Recent Progress on Zinc-Ion Rechargeable Batteries

Nano-Micro Letters 11, 90 DOI: 10.1007/s40820-019-0322-9

Citation Report

#	Article	IF	CITATIONS
1	Boosting High-Rate Zinc-Storage Performance by the Rational Design of Mn2O3 Nanoporous Architecture Cathode. Nano-Micro Letters, 2020, 12, 14.	27.0	57
2	Bi2S3 for Aqueous Zn Ion Battery with Enhanced Cycle Stability. Nano-Micro Letters, 2020, 12, 8.	27.0	58
3	High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery. ACS Applied Materials & Interfaces, 2020, 12, 48654-48661.	8.0	13
4	Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network. Journal of Power Sources, 2020, 479, 228808.	7.8	43
5	Effect of active MgO nano-particles dispersion in small amount within magnesium-ion conducting polymer electrolyte matrix. Nano Structures Nano Objects, 2020, 24, 100587.	3.5	18
6	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	30.8	497
7	MnO2 Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries. International Journal of Molecular Sciences, 2020, 21, 4689.	4.1	37
8	High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials. Nano-Micro Letters, 2020, 12, 152.	27.0	141
9	A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers, 2020, 12, 2812.	4.5	33
10	A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg _{0.23} V ₂ O ₅ ·1.0H ₂ O cathode. Journal of Materials Chemistry A, 2020, 8, 18327-18337.	10.3	66
11	Defect Engineering in Manganeseâ€Based Oxides for Aqueous Rechargeable Zincâ€Ion Batteries: A Review. Advanced Energy Materials, 2020, 10, 2001769.	19.5	249
12	An In Situ Crossâ€Linked Nonaqueous Polymer Electrolyte for Zincâ€Metal Polymer Batteries and Hybrid Supercapacitors. Small, 2020, 16, e2002528.	10.0	24
13	Recent Advances of Emerging 2D MXene for Stable and Dendriteâ€Free Metal Anodes. Advanced Functional Materials, 2020, 30, 2004613.	14.9	140
14	Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Dalton Transactions, 2020, 49, 17629-17634.	3.3	53
15	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	14.6	340
16	Binder-Free α-MnO2 Nanowires on Carbon Cloth as Cathode Material for Zinc-Ion Batteries. International Journal of Molecular Sciences, 2020, 21, 3113.	4.1	22
17	A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. Journal of Materials Chemistry A, 2020, 8, 12799-12809.	10.3	101
18	Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chemical Engineering Journal, 2020, 397, 125418.	12.7	225

#	Article	IF	CITATIONS
19	Microstructure-tuned cobalt oxide electrodes for high-performance Zn–Co batteries. Electrochimica Acta, 2020, 353, 136535.	5.2	28
20	Characterization of a new rechargeable Zn/PVA-KOH/Bi ₂ O ₃ battery: structural changes of the Bi ₂ O ₃ electrode. Sustainable Energy and Fuels, 2020, 4, 4497-4505.	4.9	6
21	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	17.4	303
22	Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Letters, 2020, 12, 68.	27.0	103
23	Flexible Znâ€ion batteries based on manganese oxides: Progress and prospect. , 2020, 2, 387-407.		55
24	Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. Nanoscale, 2020, 12, 20638-20648.	5.6	61
25	Binder-free coaxially grown V6O13 nanobelts on carbon cloth as cathodes for highly reversible aqueous zinc ion batteries. Applied Surface Science, 2020, 529, 147077.	6.1	51
26	Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule, 2020, 4, 771-799.	24.0	1,164
27	Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 712-726.	12.9	211
28	Developing improved electrolytes for aqueous zinc-ion batteries to achieve excellent cyclability and antifreezing ability. Journal of Colloid and Interface Science, 2021, 586, 362-370.	9.4	48
