stable Perovskite Solar Cells Using Bathocuproine Bilateral-Modified Perovskite Layers. ACS Applied Materials & Interfaces, 2021, 13, 24747-24755.	4.0	22
54	Molecularly Engineered Interfaces in Metal Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 4882-4901.	2.1	21

#	Article	IF	CITATIONS
55	Surface Reconstruction Engineering with Synergistic Effect of Mixedâ€Salt Passivation Treatment toward Efficient and Stable Perovskite Solar Cells. Advanced Functional Materials, 2021, 31, 2102902.	7.8	57
56	Recent advances on interface engineering of perovskite solar cells. Nano Research, 2022, 15, 85-103.	5.8	59
57	Recent Progress on Formamidiniumâ€Dominated Perovskite Photovoltaics. Advanced Energy Materials, 2022, 12, 2100690.	10.2	45
58	Direct Solar Hydrogen Generation at 20% Efficiency Using Lowâ€Cost Materials. Advanced Energy Materials, 2021, 11, 2101053.	10.2	35
59	Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. Journal of the American Chemical Society, 2021, 143, 10624-10632.	6.6	101
60	2D/3D perovskite engineering eliminates interfacial recombination losses in hybrid perovskite solar cells. CheM, 2021, 7, 1903-1916.	5.8	108
61	Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2100295.	3.1	58
62	Mechanism of Enhancement in Perovskite Solar Cells by Organosulfur Amine Constructed 2D/3D Heterojunctions. Journal of Physical Chemistry C, 2021, 125, 16428-16434.	1.5	23
63	Strong Electron Acceptor of a Fluorine-Containing Group Leads to High Performance of Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 41149-41158.	4.0	24
64	Ion migration in halide perovskite solar cells: Mechanism, characterization, impact and suppression. Journal of Energy Chemistry, 2021, 63, 528-549.	7.1	76
65	Combined Bulk and Surface Passivation in Dimensionally Engineered 2Dâ€3D Perovskite Films via Chlorine Diffusion. Advanced Functional Materials, 2021, 31, 2104251.	7.8	37
66	Passivation Strategies through Surface Reconstruction toward Highly Efficient and Stable Perovskite Solar Cells on n-i-p Architecture. Energies, 2021, 14, 4836.	1.6	13
67	Enhancement in charge extraction and moisture stability of perovskite solar cell via infiltration of charge transport material in grain boundaries. Journal of Power Sources, 2021, 506, 230212.	4.0	6
68	Efficient and Stable 2D@3D/2D Perovskite Solar Cells Based on Dual Optimization of Grain Boundary and Interface. ACS Energy Letters, 2021, 6, 3614-3623.	8.8	113
69	Moisture tolerant solar cells by encapsulating 3D perovskite with long-chain alkylammonium cation-based 2D perovskite. Communications Materials, 2021, 2, .	2.9	19
70	Favorable grain growth of thermally stable formamidinium-methylammonium perovskite solar cells by hydrazine chloride. Chemical Engineering Journal, 2022, 430, 132730.	6.6	21
71	Interface regulation enables hysteresis free wide-bandgap perovskite solar cells with low VOC deficit and high stability. Nano Energy, 2021, 90, 106537.	8.2	12
72	Defect passivation and interface modification by tetra-n-octadecyl ammonium bromide for efficient and stable inverted perovskite solar cells. Chemical Engineering Journal, 2022, 429, 132426.	6.6	24

#	Article	IF	CITATIONS
73	Metal Halide Perovskite/2D Material Heterostructures: Syntheses and Applications. Small Methods, 2021, 5, e2000937.	4.6	24
74	Quantifying the energy loss for a perovskite solar cell passivated with acetamidine halide. Journal of Materials Chemistry A, 2021, 9, 4781-4788.	5.2	21
75	A penetrated 2D/3D hybrid heterojunction for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 23019-23027.	5.2	23
76	Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials, 2021, 31, 2008684.	7.8	70
77	Interfacial Passivation Engineering of Perovskite Solar Cells with Fill Factor over 82% and Outstanding Operational Stability on n-i-p Architecture. ACS Energy Letters, 2021, 6, 3916-3923.	8.8	115
78	Advancing 2D Perovskites for Efficient and Stable Solar Cells: Challenges and Opportunities. Advanced Materials, 2022, 34, e2105849.	11.1	104
79	Spacer Engineering of Diammoniumâ€Based 2D Perovskites toward Efficient and Stable 2D/3D Heterostructure Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, 2102973.	10.2	63
80	Highâ€Efficiency and Stable Perovskite Solar Cells Enabled by Lowâ€Dimensional Perovskite Surface Modifiers. Solar Rrl, 2022, 6, .	3.1	15
81	Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nature Communications, 2021, 12, 6394.	5.8	98
82	Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces. Advanced Materials, 2022, 34, e2108616.	11.1	55
83	Quasi-Two-Dimensional Perovskite Solar Cells with Efficiency Exceeding 22%. ACS Energy Letters, 2022, 7, 757-765.	8.8	114
84	A finely regulated quantum well structure in quasi-2D Ruddlesden–Popper perovskite solar cells with efficiency exceeding 20%. Energy and Environmental Science, 2022, 15, 296-310.	15.6	54
85	Unveiling the effect of amino acids on the crystallization pathways of methylammonium lead iodide perovskites. Journal of Energy Chemistry, 2022, 69, 253-260.	7.1	10
86	Surface Passivation Using 2D Perovskites toward Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2022, 34, e2105635.	11.1	221
87	Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 9971-9980.	5.2	14
88	Rethinking the A cation in halide perovskites. Science, 2022, 375, eabj1186.	6.0	207
89	Brominated PEAI as Multiâ€Functional Passivator for Highâ€Efficiency Perovskite Solar Cell. Energy and Environmental Materials, 2023, 6, .	7.3	16
90	Effect of Steric Hindrance of Butylammonium Iodide as Interface Modification Materials on the Performance of Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	10

