Dataâ€Driven Materials Science: Status, Challenges, and

Advanced Science 6, 1900808 DOI: 10.1002/advs.201900808

Citation Report

#	Article	IF	CITATIONS
1	Autonomous Discovery in the Chemical Sciences Partâ€I: Progress. Angewandte Chemie - International Edition, 2020, 59, 22858-22893.	13.8	180
2	Autonomous Discovery in the Chemical Sciences Part II: Outlook. Angewandte Chemie - International Edition, 2020, 59, 23414-23436.	13.8	139
3	Autonome Entdeckung in den chemischen Wissenschaften, Teil l: Fortschritt. Angewandte Chemie, 2020, 132, 23054-23091.	2.0	11
4	Autonome Entdeckung in den chemischen Wissenschaften, Teil II: Ausblick. Angewandte Chemie, 2020, 132, 23620-23643.	2.0	4
5	Understanding the geometric diversity of inorganic and hybrid frameworks through structural coarse-graining. Chemical Science, 2020, 11, 12580-12587.	7.4	13
6	Towards Experimental Handbooks in Catalysis. Topics in Catalysis, 2020, 63, 1683-1699.	2.8	28
7	Enchantment - Disenchantment-Re-Enchantment: Postdigital Relationships between Science, Philosophy, and Religion. Postdigital Science and Education, 2021, 3, 934-965.	5.3	18
8	Polymer Nanocomposite Data: Curation, Frameworks, Access, and Potential for Discovery and Design. ACS Macro Letters, 2020, 9, 1086-1094.	4.8	24
9	Machine Learned Model for Solid Form Volume Estimation Based on Packing-Accessible Surface and Molecular Topological Fragments. Journal of Physical Chemistry A, 2020, 124, 10330-10345.	2.5	9
10	A database of battery materials auto-generated using ChemDataExtractor. Scientific Data, 2020, 7, 260.	5.3	76
11	Al Applications through the Whole Life Cycle of Material Discovery. Matter, 2020, 3, 393-432.	10.0	86
12	An artificial intelligence-aided virtual screening recipe for two-dimensional materials discovery. Npj Computational Materials, 2020, 6, .	8.7	39
13	Database of Two-Dimensional Hybrid Perovskite Materials: Open-Access Collection of Crystal Structures, Band Gaps, and Atomic Partial Charges Predicted by Machine Learning. Chemistry of Materials, 2020, 32, 7383-7388.	6.7	102
14	Relativistic correction scheme for core-level binding energies from <i>GW</i> . Journal of Chemical Physics, 2020, 153, 114110.	3.0	15
15	Exchange Spin Coupling from Gaussian Process Regression. Journal of Physical Chemistry A, 2020, 124, 8708-8723.	2.5	16
16	A critical examination of compound stability predictions from machine-learned formation energies. Npj Computational Materials, 2020, 6, .	8.7	119
17	A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts. Npj Computational Materials, 2020, 6, .	8.7	44
18	<i>In silico</i> investigation of Cu(In,Ga)Se ₂ -based solar cells. Physical Chemistry Chemical Physics, 2020, 22, 26682-26701.	2.8	3

#	Article	IF	CITATIONS
19	New Design Method for Fabricating Multilayer Membranes Using CO2-Assisted Polymer Compression Process. Molecules, 2020, 25, 5786.	3.8	3
20	Automated identification of deformation twin systems in Mg WE43 from SEM DIC. Materials Characterization, 2020, 169, 110628.	4.4	12
21	Combining multi-phase field simulation with neural network analysis to unravel thermomigration accelerated growth behavior of Cu6Sn5 IMC at cold side Cu–Sn interface. International Journal of Mechanical Sciences, 2020, 184, 105843.	6.7	27
22	Machine learning reveals the importance of the formation enthalpy and atom-size difference in forming phases of high entropy alloys. Materials and Design, 2020, 193, 108835.	7.0	68
23	Fast-Track to Research Data Management in Experimental Material Science–Setting the Ground for Research Group Level Materials Digitalization. ACS Combinatorial Science, 2020, 22, 401-409.	3.8	9
24	Prediction of optoelectronic properties of Cu ₂ O using neural network potential. Physical Chemistry Chemical Physics, 2020, 22, 14910-14917.	2.8	2
25	Big-data driven approaches in materials science: A survey. Materials Today: Proceedings, 2020, 26, 1245-1249.	1.8	10
26	Learning pairing symmetries in disordered superconductors using spin-polarized local density of states. New Journal of Physics, 2020, 22, 053015.	2.9	1
27	Importance of structural deformation features in the prediction of hybrid perovskite bandgaps. Computational Materials Science, 2020, 184, 109858.	3.0	22
28	An adaptive design approach for defects distribution modeling in materials from first-principle calculations. Journal of Molecular Modeling, 2020, 26, 187.	1.8	11
29	Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Advances, 2020, 10, 6063-6081.	3.6	57
30	A Design-to-Device Pipeline for Data-Driven Materials Discovery. Accounts of Chemical Research, 2020, 53, 599-610.	15.6	59
31	Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Journal of Chemical Information and Modeling, 2020, 60, 1928-1935.	5.4	5
32	Machine learning-based prediction of phases in high-entropy alloys. Computational Materials Science, 2021, 188, 110244.	3.0	58
33	The exposome paradigm to predict environmental health in terms of systemic homeostasis and resource balance based on NMR data science. RSC Advances, 2021, 11, 30426-30447.	3.6	10
34	Deep learning model for finding new superconductors. Physical Review B, 2021, 103, .	3.2	44
35	Shifting computational boundaries for complex organic materials. Nature Physics, 2021, 17, 152-154.	16.7	5
36	Accelerated Discovery of Thermoelectric Materials Using Machine Learning. Springer Series in Materials Science, 2021, , 133-152.	0.6	1