29	Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Research, 2021, 14, 754-761.	10.4	96
30	Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability. Journal of Energy Chemistry, 2021, 56, 404-411.	12.9	60
31	Wide interlayer spacing ammonium vanadate (NH4)0.37V2O5.0.15(H2O) cathode for rechargeable aqueous zinc-ion batteries. Journal of Industrial and Engineering Chemistry, 2021, 93, 176-185.	5.8	22
32	Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries. Journal of Energy Chemistry, 2021, 59, 134-159.	12.9	142
33	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	4.7	23
34	Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control. Journal of Materials Science and Technology, 2021, 74, 52-59.	10.7	13
35	Mathematical modeling and numerical analysis of alkaline zinc-iron flow batteries for energy storage applications. Chemical Engineering Journal, 2021, 405, 126684.	12.7	39
36	Simulation of dendritic growth of a zinc anode in a zinc–nickel single flow battery using the phase field-lattice Boltzmann method. New Journal of Chemistry, 2021, 45, 1838-1852.	2.8	8

#	Article	IF	CITATIONS
37	Challenges and strategies of zinc anode for aqueous zinc-ion batteries. Materials Chemistry Frontiers, 2021, 5, 2201-2217.	5.9	50
38	Recent Developments of Zinc-Ion Batteries. , 2021, , 27-57.		1
39	Electrochemically-induced structural reconstruction in promoting the Zn storage performance of a CaMn ₃ O ₆ cathode for superior long-life aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 16868-16877.	10.3	3
40	A carbon-coated spinel zinc cobaltate doped with manganese and nickel as a cathode material for aqueous zinc-ion batteries. Dalton Transactions, 2021, 50, 5795-5806.	3.3	6
41	Defect engineering <i>via</i> the F-doping of β-MnO ₂ cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 17211-17222.	10.3	58
42	Electrolyte Concentration Regulation Boosting Zinc Storage Stability of High-Capacity K0.486V2O5 Cathode for Bendable Quasi-Solid-State Zinc Ion Batteries. Nano-Micro Letters, 2021, 13, 34.	27.0	51
43	Inorganic Colloidal Electrolyte for Highly Robust Zinc-Ion Batteries. Nano-Micro Letters, 2021, 13, 69.	27.0	152
44	Recent Development of Mnâ€based Oxides as Zincâ€lon Battery Cathode. ChemSusChem, 2021, 14, 1634-1658.	6.8	99
45	Toward a High-Performance Aqueous Zinc Ion Battery: Potassium Vanadate Nanobelts and Carbon Enhanced Zinc Foil. Nano Letters, 2021, 21, 2738-2744.	9.1	77
46	In-situ electrochemical conversion of vanadium dioxide for enhanced zinc-ion storage with large voltage range. Journal of Power Sources, 2021, 487, 229369.	7.8	61
47	Constructing a High-Performance Aqueous Rechargeable Zinc-Ion Battery Cathode with Self-Assembled Mat-like Packing of Intertwined Ag(I) Pre-Inserted V ₃ O ₇ A·H ₂ O Microbelts with Reduced Graphene Oxide Core. ACS Sustainable Chemistry and Engineering, 2021, 9, 3985-3995.	6.7	40
48	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	3.4	43
49	Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Letters, 2021, 13, 89.	27.0	130
50	Aqueous Rechargeable Znâ€ion Batteries: Strategies for Improving the Energy Storage Performance. ChemSusChem, 2021, 14, 1987-2022.	6.8	59
51	Dual-redox enhanced supercapacitors with sodium anthraquinone-2-sulfonate and potassium bromide. Electrochimica Acta, 2021, 374, 137889.	5.2	14
52	Recent advances in rechargeable Zn-based batteries. Journal of Power Sources, 2021, 493, 229677.	7.8	41
53	Biomassâ€derived Carbon Quantum Dots – A Review. Part 2: Application in Batteries. ChemBioEng Reviews, 2021, 8, 302-325.	4.4	13