#	Article	IF	Citations
91	Interfacial Modification by Lowâ€Temperature Anchoring Surface Uncoordinated Pb for Efficient FAPbI ₃ Perovskite Solar Cells. Advanced Sustainable Systems, 2022, 6, .	2.7	13
92	Optical Properties and Photostability Improvement of CH ₃ NH ₃ Pbl ₃ Treated by Iodide of Long H ₃ N(CH ₂) ₁₀ COOH Bifunctional Cation in "2D/3D―and "Monolaver―Passivation Modes. Chemistry of Materials. 2022. 34. 2998-3005.	3.2	2
93	Influence of Halide Choice on Formation of Lowâ€Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2022, 5, 670-682.	7.3	9
94	Surface-Passivated CsPbBr3 for Developing Efficient and Stable Perovskite Photovoltaics. Crystals, 2021, 11, 1588.	1.0	6
95	Polymethyl Methacrylate as an Interlayer Between the Halide Perovskite and Copper Phthalocyanine Layers for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	30
96	Recent Progress of Critical Interface Engineering for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	78
97	Mixed cation 2D perovskite: a novel approach for enhanced perovskite solar cell stability. Sustainable Energy and Fuels, 2022, 6, 2471-2477.	2.5	9
98	Rational selection of the polymeric structure for interface engineering of perovskite solar cells. Joule, 2022, 6, 1032-1048.	11.7	72
99	Defect Passivation through (α-Methylguanido)acetic Acid in Perovskite Solar Cell for High Operational Stability. ACS Applied Materials & Interfaces, 2022, 14, 20848-20855.	4.0	8
100	Stability and Efficiency Enhancement of Perovskite Solar Cells Using Phenyltriethylammonium Iodide. Advanced Materials Interfaces, 0, , 2200464.	1.9	11
101	Mitigating the Internal Ion Migration of Organic–Inorganic Hybrid Perovskite by a Graphene Oxide Interlayer. ACS Applied Materials & Interfaces, 2022, 14, 22601-22606.	4.0	7
102	Highly Efficient Dopant-Free Cyano-Substituted Spiro-Type Hole-Transporting Materials for Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6633-6641.	2.5	8
103	Above 23% Efficiency by Binary Surface Passivation of Perovskite Solar Cells Using Guanidinium and Octylammonium Spacer Cations. Solar Rrl, 2022, 6, .	3.1	22
104	Molecular Engineering for Functionâ€Tailored Interface Modifier in Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	16
105	Dual Optimization of Bulk and Surface via Guanidine Halide for Efficient and Stable 2D/3D Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	30
106	Alkyl Diamine-Induced (100)-Preferred Crystal Orientation for Efficient Pb–Sn Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 6936-6942.	2.5	12
107	Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives. Renewable and Sustainable Energy Reviews, 2022, 165, 112553.	8.2	16
108	Mixed Solvents Assisted Postâ€Treatment Enables Highâ€Efficiency Singleâ€Junction Perovskite and 4T Perovskite/CIGS Tandem Solar Cells. Advanced Science, 2022, 9, .	5.6	10