#	Article	IF	CITATIONS
37	A Two-Scale Multi-Physics Deep Learning Model for Smart MEMS Sensors. Journal of Materials Science and Chemical Engineering, 2021, 09, 41-52.	0.4	1
38	Toward autonomous design and synthesis of novel inorganic materials. Materials Horizons, 2021, 8, 2169-2198.	12.2	61
39	HIVE-4-MAT: Advancing the Ontology Infrastructure for Materials Science. Communications in Computer and Information Science, 2021, , 297-307.	0.5	5
40	DATA-DRIVEN IDENTIFICATION OF GOVERNING PARTIAL DIFFERENTIAL EQUATIONS FOR THE TRANSMISSION LINE SYSTEMS. Progress in Electromagnetics Research C, 2021, 108, 23-36.	0.9	0
41	Efficient Amino Acid Conformer Search with Bayesian Optimization. Journal of Chemical Theory and Computation, 2021, 17, 1955-1966.	5.3	29
42	Computational compound screening of biomolecules and soft materials by molecular simulations. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 023001.	2.0	15
43	Review on the Use of Artificial Intelligence to Predict Fire Performance of Construction Materials and Their Flame Retardancy. Molecules, 2021, 26, 1022.	3.8	11
44	Atomic and electronic structure of cesium lead triiodide surfaces. Journal of Chemical Physics, 2021, 154, 074712.	3.0	2
45	Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing. ACS Applied Materials & Interfaces, 2021, 13, 9101-9112.	8.0	13
46	A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts. ChemCatChem, 2021, 13, 3223-3236.	3.7	45
47	ChemProps: A RESTful API enabled database for composite polymer name standardization. Journal of Cheminformatics, 2021, 13, 22.	6.1	7
48	Improved One-Shot Total Energies from the Linearized GW Density Matrix. Journal of Chemical Theory and Computation, 2021, 17, 2126-2136.	5.3	7
49	Perspective—Accelerated Discovery of Organic-Inorganic Hybrid Materials via Machine Learning. ECS Journal of Solid State Science and Technology, 2021, 10, 037001.	1.8	1
50	Learning interpretable descriptors for the fatigue strength of steels. AIP Advances, 2021, 11, .	1.3	4
51	Dielectric Polymer Property Prediction Using Recurrent Neural Networks with Optimizations. Journal of Chemical Information and Modeling, 2021, 61, 2175-2186.	5.4	28
52	Machine learning augmented predictive and generative model for rupture life in ferritic and austenitic steels. Npj Materials Degradation, 2021, 5, .	5.8	23
53	A systematic approach to generating accurate neural network potentials: the case of carbon. Npj Computational Materials, 2021, 7, .	8.7	23
54	Two-step machine learning enables optimized nanoparticle synthesis. Npj Computational Materials, 2021, 7, .	8.7	86

#	Article	IF	CITATIONS
55	Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning. Physical Review Materials, 2021, 5, .	2.4	27
56	Molecular excited states through a machine learning lens. Nature Reviews Chemistry, 2021, 5, 388-405.	30.2	107
57	A new active learning approach for global optimization of atomic clusters. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	12
58	MatSclE: An automated tool for the generation of databases of methods and parameters used in the computational materials science literature. Computational Materials Science, 2021, 192, 110325.	3.0	8
59	Electronic Characterization of a Charge-Transfer Complex Monolayer on Graphene. ACS Nano, 2021, 15, 9945-9954.	14.6	9
60	Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization. Machine Learning: Science and Technology, 2021, 2, 035022.	5.0	28
61	PolyMaS: A new software to generate high molecular weight polymer macromolecules from repeating structural units. Polimery, 2021, 66, 293-297.	0.7	2
62	An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering. Remote Sensing, 2021, 13, 2426.	4.0	7
63	Porous Metal Properties Analysis: A Machine Learning Approach. Jom, 2021, 73, 2039-2049.	1.9	3
64	IP Analytics and Machine Learning Applied to Create Process Visualization Graphs for Chemical Utility Patents. Processes, 2021, 9, 1342.	2.8	2
65	Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet. Journal of Physics Condensed Matter, 2021, 33, 404002.	1.8	12
66	Predicting hydrogen storage in MOFs via machine learning. Patterns, 2021, 2, 100291.	5.9	51
67	A framework for quantifying uncertainty in DFT energy corrections. Scientific Reports, 2021, 11, 15496.	3.3	51
68	Machine Learning Boosting the Development of Advanced Lithium Batteries. Small Methods, 2021, 5, e2100442.	8.6	27
69	Describing chain-like assembly of ethoxygroup-functionalized organic molecules on Au(111) using high-throughput simulations. Scientific Reports, 2021, 11, 14649.	3.3	1
70	Dataâ€Driven Approaches Toward Smarter Additive Manufacturing. Advanced Intelligent Systems, 2021, 3, 2100014.	6.1	21
71	Machine learning and evolutionary prediction of superhard B-C-N compounds. Npj Computational Materials, 2021, 7, .	8.7	34
72	Coupling machine learning with thermodynamic modelling to develop a composition-property model for alkali-activated materials. Composites Part B: Engineering, 2021, 216, 108801.	12.0	29

#	Article	IF	CITATIONS
73	Machine Learning in Chemical Product Engineering: The State of the Art and a Guide for Newcomers. Processes, 2021, 9, 1456.	2.8	28
74	OPTIMADE, an API for exchanging materials data. Scientific Data, 2021, 8, 217.	5.3	49
75	Gaussian Process Regression for Materials and Molecules. Chemical Reviews, 2021, 121, 10073-10141.	47.7	384
76	Predicting gas–particle partitioning coefficients of atmospheric molecules with machine learning. Atmospheric Chemistry and Physics, 2021, 21, 13227-13246.	4.9	15
77	Use of metamodels for rapid discovery of narrow bandgap oxide photocatalysts. IScience, 2021, 24, 103068.	4.1	17
78	Designing hexagonal close packed high entropy alloys using machine learning. Modelling and Simulation in Materials Science and Engineering, 2021, 29, 085005.	2.0	7
79	Highâ€Throughput and Combinatorial Approaches for the Development of Multifunctional Polymers. Macromolecular Rapid Communications, 2022, 43, e2100400.	3.9	13
80	The role of artificial intelligence in the mass adoption of electric vehicles. Joule, 2021, 5, 2296-2322.	24.0	52
81	Artificial Intelligence Applied to Battery Research: Hype or Reality?. Chemical Reviews, 2022, 122, 10899-10969.	47.7	153
82	JAMIP: an artificial-intelligence aided data-driven infrastructure for computational materials informatics. Science Bulletin, 2021, 66, 1973-1985.	9.0	32
83	Atomic Simulation Recipes: A Python framework and library for automated workflows. Computational Materials Science, 2021, 199, 110731.	3.0	35
84	Recent machine learning guided material research - A review. Computational Condensed Matter, 2021, 29, e00597.	2.1	4
85	Screening for lead-free inorganic double perovskites with suitable band gaps and high stability using combined machine learning and DFT calculation. Applied Surface Science, 2021, 568, 150916.	6.1	38
86	Machine Learning in X-ray Imaging and Microscopy Applications. , 2021, , 205-221.		0
87	Al-Supported Innovation Monitoring. Lecture Notes in Computer Science, 2021, , 220-226.	1.3	1
88	Automated Experimentation Powers Data Science in Chemistry. Accounts of Chemical Research, 2021, 54, 546-555.	15.6	52
89	Nanoarchitectonics for Analytical Science at Interfaces and with Supramolecular Nanostructures. Analytical Sciences, 2021, 37, 1331-1348.	1.6	9