54	Covalent Organic Frameworks for Batteries. Advanced Functional Materials, 2021, 31, 2100505.	14.9	154

#	ARTICLE	IF	CITATIONS
55	Interfacial <scp>adsorption–insertion</scp> mechanism induced by phase boundary toward better aqueous <scp>Znâ€ion</scp> battery. InformaÄnÃ-MateriÃily, 2021, 3, 1028-1036.	17.3	194
56	Carbon nanotubes-based electrode for Zn ion batteries. Materials Research Bulletin, 2021, 138, 111246.	5.2	18
57	Reaction mechanisms and optimization strategies of manganese-based materials for aqueous zinc batteries. Materials Today Energy, 2021, 20, 100626.	4.7	42
58	Enhanced and stabilized charge transport boosting by Fe-doping effect of V2O5 nanorod for rechargeable Zn-ion battery. Journal of Industrial and Engineering Chemistry, 2021, 99, 344-351.	5.8	29
59	High-Performance Lead-Acid Batteries Enabled by Pb and PbO2 Nanostructured Electrodes: Effect of Operating Temperature. Applied Sciences (Switzerland), 2021, 11, 6357.	2.5	7
60	Uniform Zn Deposition Achieved by Conductive Carbon Additive for Zn Anode in Zincâ€lon Hybrid Supercapacitors. Energy Technology, 2021, 9, 2100297.	3.8	13
61	Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Metals, 2022, 41, 415-424.	7.1	58
62	A flexible, heat-resistant and self-healable "rocking-chair―zinc ion microbattery based on MXene-TiS2 (de)intercalation anode. Journal of Power Sources, 2021, 504, 230076.	7.8	33
63	Strategies for constructing manganese-based oxide electrode materials for aqueous rechargeable zinc-ion batteries. Chinese Chemical Letters, 2022, 33, 1236-1244.	9.0	72
64	Recent Advances on Spinel Zinc Manganate Cathode Materials for Zincâ€lon Batteries. Chemical Record, 2022, 22, .	5.8	22
65	Harnessing the Volume Expansion of MoS ₃ Anode by Structure Engineering to Achieve High Performance Beyond Lithiumâ€Based Rechargeable Batteries. Advanced Materials, 2021, 33, e2106232.	21.0	83
66	Amorphous CoS1.4 ultrathin nanosheets/amorphous N-doped carbon nanobox: A dual-amorphous confined structure for superior potassium storage. Journal of Power Sources, 2021, 506, 230117.	7.8	11
67	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	12.9	36
68	An interfacial coating with high corrosion resistance based on halloysite nanotubes for anode protection of zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 602, 859-867.	9.4	29
69	Studies on a novel Na+ superionic conducting polymer gel cocktail electrolyte membrane immobilizing molecular liquid mixture of carbonates, tetraglyme and ionic liquid. Journal of Molecular Liquids, 2021, 341, 116922.	4.9	16
70	Towards the application of carboxymethyl chitin/ionic liquid blend as polymer electrolyte membrane for aqueous batteries. Carbohydrate Polymers, 2021, 273, 118542.	10.2	14
71	High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions. Energy Storage Materials, 2021, 43, 158-164.	18.0	14
72	Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Materials, 2021, 43, 317-336.	18.0	154

#	Article	IF	CITATIONS
73	Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chemical Engineering Journal, 2022, 429, 132576.	12.7	33
74	Highly efficient phthalocyanine based aqueous Zn-ion flexible-batteries. Materials Letters, 2022, 306, 130954.	2.6	5
75	Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. Journal of Energy Chemistry, 2022, 64, 246-262.	12.9	128
76	Mechanistic investigation of redox processes in Zn–MnO ₂ battery in mild aqueous electrolytes. Journal of Materials Chemistry A, 2021, 9, 20766-20775.	10.3	18