#	Article	IF	CITATIONS
109	Heterogeneous lead iodide obtains perovskite solar cells with efficiency of 24.27%. Chemical Engineering Journal, 2022, 448, 137676.	6.6	29
110	Defect Passivation by a Multifunctional Phosphate Additive toward Improvements of Efficiency and Stability of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 31911-31919.	4.0	6
111	Bulk Restructure of Perovskite Films via Surface Passivation for Highâ€Performance Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	32
112	Phenethylammonium lodide Passivation Layers for Flexible Planar Perovskite Solar Cells. Energy Technology, 2022, 10, .	1.8	5
113	Coordination modulated passivation for stable organic-inorganic perovskite solar cells. Chemical Engineering Journal, 2023, 451, 138740.	6.6	12
114	Interfacial Embedding for Highâ€Efficiency and Stable Methylammoniumâ€Free Perovskite Solar Cells with Fluoroarene Hydrazine. Advanced Energy Materials, 2022, 12, .	10.2	30
115	Spontaneous relaxation of 2D passivation layer contributes to the aging-induced performance enhancement of perovskite solar cells. Nano Research, 0, , .	5.8	2
116	Hybrid mixed-dimensional perovskite/metal-oxide heterojunction for all-in-one opto-electric artificial synapse and retinal-neuromorphic system. Nano Energy, 2022, 102, 107686.	8.2	20
117	Recent advances in the interfacial engineering of organic–inorganic hybrid perovskite solar cells: a materials perspective. Journal of Materials Chemistry C, 2022, 10, 13611-13645.	2.7	12
118	A synergistic co-passivation strategy for high-performance perovskite solar cells with large open circuit voltage. Journal of Materials Chemistry C, 2022, 10, 12699-12707.	2.7	13
119	[PbX ₆] ^{4â^'} modulation and organic spacer construction for stable perovskite solar cells. Energy and Environmental Science, 2022, 15, 4470-4510.	15.6	16
120	Recent Progress on Defect Passivation of Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2022, 9, .	1.9	9
121	Stability of 2D and quasi-2D perovskite materials and devices. Communications Materials, 2022, 3, .	2.9	63
122	van der Waals Metal Contacts for Characterization and Optoelectronic Application of Metal Halide Perovskite Thin Films. ACS Energy Letters, 2022, 7, 3780-3787.	8.8	11
123	Solar Cell Efficiency Exceeding 25% through Rb-Based Perovskitoid Scaffold Stabilizing the Buried Perovskite Surface. ACS Energy Letters, 2022, 7, 3685-3694.	8.8	44
124	Additive-assisted defect passivation of perovskite with metformin hydrochloride: toward high-performance p-i-n perovskite solar cells. JPhys Energy, O, , .	2.3	0
125	<i>N</i> â€(2â€aminoethyl) Acetamide Additive Enables Phaseâ€Pure and Stable αâ€FAPbl ₃ for Efficient Selfâ€Powered Photodetectors. Advanced Materials, 2022, 34, .	11.1	9
126	Interface Reconstruction from Ruddlesden–Popper Structures Impacts Stability in Lead Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, .	11.1	29

#	Article	IF	CITATIONS
127	Nondestructive Post-Treatment Enabled by <i>In Situ</i> Generated 2D Perovskites Derived from Multi-ammonium Molecule Vapor for High-Performance 2D/3D Bilayer Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 51053-51065.	4.0	3
128	Roles that Organic Ammoniums Play on the Surface of the Perovskite Film: A Review. Chemistry - A European Journal, 2023, 29, .	1.7	7
129	Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65, 2369-2416.	4.2	53
130	Natural Amino Acid Enables Scalable Fabrication of Highâ€Performance Flexible Perovskite Solar Cells and Modules with Areas over 300 cm ² . Small Methods, 2022, 6, .	4.6	10
131	Structural and Photophysical Properties of Guanidinium–Iodideâ€Treated Perovskite Solar Cells. Solar Rrl, 2023, 7, .	3.1	7
132	Broadly Applicable Synthesis of Heteroarylated Dithieno[3,2-b:2′,3′-d]pyrroles for Advanced Organic Materials – Part 2: Hole-Transporting Materials for Perovskite Solar Cells. Organic Materials, 2023, 5, 48-58.	1.0	3
133	Conformal Imidazolium 1D Perovskite Capping Layer Stabilized 3D Perovskite Films for Efficient Solar Modules. Advanced Science, 2022, 9, .	5.6	11
135	Ethylene glycol-containing ammonium salt for developing highly compatible interfaces in perovskite solar cells. Chemical Engineering Journal, 2023, 455, 140833.	6.6	2
136	Organic iodides in efficient and stable perovskite solar cells: strong surface passivation and interaction. Energy and Environmental Science, 2023, 16, 565-573.	15.6	16
137	Complex Additiveâ€Assisted Crystal Growth and Phase Stabilization of αâ€FAPbI ₃ Film for Highly Efficient, Air‣table Perovskite Photovoltaics. Advanced Materials Interfaces, 2023, 10, .	1.9	5
138	Defect Passivation with Multifunctional Fluoro-Group-Containing Organic Additives for Highly Efficient and Stable Perovskite Solar Cells. Energy & Fuels, 2023, 37, 667-674.	2.5	4
139	Green-solvent-soluble, highly efficient dopant-free hole-transporting material for perovskite solar cells. Applied Physics Express, 2023, 16, 016502.	1.1	2
140	Optoelectronic and stability properties of quasi-2D alkylammonium based perovskites. Physical Chemistry Chemical Physics, 0, , .	1.3	0
141	Numerical Study on the Effect of Dual Electron Transport Layer in Improving the Performance of Perovskite–Perovskite Tandem Solar Cells. Advanced Theory and Simulations, 2023, 6, .	1.3	6
142	Cooperative passivation of perovskite solar cells by alkyldimethylammonium halide amphiphiles. Joule, 2023, 7, 183-200.	11.7	7
143	Novel Materials and Processes for Photovoltaic Technology. Energies, 2023, 16, 425.	1.6	1
144	Suppressing hydrogen bonds and controlling surface dipole: effective passivation for hydrophobic perovskite photoabsorber layers in solar cells. New Journal of Chemistry, 2023, 47, 4197-4201.	1.4	1
145	Alkylammonium bis(trifluoromethylsulfonyl)imide as a dopant in the hole-transporting layer for efficient and stable perovskite solar cells. Energy and Environmental Science, 2023, 16, 2226-2238.	15.6	12