#	Article	IF	CITATIONS
91	High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. Journal of Materials Chemistry C, 2021, 9, 13557-13583.	5.5	20
92	Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide. Npj Computational Materials, 2020, 6, .	8.7	40
93	An open-source, end-to-end workflow for multidimensional photoemission spectroscopy. Scientific Data, 2020, 7, 442.	5.3	14
94	Machine learning enabled discovery of application dependent design principles for two-dimensional materials. Machine Learning: Science and Technology, 2020, 1, 035015.	5.0	9
95	Predicting Hydrogen Storage in Mofs <i>via</i> Machine Learning. SSRN Electronic Journal, 0, , .	0.4	1
96	Extracting kinetic information in catalysis: an automated tool for the exploration of small data. Reaction Chemistry and Engineering, 0, , .	3.7	3
97	Data-driven Discovery of the Governing Equation for the Transmission Lines System. , 2021, , .		1
98	Aggregation-induced emission (AIE): emerging technology based on aggregate science. Pure and Applied Chemistry, 2021, 93, 1383-1402.	1.9	9
99	Machine-Learning-Guided Discovery of ¹⁹ F MRI Agents Enabled by Automated Copolymer Synthesis. Journal of the American Chemical Society, 2021, 143, 17677-17689.	13.7	66
100	Atomic Structure Optimization with Machine-Learning Enabled Interpolation between Chemical Elements. Physical Review Letters, 2021, 127, 166001.	7.8	11
101	Informatics-Enabled Design of Structural Materials. Jom, 2021, 73, 3323-3325.	1.9	2
102	Data Science Applied to Carbon Materials: Synthesis, Characterization, and Applications. Advanced Theory and Simulations, 2022, 5, 2100205.	2.8	3
103	Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells. Solar Energy, 2021, 228, 689-699.	6.1	23
104	(INVITED) Lighting-up nanocarbons through hybridization: Optoelectronic properties and perspectives. Optical Materials: X, 2021, 12, 100100.	0.8	5
105	Boron doping in gallium oxide from first principles. Journal of Physics Communications, 2020, 4, 125001.	1.2	1
106	Improving ionic conductivity of doped Li7La3Zr2O12 using optimized machine learning with simplistic descriptors. Materials Letters, 2022, 308, 131159.	2.6	5
107	Surface reconstruction of tetragonal methylammonium lead triiodide. APL Materials, 2021, 9, .	5.1	5
108	Recommendations for Advancing FAIR and Open Data Standards in the Water Treatment Community. ACS ES&T Engineering, 2022, 2, 337-346.	7.6	6

	Сітатіо	on Report	
# 109	ARTICLE NH+-based frameworks as a platform for designing electrodes and solid electrolytes for Na-ion	lF 2.7	CITATIONS
109	batteries: A screening approach. Solid State Ionics, 2022, 374, 115810.	2.7	/
110	Data-driven thermoelectric modeling: Current challenges and prospects. Journal of Applied Physics, 2021, 130, .	2.5	9
111	Electrostatic Discovery Atomic Force Microscopy. ACS Nano, 2022, 16, 89-97.	14.6	11
113	Ethical Digital Lawyering. , 2021, , 298-311.		1
114	Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100456.	11.6	15
115	Progress in Materials Data Availability and Application: A review. IEEE Signal Processing Magazine, 2022, 39, 104-108.	5.6	Ο
116	Attribution-Driven Explanation of the Deep Neural Network Model via Conditional Microstructure Image Synthesis. ACS Omega, 2022, 7, 2624-2637.	3.5	2
117	Topological Quantum Cathode Materials for Fast Charging Liâ€Ion Battery Identified by Machine Learning and First Principles Calculation. Advanced Theory and Simulations, 2022, 5, 2100350.	2.8	4
118	Performance comparison of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>r</mml:mi>and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Physical Review Materials, 2022, 6, .</mml:mrow></mml:msup></mml:math 	ml:mrow> <mm 2.4</mm 	l:mŋ>2
119	Improving prediction accuracy of high-performance materials via modified machine learning strategy. Computational Materials Science, 2022, 204, 111181.	3.0	11
121	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	2.8	27
122	Twin-Wire Networks for Zero Interconnect, High-Density 4-Wire Electrical Characterizations of Materials. Research, 2022, 2022, 9874249.	5.7	3
123	The Solution is the Solution: Data-Driven Elucidation of Solution-to-Device Feature Transfer for ï€-Conjugated Polymer Semiconductors. ACS Applied Materials & Interfaces, 2022, 14, 3613-3620.	8.0	16
124	Third-harmonic Mie scattering from semiconductor nanohelices. Nature Photonics, 2022, 16, 126-133.	31.4	31
125	A R oad - map for M ining Business Process M odels via A rtificial I ntelligence T echnique. , 0, , .		0
126	Design of Organic Electronic Materials With a Goal-Directed Generative Model Powered by Deep Neural Networks and High-Throughput Molecular Simulations. Frontiers in Chemistry, 2021, 9, 800370.	3.6	12
127	CrabNet for Explainable Deep Learning in Materials Science: Bridging the Gap Between Academia and Industry. Integrating Materials and Manufacturing Innovation, 2022, 11, 41-56.	2.6	3
128	Statistical analysis of properties of non-fullerene acceptors for organic photovoltaics. Japanese Journal of Applied Physics, 0, , .	1.5	Ο

#	Article	IF	CITATIONS
129	Highly accurate machine learning prediction of crystal point groups for ternary materials from chemical formula. Scientific Reports, 2022, 12, 1577.	3.3	9
130	The materials tetrahedron has a "digital twin― MRS Bulletin, 2022, 47, 379-388.	3.5	17
131	Effect of atomistic fingerprints on thermomechanical properties of epoxy-diamine thermoset shape memory polymers. Polymer, 2022, 242, 124577.	3.8	15
132	Hardness prediction of high entropy alloys with machine learning and material descriptors selection by improved genetic algorithm. Computational Materials Science, 2022, 205, 111185.	3.0	33
133	How can polydispersity information be integrated in the QSPR modeling of mechanical properties?. Science and Technology of Advanced Materials Methods, 2022, 2, 1-13.	1.3	2
134	Smart Materials Prediction: Applying Machine Learning to Lithium Solid-State Electrolyte. Materials, 2022, 15, 1157.	2.9	10
135	Recent trends in computational tools and data-driven modeling for advanced materials. Materials Advances, 2022, 3, 4069-4087.	5.4	17
136	Machine learning as a tool to engineer microstructures: Morphological prediction of tannin-based colloids using Bayesian surrogate models. MRS Bulletin, 2022, 47, 29-37.	3.5	5
137	Roadmap on Machine learning in electronic structure. Electronic Structure, 2022, 4, 023004.	2.8	69
138	The AiiDA-Spirit Plugin for Automated Spin-Dynamics Simulations and Multi-Scale Modeling Based on First-Principles Calculations. Frontiers in Materials, 2022, 9, .	2.4	2
139	Data Centric Design: A New Approach to Design of Microstructural Material Systems. Engineering, 2022, 10, 89-98.	6.7	18
140	Machine learning in energy storage materials. , 2022, 1, 175-195.		45
141	Distributed representations of atoms and materials for machine learning. Npj Computational Materials, 2022, 8, .	8.7	9
142	Autonomous high-throughput computations in catalysis. Chem Catalysis, 2022, 2, 940-956.	6.1	14
143	Hybrid Model-Based and Data-Driven Solution for Uncertainty Quantification at the Microscale. Micro and Nanosystems, 2022, 14, 281-286.	0.6	3
144	Sim2Ls: FAIR simulation workflows and data. PLoS ONE, 2022, 17, e0264492.	2.5	4
145	Materials for Sustainable Nuclear Energy: A European Strategic Research and Innovation Agenda for All Reactor Generations. Energies, 2022, 15, 1845.	3.1	13
146	Recent advances and applications of deep learning methods in materials science. Npj Computational Materials, 2022, 8, .	8.7	207