77	UV-Irradiation synthesized α-Fe2O3 nanoparticles based dye-sensitized solar cells. Materials Today: Proceedings, 2022, 61, 820-825.	1.8	6
78	Highâ€Voltage Aqueous Zinc Batteries Achieved by Triâ€functional Metallic Bipolar Electrodes. Energy and Environmental Materials, 2023, 6, .	12.8	8
79	Highly Reversible Zn Metal Anode Stabilized by Dense and Anionâ€Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, 2103959.	14.9	48
80	Enabling kinetically fast activation of carbon nanotube@nickel selenide through pore-phase dual regulation in aqueous zinc battery. Science China Materials, 2022, 65, 929-938.	6.3	5
81	Mn-doped K0.23V2O5 nanobelts as cathode materials for high performance flexible all-in-one zinc ion batteries. Journal of Power Sources, 2021, 516, 230699.	7.8	9
82	Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 44, 104-135.	18.0	94
83	Metal-Ion Capacitors. SpringerBriefs in Energy, 2020, , 23-94.	0.3	1
84	Bismuth-based materials for rechargeable aqueous batteries and water desalination. Rare Metals, 2022, 41, 287-303.	7.1	24
85	Energy Harvesting and Storing Materials. , 2022, , 507-555.		4
86	Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2106409.	21.0	167
88	Interfacial Engineering Strategy for High-Performance Zn Metal Anodes. Nano-Micro Letters, 2022, 14, 6.	27.0	177
89	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.6	2
90	An integrated electrode strengthened by dense layer for aqueous zinc ion batteries with long lifespan. Journal of Alloys and Compounds, 2022, 896, 162948.	5.5	10
91	Reversible Transformation of a Zinc Salt-Boosted High Areal Capacity Manganese Dioxide Cathode for Energy-Dense and Stable Aqueous Zinc Batteries. ACS Applied Energy Materials, 2022, 5, 1478-1486.	5.1	9

#	Article	IF	CITATIONS
92	Long-Lifespan Zinc-Ion Batteries Boosted by a Carbon Fiber Scaffold after Low-Temperature Plasma Treatment. Journal of Physical Chemistry C, 2022, 126, 2990-3000.	3.1	3
93	Reconstructed nanoclay-based membranes with nanofluidic channels for ultra-stable rechargeable Zn/MnO2 batteries. Journal of Power Sources, 2022, 526, 231128.	7.8	1
94	Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review. Small, 2022, 18, e2104640.	10.0	69
95	Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries. Science China Materials, 2022, 65, 1156-1164.	6.3	37
96	The Stable 3D Zn Electrode for High-Power Density Zn Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 120529.	2.9	3
97	Enhanced Electrochemical Performance of Zn/VO _{<i>x</i>} Batteries by a Carbon-Encapsulation Strategy. ACS Applied Materials & Interfaces, 2022, 14, 11654-11662.	8.0	51
98	Carbonâ€coated Vanadium Oxide Nanoflowers with K ⁺ Ions Preâ€embedment as a Highâ€rate Cathode for Zincâ€lon Batteries. ChemNanoMat, 2022, 8, .	2.8	8
99	Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry. Jacs Au, 2022, 2, 917-932.	7.9	5
100	Ethylene Glycol as an Antifreeze Additive and Corrosion Inhibitor for Aqueous Zincâ€lon Batteries. Batteries and Supercaps, 2022, 5, .	4.7	14
101	Optimized cyclic and electrochemical performance by organic ion N(CH3)4+ pre-inserted into N(CH3)4V8O20 cathode and hierarchy distributive Zn anode in aqueous zinc ion batteries. Electrochimica Acta, 2022, 412, 140160.	5.2	6
102	Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460, 214477.	18.8	31
103	Interface engineering via in-situ electrochemical induced ZnSe for a stabilized zinc metal anode. Chemical Engineering Journal, 2022, 442, 136247.	12.7	36
104	Cu/Co/CoS ₂ embedded in S,N-doped carbon as highly efficient oxygen reduction and evolution electrocatalyst for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2022, 9, 2917-2927.	6.0	3