#	Article	IF	CITATIONS
146	Alkyl Chain Lengthâ€Dependent Amineâ€Induced Crystallization for Efficient Interface Passivation of Perovskite Solar Cells. Advanced Materials Interfaces, 2023, 10, .	1.9	3
147	Highly Stable Perovskite Solar Cells by Reducing Residual <scp>Waterâ€Induced</scp> Decomposition of Perovskite. Chinese Journal of Chemistry, 2023, 41, 1594-1602.	2.6	1
148	Enhanced electrical properties in 2D perovskites via the bridging effect of SnS1â^'xO2x for perovskite solar cells with efficiency exceeding 24%. Nano Energy, 2023, 109, 108287.	8.2	8
149	Low-dimensional perovskite modified 3D structures for higher-performance solar cells. Journal of Energy Chemistry, 2023, 81, 389-403.	7.1	8
150	Tailoring the Interfacial Termination via Dipole Interlayer for High‣fficiency Perovskite Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	26
151	<i>In situ</i> surface regulation of 3D perovskite using diethylammonium iodide for highly efficient perovskite solar cells. Physical Chemistry Chemical Physics, 2023, 25, 9349-9356.	1.3	2
152	Lead(II) 2â€Ethylhexanoate for Simultaneous Modulated Crystallization and Surface Shielding to Boost Perovskite Solar Cell Efficiency and Stability. Advanced Materials, 2023, 35, .	11.1	12
153	Importance of Low Humidity and Selection of Halide Ions of Octylammonium Halide in 2D–3D Perovskite Solar Cells Fabricated in Air. Advanced Materials Interfaces, 2023, 10, .	1.9	2
154	Improved Crystallization of Lead Halide Perovskite in Twoâ€Step Growth Method by Polymerâ€Assisted "Slowâ€Release Effectâ€: Small Methods, 2023, 7, .	4.6	9
155	Magic guanidinium cations in perovskite solar cells: from bulk to interface. Materials Chemistry Frontiers, 2023, 7, 2507-2527.	3.2	6
156	Pure Chloride 2D/3D Heterostructure Passivation for Efficient and Stable Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	2
157	Highly Enhanced Photoluminescence Quantum Yield of Phenethylammonium Halide-Passivated Inorganic Perovskite/Cellulose Nanocrystal Films. ACS Sustainable Chemistry and Engineering, 2023, 11, 4580-4587.	3.2	0
158	Highly Efficient and Stable 2D/3D Heterojunction Perovskite Solar Cells by In Situ Interface Modification with [(<i>p</i> -Fluorophenyl)ethyl]ammonium Acetate. ACS Applied Materials & Interfaces, 2023, 15, 15420-15428.	4.0	5
159	Improved Thermal Stability and Film Uniformity of Halide Perovskite by Confinement Effect brought by Polymer Chains of Polyvinyl Pyrrolidone. Small, 2023, 19, .	5.2	6
160	Highly Stable Perovskite Nanocrystals with Pure Red Emission for Displays. ACS Applied Nano Materials, 2023, 6, 6092-6102.	2.4	4
161	Dual Interface Passivation in Mixed-Halide Perovskite Solar Cells by Bilateral Amine. ACS Applied Energy Materials, 0, , .	2.5	0
174	Tailoring passivators for highly efficient and stable perovskite solar cells. Nature Reviews Chemistry, 2023, 7, 632-652.	13.8	36
203	The impact of moisture on the stability and degradation of perovskites in solar cells. Materials Advances, 2024, 5, 2200-2217.	2.6	О

ARTICLE

IF CITATIONS