CITATION REPORT ARTICLE IF CITATIONS Bridging Fidelities to Predict Nanoindentation Tip Radii Using Interpretable Deep Learning Models. Jom, 1.9 0 0, 1. Machine Learning Applied to Identify Corrosive Environmental Conditions. Frontiers in Materials, 2.4 2022, 9, . High throughput screening driven discovery of Mn5Co10Fe30Ni55Ox as electrocatalyst for water 6.1 6 oxidation and electrospinning synthesis. Applied Surface Science, 2022, 588, 152959. Two-Scale Deep Learning Model for Polysilicon MEMS Sensors., 2021, 2, . The European Project in the Materials Informatics Domain: Ontologies and Virtual Platforms. 0.5 2 Automatic Documentation and Mathematical Linguistics, 2021, 55, 254-265. Knowledge Graph-Empowered Materials Discovery., 2021, , . Data-Driven Methods for Accelerating Polymer Design. ACS Polymers Au, 2022, 2, 8-26. 4.1 39 eScience Infrastructures in Physical Chemistry. Annual Review of Physical Chemistry, 2022, 73, 97-116. 10.8 Design and Synthesis of Novel Oxime Ester Photoinitiators Augmented by Automated Machine 6.7 13 Learning. Chémistry of Materials, 2022, 34, 116-127. Machine learning assisted optimization of blending process of polyphenylene sulfide with elastomer 3.3 using high speed twin screw extruder. Scientific Reports, 2021, 11, 24079. Iterative peak-fitting of frequency-domain data via deep convolution neural networks. Journal of the 4 0.7 Korean Physical Society, 2021, 79, 1199-1208. Flory–Huggins Parameters for Thiol-ene Networks Using Hansen Solubility Parameters. 4.8 Macromolecules, 2021, 54, 11439-11448. Now Is the Time to Build a National Data Ecosystem for Materials Science and Chemistry Research 3.5 2 Data. ACS Omega, 2022, 7, 13398-13402. MaterialsAtlas.org: a materials informatics web app platform for materials discovery and survey of 8.7 state-of-the-art. Npj Computational Materials, 2022, 8, . Finding predictive models for singlet fission by machine learning. Npj Computational Materials, 2022, 8.7 4 8,. Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective. Catalysis Science and Technology, 2022, 12, 3650-3669. ULSA: unified language of synthesis actions for the representation of inorganic synthesis protocols., 10 2022, 1, 313-324.

164How technology is transforming innovative education and providing solutions during a pandemic
disruption. International Journal of Health Sciences, 0, , 1724-1738.0.11

#

147

148

149

151

153

154

155

157

159

161

#	Article	IF	CITATIONS
165	An extended computational approach for point-defect equilibria in semiconductor materials. Npj Computational Materials, 2022, 8, .	8.7	3
166	Accelerating materials discovery using artificial intelligence, high performance computing and robotics. Npj Computational Materials, 2022, 8, .	8.7	71
167	FAIR data enabling new horizons for materials research. Nature, 2022, 604, 635-642.	27.8	81
168	Rapid multi-property assessment of compositionally modulated Fe-Co-Ni thin film material libraries. Results in Materials, 2022, 14, 100283.	1.8	2
169	Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Applied Surface Science, 2022, 597, 153681.	6.1	154
170	Recent Development of Polyaniline/graphene Composite Electrodes for Flexible Supercapacitor Devices. ChemNanoMat, 2022, 8, .	2.8	11
171	Machine learning sparse tight-binding parameters for defects. Npj Computational Materials, 2022, 8, .	8.7	6
172	Challenges in Information-Mining the Materials Literature: A Case Study and Perspective. Chemistry of Materials, 2022, 34, 4821-4827.	6.7	3
173	FAIR and Interactive Data Graphics from a Scientific Knowledge Graph. Scientific Data, 2022, 9, .	5.3	9
174	Smart Web Service of Ti-Based Alloy's Quality Evaluation for Medical Implants Manufacturing. Applied Sciences (Switzerland), 2022, 12, 5238.	2.5	12
175	Recent and Emerging Trends in Remediation of Methylene Blue Dye from Wastewater by Using Zinc Oxide Nanoparticles. Water (Switzerland), 2022, 14, 1749.	2.7	29
176	Processing time, temperature, and initial chemical composition prediction from materials microstructure by deep network for multiple inputs and fused data. Materials and Design, 2022, 219, 110799.	7.0	5
178	High-temperature ionic logic gates composed of an ionic rectifying solid–electrolyte interface. RSC Advances, 2022, 12, 18501-18506.	3.6	0
179	Perovskite- and Dye-Sensitized Solar-Cell Device Databases Auto-generated Using ChemDataExtractor. Scientific Data, 2022, 9, .	5.3	24
180	Machine Learning and First-Principles Discovery of Ternary Superhard Materials. ACS Symposium Series, 0, , 211-238.	0.5	0
181	Machine learning-assisted design of biomedical high entropy alloys with low elastic modulus for orthopedic implants. Journal of Materials Science, 2022, 57, 11151-11169.	3.7	8
182	Creep rupture life prediction of nickel-based superalloys based on data fusion. Computational Materials Science, 2022, 211, 111560.	3.0	13
183	First-Principles Core Spectroscopy of LiCoO ₂ and CoO ₂ . Journal of Physical Chemistry C, 2022, 126, 10949-10956.	3.1	1