105	Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2023, 34, 107410.	9.0	2
106	Recent progress in advanced flexible zinc ion battery design. Applied Physics Reviews, 2022, 9, .	11.3	26
107	Synthesis, characterisation, and feasibility studies on the use of vanadium tellurate(<scp>vi</scp>) as a cathode material for aqueous rechargeable Zn-ion batteries. RSC Advances, 2022, 12, 12211-12218.	3.6	2
108	Enhanced zinc ions storage performance by calcium ion induction/anchoring of vanadium-based nanobelts at low temperature. Materials Today Sustainability, 2022, 19, 100160.	4.1	2
109	High‥ield Carbon Dots Interlayer for Ultraâ€Stable Zinc Batteries. Advanced Energy Materials, 2022, 12, .	19.5	90

#	Article	IF	Citations
110	Tin doping manganese dioxide cathode materials with the improved stability for aqueous zinc-ion batteries. Materials Chemistry and Physics, 2022, 287, 126238.	4.0	17
111	Enriching Oxygen Vacancy Defects via Ag–O–Mn Bonds for Enhanced Diffusion Kinetics of δ-MnO ₂ in Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 21159-21172.	8.0	21
112	Potassium-doped hydrated manganese dioxide nanowires-carbon nanotubes on graphene for high-performance rechargeable zinc-ion batteries. Journal of Alloys and Compounds, 2022, 913, 165278.	5.5	7
113	Biomass-based diatomite coating to prepare a high-stability zinc anode for rechargeable aqueous zinc-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129171.	4.7	3
114	Recycling spent lead acid batteries into aqueous zinc-ion battery material with ultra-flat voltage platforms. Ceramics International, 2022, 48, 25808-25815.	4.8	5
116	A supramolecular gel polymer electrolyte for ultralong-life zinc-ion hybrid supercapacitors. Journal of Energy Storage, 2022, 53, 105089.	8.1	18
117	Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 29-37.	18.0	22
118	Triggering Zn ²⁺ Unsaturated Hydration Structure via Hydrated Salt Electrolyte for High Voltage and Cycling Stable Rechargeable Aqueous Zn Battery. Advanced Energy Materials, 2022, 12, .	19.5	28
119	Aqueous zinc-ion batteries based on a 2D layered Bi2Te3 cathode. Chemical Engineering Journal, 2022, 450, 138132.	12.7	4
120	Synthesis and Electrochemical Performance of the Orthorhombic V2O5·nH2O Nanorods as Cathodes for Aqueous Zinc Batteries. Nanomaterials, 2022, 12, 2530.	4.1	4
121	Oxygen vacancies enriched MOF-derived MnO/C hybrids for high-performance aqueous zinc ion battery. Journal of Alloys and Compounds, 2022, 923, 166470.	5.5	20
122	Monodispersed flower-like MXene@VO ₂ clusters for aqueous zinc ion batteries with superior rate performance. Nanoscale, 2022, 14, 11655-11663.	5.6	11
123	A Multifunctional Artificial Interphase with Fluorineâ€Doped Amorphous Carbon layer for Ultra‣table Zn Anode. Advanced Functional Materials, 2022, 32, .	14.9	85
124	Tug-of-War in the Selection of Materials for Battery Technologies. Batteries, 2022, 8, 105.	4.5	7
125	Metal-Ion Batteries. Encyclopedia, 2022, 2, 1611-1623.	4.5	3
126	In-situ regulated competitive proton intercalation and deposition/dissolution reaction of MnO2 for high-performance flexible zinc-manganese batteries. Energy Storage Materials, 2022, 53, 72-78.	18.0	16
127	Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries. Journal of Materials Chemistry A, 2022, 10, 16976-16985.	10.3	9
128	Enhanced Reaction Kinetics of Layered Vanadium Oxide Cathode Materials. Crystal Growth and Design, 2022, 22, 6096-6102.	3.0	0