#	Article	IF	CITATIONS
184	Distilling physical origins of hardness in multi-principal element alloys directly from ensemble neural network models. Npj Computational Materials, 2022, 8, .	8.7	14
185	Unity of Opposites between Soluble and Insoluble Lithium Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2022, 34, .	21.0	38
186	Improving Symbolic Regression for Predicting Materials Properties with Iterative Variable Selection. Journal of Chemical Theory and Computation, 2022, 18, 4945-4951.	5.3	11
187	Open Challenges in Developing Generalizable Large-Scale Machine-Learning Models for Catalyst Discovery. ACS Catalysis, 2022, 12, 8572-8581.	11.2	18
188	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	47.7	120
189	Quantum embedding theories to simulate condensed systems on quantum computers. Nature Computational Science, 2022, 2, 424-432.	8.0	19
190	International Principles for the Publication and Dissemination of Scientific Data. Scientific and Technical Information Processing, 2022, 49, 84-95.	0.6	1
191	Modeling and Optimum Design of Carbon Nanotube/Polyvinyl Alcohol Hybrid Nanofibers as Electromagnetic Interference Shielding Material. Integrating Materials and Manufacturing Innovation, 0, , .	2.6	0
192	Exploration of organic superionic glassy conductors by process and materials informatics with lossless graph database. Npj Computational Materials, 2022, 8, .	8.7	10
193	Machine learning-facilitated multiscale imaging for energy materials. Cell Reports Physical Science, 2022, 3, 101008.	5.6	4
194	Digital meets smart: towards a technology-enhanced approach to Smart Specialisation Strategy development. Regional Studies, 2022, 56, 1421-1428.	4.4	2
195	On the value of popular crystallographic databases for machine learning prediction of space groups. Acta Materialia, 2022, 240, 118353.	7.9	2
196	Machine learning for high-entropy alloys: Progress, challenges and opportunities. Progress in Materials Science, 2023, 131, 101018.	32.8	54
197	Data-driven machine learning for disposal of high-level nuclear waste: A review. Annals of Nuclear Energy, 2023, 180, 109452.	1.8	13
198	A novel generalization ability-enhanced approach for corrosion fatigue life prediction of marine welded structures. International Journal of Fatigue, 2023, 166, 107222.	5.7	14
199	BatteryDataExtractor: battery-aware text-mining software embedded with BERT models. Chemical Science, 2022, 13, 11487-11495.	7.4	10
200	Modeling Transmission Lines Using a Hybrid Knowledge-Based and Data-Driven Approach. , 2022, 1, 12-21.		0
201	Machine-learning-assisted discovery of perovskite materials with high dielectric breakdown strength. Materials Advances, 2022, 3, 8639-8646.	5.4	4

#	ARTICLE	IF	CITATIONS
202	Polymer-based hybrid materials and their application in personal health. Nano Research, 2023, 16, 3956-3975.	10.4	3
203	Thermodynamics and dielectric response of BaTiO3 by data-driven modeling. Npj Computational Materials, 2022, 8, .	8.7	15
204	A flexible and scalable scheme for mixing computed formation energies from different levels of theory. Npj Computational Materials, 2022, 8, .	8.7	8
205	Morphological evolution via surface diffusion learned by convolutional, recurrent neural networks: Extrapolation and prediction uncertainty. Physical Review Materials, 2022, 6, .	2.4	1
206	Descriptor Aided Bayesian Optimization for Many-Level Qualitative Variables With Materials Design Applications. Journal of Mechanical Design, Transactions of the ASME, 2023, 145, .	2.9	5
207	Educating current industrial workforce to embrace data-driven materials development. MRS Bulletin, 2022, 47, 981-985.	3.5	1
208	Data-Driven Approach Study for the Prediction and Detection of Infectious Disease Outbreak. , 2023, , 115-129.		0
209	Networks and interfaces as catalysts for polymer materials innovation. Cell Reports Physical Science, 2022, 3, 101126.	5.6	5
210	A Blockchain-Based Architecture for Trust in Collaborative Scientific Experimentation. Journal of Grid Computing, 2022, 20, .	3.9	2
211	Accelerating the adoption of research data management strategies. Matter, 2022, 5, 3614-3642.	10.0	2
212	Data storage architectures to accelerate chemical discovery: data accessibility for individual laboratories and the community. Chemical Science, 2022, 13, 13646-13656.	7.4	9
213	Data Sharing Algorithm of Fusion Information System of Party Building and Business Work in Private Colleges under Background of Data Collection Mining. , 2022, , .		0
214	A simple denoising approach to exploit multi-fidelity data for machine learning materials properties. Npj Computational Materials, 2022, 8, .	8.7	2
215	Machine learning (deep learning) and visualization assisted ferrite content prediction in austenitic stainless steel. Materials Today Communications, 2022, 33, 104943.	1.9	2
216	Compositional engineering of perovskites with machine learning. Physical Review Materials, 2022, 6, .	2.4	4
217	Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
218	Machine learning prediction of the mechanical properties of refractory multicomponent alloys based on a dataset of phase and first principles simulation. , 0, 1, .		0
219	State-of-the-Art Review on the Aspects of Martensitic Alloys Studied via Machine Learning. Metals, 2022, 12, 1884.	2.3	2

#	ARTICLE Data-driven discovery of 2D materials by deep generative models. Npj Computational Materials, 2022, 8,	IF	CITATIONS
220	·	8.7	30
221	Feature extended energy landscape model for interpreting coercivity mechanism. Communications Physics, 2022, 5, .	5.3	5
222	Phase and Microstructural Selection in High Entropy Materials. Materials Horizons, 2022, , 47-82.	0.6	0
223	Boosting-based model for solving Sm-Co alloy's maximum energy product prediction task. Archives of Materials Science and Engineering, 2022, 116, 71-80.	1.1	0
224	Research Acceleration in Selfâ€Driving Labs: Technological Roadmap toward Accelerated Materials and Molecular Discovery. Advanced Intelligent Systems, 2023, 5, .	6.1	10
225	Bamboo phase quantification using thermogravimetric analysis: deconvolution and machine learning. Cellulose, 2023, 30, 1873-1893.	4.9	3
226	Assessment of Smart Transformation in the Manufacturing Process of Aerospace Components Through a Data-Driven Approach. Global Journal of Flexible Systems Management, 2023, 24, 67-86.	6.3	3
227	Exploring the Conformers of an Organic Molecule on a Metal Cluster with Bayesian Optimization. Journal of Chemical Information and Modeling, 2023, 63, 745-752.	5.4	3
228	Mining the relationship between the dynamic compression performance and basic mechanical properties of Ti2OC based on machine learning methods. Materials and Design, 2023, 226, 111633.	7.0	2
229	Thermodynamic and kinetic considerations of nitrogen carriers for chemical looping ammonia synthesis. Discover Chemical Engineering, 2023, 3, .	2.2	5
230	Predicting mechanical fields near cracks using a progressive transformer diffusion model and exploration of generalization capacity. Journal of Materials Research, 2023, 38, 1317-1331.	2.6	9
231	Zinc- and Copper-Doped Mesoporous Borate Bioactive Classes: Promising Additives for Potential Use in Skin Wound Healing Applications. International Journal of Molecular Sciences, 2023, 24, 1304.	4.1	11
232	Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Letters, 2023, 15, .	27.0	19
233	A machine learning route between band mapping and band structure. Nature Computational Science, 2023, 3, 101-114.	8.0	2
234	Dataâ€Driven Design of Electrically Conductive Nanocomposite Materials: A Case Study of Acrylonitrile–Butadiene–Styrene/Carbon Nanotube Binary Composites. Advanced Intelligent Systems, 0, , 2200399.	6.1	3
235	Integrated data-driven modeling and experimental optimization of granular hydrogel matrices. Matter, 2023, 6, 1015-1036.	10.0	9
236	Data-driven materials science: application of ML for predicting band gap. Advances in Materials and Processing Technologies, 0, , 1-10.	1.4	50
237	FAIR and Open Data requires proper incentives and a shift in academic culture. , 2023, 1, 7-9.		2

#	Article	IF	CITATIONS
238	Combining Molecular Dynamics and Machine Learning to Analyze Shear Thinning for Alkane and Globular Lubricants in the Low Shear Regime. ACS Applied Materials & Interfaces, 2023, 15, 8567-8578.	8.0	4
239	Extracting Polaron Recombination from Electroluminescence in Organic Lightâ€Emitting Diodes by Artificial Intelligence. Advanced Materials, 2023, 35, .	21.0	2
240	ET-AL: Entropy-targeted active learning for bias mitigation in materials data. Applied Physics Reviews, 2023, 10, .	11.3	5
241	Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112.	18.8	22
242	Uncertainty quantification of predicting stable structures for high-entropy alloys using Bayesian neural networks. Journal of Energy Chemistry, 2023, 81, 118-124.	12.9	2
243	Predicting the HOMO-LUMO gap of benzenoid polycyclic hydrocarbons via interpretable machine learning. Chemical Physics Letters, 2023, 814, 140358.	2.6	6
244	A two-step data augmentation method based on generative adversarial network for hardness prediction of high entropy alloy. Computational Materials Science, 2023, 220, 112064.	3.0	8
245	Unveiling Hidden Zeolitic Imidazolate Frameworks Guided by Intuitionâ€Based Geometrical Factors. Small, 2023, 19, .	10.0	0
246	Machine Learning for Perovskite Solar Cells and Component Materials: Key Technologies and Prospects. Advanced Functional Materials, 2023, 33, .	14.9	19
247	Community Resource for Innovation in Polymer Technology (CRIPT): A Scalable Polymer Material Data Structure. ACS Central Science, 2023, 9, 330-338.	11.3	15
248	Advanced ocean wave energy harvesting: current progress and future trends. Journal of Zhejiang University: Science A, 2023, 24, 91-108.	2.4	7
249	Prediction and Control in DNA Nanotechnology. ACS Applied Bio Materials, 2024, 7, 626-645.	4.6	5
250	Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data. Genetic and Evolutionary Computation, 2023, , 1-30.	1.0	1
251	Current Status and Future Scope of Phase Diagram Studies. ISIJ International, 2023, 63, 407-418.	1.4	1
252	Phase prediction and experimental realisation of a new high entropy alloy using machine learning. Scientific Reports, 2023, 13, .	3.3	6
253	Recovering Microscopic Images in Material Science Documents by Image Inpainting. Applied Sciences (Switzerland), 2023, 13, 4071.	2.5	0
254	Magnetic iron-cobalt silicides discovered using machine-learning. Physical Review Materials, 2023, 7, .	2.4	3
255	Community action on FAIR data will fuel a revolution in materials research. MRS Bulletin, 2024, 49, 12-16	3.5	3

#	Article	IF	Citations
256	Fifth Paradigm in Science: A Case Study of an Intelligence-Driven Material Design. Engineering, 2023, 24, 126-137.	6.7	0
257	Polymer composition optimization approach based on feature extraction of bound and free water using time-domain nuclear magnetic resonance. Journal of Magnetic Resonance, 2023, 351, 107438.	2.1	2
258	Improving Scientific Image Processing Accessibility through Development of Graphic User Interfaces for scikit-image. , 0, , .		0
259	Mechanical energy metamaterials in interstellar travel. Progress in Materials Science, 2023, 137, 101132.	32.8	11
260	Dataâ€Driven Approach to Tailoring Mechanical Properties of a Soft Material. Advanced Functional Materials, 0, , .	14.9	0
261	Machine-Learning-Assisted Understanding of Polymer Nanocomposites Composition–Property Relationship: A Case Study of NanoMine Database. Macromolecules, 2023, 56, 3945-3953.	4.8	3
262	A Data-Driven Approach to Predicting Tablet Properties after Accelerated Test Using Raw Material Property Database and Machine Learning. Chemical and Pharmaceutical Bulletin, 2023, 71, 406-415.	1.3	0
263	Methods, progresses, and opportunities of materials informatics. InformaÄnÃ-Materiály, 2023, 5, .	17.3	8
264	Faux-Data Injection Optimization for Accelerating Data-Driven Discovery of Materials. Integrating Materials and Manufacturing Innovation, 2023, 12, 157-170.	2.6	0
265	Functional Material Systems Enabled by Automated Data Extraction and Machine Learning. Advanced Functional Materials, 0, , .	14.9	4
266	Application of high-throughput methodologies and artificial intelligence for adhesion testing. , 2023, , 751-775.		0
267	Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language. Nature Communications, 2023, 14, .	12.8	2
268	Data Analysis of Ab initio Effective Hamiltonians in Iron-Based Superconductors — Construction of Predictors for Superconducting Critical Temperature. Journal of the Physical Society of Japan, 2023, 92, .	1.6	1
269	Single-Atom Dopants in Plasmonic Nanocatalysts. Journal of Physical Chemistry C, 2023, 127, 8585-8590.	3.1	3
270	The Intersection Between Semantic Web and Materials Science. Advanced Intelligent Systems, 2023, 5, .	6.1	2
271	Prediction of phase via machine learning in high entropy alloys. Materials Today: Proceedings, 2023, , .	1.8	1
272	Discovery of Novel Photocatalysts Using Machine Learning Approach. , 2023, , 233-261.		0
273	Materials property prediction with uncertainty quantification: A benchmark study. Applied Physics Reviews, 2023, 10, .	11.3	8