#	Article	IF	CITATIONS
129	Perspective of Vanadium Disulfide: A Rising Star Finds Plenty of Room in Single and Multielectron Energy Storage. Energy & Fuels, 2022, 36, 13931-13955.	5.1	4
130	Proton Storage in Metallic H _{1.75} MoO ₃ Nanobelts through the Grotthuss Mechanism. Journal of the American Chemical Society, 2022, 144, 17407-17415.	13.7	36
131	Bioinspired design of graphene-based N/O self-doped nanoporous carbon from carp scales for advanced Zn-ion hybrid supercapacitors. Electrochimica Acta, 2022, 434, 141312.	5.2	17
132	Solid Electrolyte Interface in Zn-Based Battery Systems. Nano-Micro Letters, 2022, 14, .	27.0	64
133	Anchoring I ₃ [–] via Charge-Transfer Interaction by a Coordination Supramolecular Network Cathode for a High-Performance Aqueous Dual-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 47716-47724.	8.0	4
134	MnO2 cathode materials with high reversible stability through Li intercalating for aqueous zinc ion battery. Solid State Ionics, 2022, 386, 116049.	2.7	4
135	Benzoquinone-intercalated vanadium oxide in the electrolyte with Al3+ for zinc-ion storage: dual-pillar effect and reversible disorder–order conversion. Chemical Engineering Journal, 2023, 452, 139621.	12.7	13
136	Apple Pectin-Based Hydrogel Electrolyte for Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 15802-15812.	6.7	5
137	The protective effect and its mechanism for electrolyte additives on the anode interface in aqueous zinc-based energy storage devices. Nano Materials Science, 2022, , .	8.8	9
138	Manganese-based cathode materials for aqueous rechargeable zinc-ion batteries: recent advance and future prospects. Materials Today Chemistry, 2023, 27, 101294.	3.5	8
139	Langmuir-Blodgett Scoping (LBS) microarchitectonics: Zn dendrite-inhibiting tactics controlled by parallelly aligned MXene film under self-traction for zinc storage. Journal of Alloys and Compounds, 2023, 937, 168406.	5.5	2
140	Dendrite-free Zn anodes enabled by Sn-Cu bimetal/rGO functional protective layer for aqueous Zn-based batteries. Applied Surface Science, 2023, 613, 156129.	6.1	8
141	Zinc Batteries: Basics, Materials Functions, and Applications. , 2022, , 1-37.		0
142	Hierarchical porous separator with excellent isotropic modulus enabling homogeneous Zn2+ flux for stable aqueous Zn battery. Science China Materials, 2023, 66, 982-991.	6.3	3
143	Electrochemically Induced Defects Promotional High-Performance Binder-Free MnO@CC Cathodes for Flexible Quasi-Solid-State Zinc-Ion Battery. ACS Applied Energy Materials, 2022, 5, 15510-15519.	5.1	5
144	Etching-Induced Surface Reconstruction of NiMoO4 for Oxygen Evolution Reaction. Nano-Micro Letters, 2023, 15, .	27.0	39
145	Surface Engineering for Ultrathin Metal Anodes Enabling High-Performance Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 5161-5171.	8.0	5
146	Manganese ion batteries: LiV3O8 nanorods as a robust and long-life cathode module. Journal of Power Sources, 2023, 558, 232542.	7.8	1

#	Article	IF	CITATIONS
147	Long cycle life and high rate aqueous zinc-ion batteries enabled by polypyrrole bridging ammonium vanadium bronze nanosheet cathodes. Journal of Alloys and Compounds, 2023, 939, 168669.	5.5	2
148	Electrolyte engineering strategies for regulation of the Zn metal anode in aqueous Znâ€ion batteries. , 2023, 2, .		28
149	Electrochemically stable tunnel-type $\hat{l}\pm$ -MnO2-based cathode materials for rechargeable aqueous zinc-ion batteries. Frontiers in Chemistry, 0, 11, .	3.6	4
150	Viable defect engineering with templates into metal oxides. , 2023, , 355-385.		0
151	Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range. Journal of Power Sources, 2023, 559, 232688.	7.8	24