#	Article	IF	CITATIONS
274	An Intelligent, Userâ€Inclusive Pipeline for Organic Semiconductor Design. Advanced Theory and Simulations, 0, , .	2.8	0
275	Enhancing saline water evaporation rates via floatable, conductive nanoparticles embedded in superhydrophobic cotton gauze at air-water interface. Diamond and Related Materials, 2023, 136, 110047.	3.9	0
276	High-throughput and machine learning approaches for the discovery of metal organic frameworks. APL Materials, 2023, 11, .	5.1	0
277	Principles of Machine Learning and Its Application to Thermal Barrier Coatings. Coatings, 2023, 13, 1140.	2.6	1
278	Unlocking the Potential: The Impact of Innovative Capability on Process, Product, and Market Innovation and Firm Performance. Marketing and Management of Innovations, 2023, 14, 19-33.	1.5	0
279	A multi-algorithm integration machine learning approach for high cycle fatigue prediction of a titanium alloy in aero-engine. Engineering Fracture Mechanics, 2023, 289, 109485.	4.3	4
280	Atomic structures, conformers and thermodynamic properties of 32k atmospheric molecules. Scientific Data, 2023, 10, .	5.3	2
281	Recent Advances and Applications of Machine Learning in Experimental Solid Mechanics: A Review. Applied Mechanics Reviews, 2023, 75, .	10.1	9
282	Autonomous sputter synthesis of thin film nitrides with composition controlled by Bayesian optimization of optical plasma emission. APL Materials, 2023, 11, .	5.1	0
283	FFMDFPA: A FAIRification Framework for Materials Data with No-Code Flexible Semi-Structured Parser and Application Programming Interfaces. Journal of Chemical Information and Modeling, 2023, 63, 4986-4994.	5.4	0
284	Materials Science Ontology Design withÂanÂAnalytico-Synthetic Facet Analysis Framework. Communications in Computer and Information Science, 2023, , 211-221.	0.5	0
285	La ciencia abierta y su relación con la innovación: una revisión bibliométrica. Investigacion Bibliotecologica, 2023, 37, 109-128.	0.2	0
286	Prediction of the self-healing properties of concrete modified with bacteria and fibers using machine learning. Asian Journal of Civil Engineering, 0, , .	1.6	0
287	Tensile Strength Prediction of Gray Cast Iron for Cylinder Head Based on Microstructure and Machine Learning. Steel Research International, 2024, 95, .	1.8	0
288	A domain knowledge enhanced machine learning method to predict the properties of halide double perovskite A ₂ B ⁺ B ³⁺ X ₆ . Journal of Materials Chemistry A, 2023, 11, 20193-20205.	10.3	0
289	Advances in dataâ€assisted highâ€ŧhroughput computations for material design. , 2023, 1, .		1
290	PubChemQC B3LYP/6-31G*//PM6 Data Set: The Electronic Structures of 86 Million Molecules Using B3LYP/6-31G* Calculations. Journal of Chemical Information and Modeling, 2023, 63, 5734-5754.	5.4	0
291	Mechanical metamaterials and beyond. Nature Communications, 2023, 14, .	12.8	18

#	Article	IF	CITATIONS
292	Machine learning-based multi-objective parameter optimization for indium electrorefining. Separation and Purification Technology, 2024, 328, 125092.	7.9	1
293	A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low-Data Regime. ACS Central Science, 2023, 9, 1810-1819.	11.3	4
294	Screening Mixed-Metal Sn ₂ M(III)Ch ₂ X ₃ Chalcohalides for Photovoltaic Applications. Chemistry of Materials, 2023, 35, 7761-7769.	6.7	0
295	Dataâ€driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology. , 2023, 1, .		0
296	Accelerated feasible screening of flame-retardant polymeric composites using data-driven multi-objective optimization. Computational Materials Science, 2023, 230, 112479.	3.0	3
297	Improving the accuracy of the deep energy method. Acta Mechanica, 0, , .	2.1	0
298	Visualization of the Magnetostriction Mechanism in Fe-Ga Alloy Single Crystal Using Dimensionality Reduction Techniques. IEEE Transactions on Magnetics, 2023, 59, 1-4.	2.1	0
299	Toward a digital materials mechanical testing lab. Computers in Industry, 2023, 153, 104016.	9.9	0
300	A versatile strategy for hybridizing small experimental and large simulation data: A case for ceramic tape-casting process. Materials and Design, 2023, 234, 112357.	7.0	0
301	Accelerating materials discovery using integrated deep machine learning approaches. Journal of Materials Chemistry A, 0, , .	10.3	0
302	IMPLEMENTATION OF COMPUTER PROCESSING OF RELAXATION PROCESSES INVESTIGATION DATA USING EXTENDED EXPONENTIAL FUNCTION. Informatyka Automatyka Pomiary W Gospodarce I Ochronie Åšrodowiska, 2023, 13, 51-55.	0.4	0
303	Drawing a materials map with an autoencoder for lithium ionic conductors. Scientific Reports, 2023, 13, .	3.3	1
304	Extracting the Synthetic Route of Pd-Based Catalysts in Methanol Steam Reforming from the Scientific Literature. Journal of Chemical Information and Modeling, 2023, 63, 6249-6260.	5.4	0
305	Scientific Computing with Diffractive Optical Neural Networks. Advanced Intelligent Systems, 2023, 5, .	6.1	2
306	Artificial neural networks and their applications in computational materials science: A review and a case study. Advances in Applied Mechanics, 2023, , .	2.3	0
307	State of the Art and Outlook of Data Science and Machine Learning in Organic Chemistry. Current Organic Chemistry, 2023, 27, .	1.6	0
308	Neural Networks for Constitutive Modeling: From Universal Function Approximators to Advanced Models and the Integration of Physics. Archives of Computational Methods in Engineering, 2024, 31, 1097-1127.	10.2	2
309	Best practice for sampling in automated parallel synthesizers. , 0, , .		Ο

#	Article	IF	CITATIONS
310	Development of a Flux-Method Process Informatics System and Its Application in Growth Control for Layered Perovskite Ba ₅ Nb ₄ O ₁₅ Crystals. Crystal Growth and Design, 0, , .	3.0	0
311	SEMPro: A Data-Driven Pipeline To Learn Structure–Property Insights from Scanning Electron Microscopy Images. , 0, , 3117-3125.		0
312	Predicting the Composition and Mechanical Properties of Seaweed Bioplastics from the Scientific Literature: A Machine Learning Approach for Modeling Sparse Data. Applied Sciences (Switzerland), 2023, 13, 11841.	2.5	0
313	InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure. Processes, 2023, 11, 3168.	2.8	0
314	Superelastic Behaviors of Molecular Crystals. , 0, , .		0
315	Coarse-Grained Artificial Intelligence for Design of Brush Networks. ACS Macro Letters, 2023, 12, 1510-1516.	4.8	0
316	Challenges and prospects in big data analytics: a comprehensive review of developments, hurdles, and future research directions. Åal‹kal‹rìm Universitetìnìn̦ HabarÅ;ysy Tehnika Ä;ylymdar, 2023, , 60-67.	0.0	0
317	Rational Atom Substitution to Obtain Efficient, Leadâ€Free Photocatalytic Perovskites Assisted by Machine Learning and DFT Calculations. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
318	Rational Atom Substitution to Obtain Efficient, Leadâ€Free Photocatalytic Perovskites Assisted by Machine Learning and DFT Calculations. Angewandte Chemie, 2023, 135, .	2.0	0
319	Review of Material Modeling and Digitalization in Industry: Barriers and Perspectives. Integrating Materials and Manufacturing Innovation, 2023, 12, 397-420.	2.6	0
320	Exploring the Frontier. Advances in Logistics, Operations, and Management Science Book Series, 2023, , 48-68.	0.4	0
321	Machine learning in metal-ion battery research: Advancing material prediction, characterization, and status evaluation. Journal of Energy Chemistry, 2024, 90, 191-204.	12.9	2
322	A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations. , 2023, 1, .		1
323	Navigating the Expansive Landscapes of Soft Materials: A User Guide for High-Throughput Workflows. ACS Polymers Au, 2023, 3, 406-427.	4.1	1
324	A comprehensive strategy for phase detection of high entropy alloys: Machine learning and deep learning approaches. Materials Today Communications, 2023, 37, 107525.	1.9	0
325	Data-driven mapping-relationship mining between hardness and mechanical properties of dual-phase titanium alloys via random forest and statistical analysis. Rare Metals, 0, , .	7.1	0
326	Multi-dimensional Data Visualization for Analyzing Materials. Communications in Computer and Information Science, 2024, , 195-210.	0.5	0
327	Towards understanding structure–property relations in materials with interpretable deep learning. Npj Computational Materials, 2023, 9, .	8.7	1

CITATION	
CHAILON	REFORT

#	Article	IF	CITATIONS
328	Fully Bayesian Inference for Latent Variable Gaussian Process Models. SIAM-ASA Journal on Uncertainty Quantification, 2023, 11, 1357-1381.	2.0	0
329	Dataâ€Driven Compound Identification in Atmospheric Mass Spectrometry. Advanced Science, 2024, 11, .	11.2	1
330	Leveraging Support Vector Machine for Sports Injury Classification. , 2023, , .		0
331	Guiding experiment with Machine Learning: A case study of biochar adsorption of Ciprofloxacin. Separation and Purification Technology, 2024, 334, 126023.	7.9	1
332	Parallel Catalyst Synthesis Protocol for Accelerating Heterogeneous Olefin Polymerization Research. Polymers, 2023, 15, 4729.	4.5	0
333	MatGD: Materials Graph Digitizer. ACS Applied Materials & Interfaces, 0, , .	8.0	0
334	PMD Core Ontology: Achieving semantic interoperability in materials science. Materials and Design, 2024, 237, 112603.	7.0	1
335	Not as simple as we thought: a rigorous examination of data aggregation in materials informatics. , 2024, 3, 337-346.		0
336	A penalized complexity prior for deep Bayesian transfer learning with application to materials informatics. Annals of Applied Statistics, 2023, 17, .	1.1	0
337	Path-Based Processing using In-Memory Systolic Arrays for Accelerating Data-Intensive Applications. , 2023, , .		0
338	Efficient design and synthesis of an amorphous conjugated polymer network for a metal-free electrocatalyst of hydrogen evolution reaction. Journal of Materials Chemistry A, 2024, 12, 3294-3303.	10.3	0
339	Al ³⁺ -modified ZnO thin film sensor fabricated by the sputtering method: Characterization and a carbon monoxide gas detection study. Journal of Chemical Research, 2024, 48, .	1.3	0
340	Data-Driven Discovery of Intrinsic Direct-Gap 2D Materials as Potential Photocatalysts for Efficient Water Splitting. ACS Catalysis, 2024, 14, 1336-1350.	11.2	1
341	Machine Learning Enhanced Prediction of Permittivity of Spinel Microwave Dielectric Ceramics Compared to Traditional C-M Calculation. Modelling and Simulation in Materials Science and Engineering, 0, , .	2.0	0
342	Lead-Free Double Perovskites: A Review of the Structural, Optoelectronic, Mechanical, and Thermoelectric Properties Derived from First-Principles Calculations, and Materials Design Applicable for Pedagogical Purposes. Crystals, 2024, 14, 86.	2.2	0
343	ChatGPT in the Material Design: Selected Case Studies to Assess the Potential of ChatGPT. Journal of Chemical Information and Modeling, 2024, 64, 799-811.	5.4	0
344	Hacking decarbonization with a community-operated CreatorSpace. CheM, 2024, 10, 1071-1083.	11.7	0
345	Automatically Generated Datasets: Present and Potential Self-Cleaning Coating Materials. Scientific Data, 2024, 11, .	5.3	Ο

#	Article	IF	CITATIONS
346	Dataâ€Ðriven Controlled Synthesis of Oriented Quasiâ€&pherical CsPbBr ₃ Perovskite Materials. Angewandte Chemie, 2024, 136, .	2.0	0
347	Dataâ€Driven Controlled Synthesis of Oriented Quasiâ€5pherical CsPbBr ₃ Perovskite Materials. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
348	High cycle fatigue life prediction of titanium alloys based on a novel deep learning approach. International Journal of Fatigue, 2024, 182, 108206.	5.7	0
349	Accelerated discovery of high-performance 3D printing materials using multi-objective active optimization method. Journal of Materials Science, 2024, 59, 2390-2402.	3.7	0
350	Predicting superconducting transition temperature through advanced machine learning and innovative feature engineering. Scientific Reports, 2024, 14, .	3.3	0
351	Informatics-Driven Design of Superhard B–C–O Compounds. ACS Applied Materials & Interfaces, 2024, 16, 10372-10379.	8.0	0
352	The NOMAD mini-apps: A suite of kernels from ab initio electronic structure codes enabling co-design in high-performance computing. Open Research Europe, 0, 4, 35.	2.0	0
353	A General Materials Data Science Framework for Quantitative 2D Analysis of Particle Growth from Image Sequences. Integrating Materials and Manufacturing Innovation, 2024, 13, 71-82.	2.6	0
354	Exploring the viability of Al-aided genetic algorithms in estimating the crack repair rate of self-healing concrete. Reviews on Advanced Materials Science, 2024, 63, .	3.3	0
355	Machine-learning accelerated structure search for ligand-protected clusters. Journal of Chemical Physics, 2024, 160, .	3.0	0
356	Utilizing Machine Learning Models for Predicting Diamagnetic Susceptibility of Organic Compounds. ACS Omega, 2024, 9, 14368-14374.	3.5	0
357	A Case Study of Multimodal, Multi-institutional Data Management for the Combinatorial Materials Science Community. Integrating Materials and Manufacturing Innovation, 0, , .	2.6	0
358	Methods and applications of machine learning in computational design of optoelectronic semiconductors. Science China Materials, 2024, 67, 1042-1081.	6.3	0