152	Anionic S-doping of a ZnMn2O4/CNTs cathode material enhances its Zn2+ storage performance in aqueous zinc-ion batteries. Journal of Power Sources, 2023, 564, 232863.	7.8	9
153	Ion Selective and Water Resistant Cellulose Nanofiber/MXene Membrane Enabled Cycling Zn Anode at High Currents. Advanced Energy Materials, 2023, 13, .	19.5	29
154	Constructing an ionâ€oriented channel on a zinc electrode through surface engineering. , 2023, 5, .		3
155	High energy-power zinc-ion hybrid supercapacitors achieved by 3D channels enriched biomass-derived N/O co-doped 2D arcuate carbon nanosheets. Materials Today Chemistry, 2023, 29, 101476.	3.5	3
156	Conductive halloysite nanotubes/polypyrrole cathodes prepared by one-step in situ polymerization for zinc-ion batteries. Polymer Bulletin, 2024, 81, 1117-1129.	3.3	1
157	Zinc Batteries: Basics, Materials Functions, and Applications. , 2023, , 2331-2367.		1
158	Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery. Nano Research, 2023, 16, 9461-9470.	10.4	6
159	Tuning crystal water of $\hat{l}\pm$ -MnO2 with enhanced diffusion kinetics for zinc-ion batteries. Journal of Solid State Electrochemistry, 0, , .	2.5	1
160	Carbon armor for zinc anodes: Mitigating dendrite formations and unwanted side reactions in zinc-ion batteries. Journal of the Taiwan Institute of Chemical Engineers, 2024, 154, 104977.	5.3	0
161	A Na-rich manganese hexacyanoferrate hollow nano-cube with low crystal water and few defects for efficient Zn ion storage in aqueous batteries. Electrochimica Acta, 2023, 462, 142773.	5.2	2
162	Electrochemical properties and characterization of manganese doped ZnMn1-yXyO4 material with conjoined spherical particle as cathode of Zinc ion battery. Journal of Energy Storage, 2023, 71, 108238.	8.1	2
163	Tackling the Challenges of Aqueous Znâ€lon Batteries via Polymerâ€Derived Strategies. Small Methods, 0, ,	8.6	1
164	Laminated Zinc-Copper Electrodes as Reversible and Dendrite-Free Anodes for Aqueous Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 7477-7486.	5.1	1

#	Article	IF	CITATIONS
165	Advancement of electrically rechargeable multivalent metal-air batteries for future mobility. Ionics, 2023, 29, 3421-3435.	2.4	2
166	Study on the properties of the MgCO3@2Mn1â^'xMxCO3 carbonate composite material as a cathode electrode in the aqueous zinc-ion battery and the effect of Ag ion doping at the manganese site. AlP Advances, 2023, 13, .	1.3	1
167	Layered porous Mn _{0.18} V ₂ O ₅ @C with manganese and carbon provided by a metal–organic framework precursor as a cathode material for aqueous zinc-ion batteries. Dalton Transactions, 2023, 52, 13797-13807.	3.3	0
168	Recent progress in environment-adaptable hydrogel electrolytes for flexible energy storage devices. Journal of Energy Storage, 2023, 73, 109023.	8.1	0
169	Overall upgrading Zn-ion storage capability by engineering N/O co-doped hydrophilic hierarchical porous carbon. Journal of Energy Storage, 2023, 72, 108794.	8.1	4
170	Polyhydroxylated Organic Molecular Additives for Durable Aqueous Zinc Battery. Advanced Functional Materials, 2024, 34, .	14.9	11
171	Carbon nanofiber-coated MnO composite as high-performance cathode material for aqueous zinc-ion batteries. Journal of Physics and Chemistry of Solids, 2024, 184, 111669.	4.0	0
172	Regulating Interlayerâ€Spacing of Vanadium Phosphates for Highâ€Capacity and Longâ€Life Aqueous Ironâ€Ion Batteries. Small, 2024, 20, .	10.0	0
173	Batch Synthesis of K-Doped α-MnO ₂ Nanorods as Cathode Materials for Aqueous Zinc-Ion Battery. Industrial & Engineering Chemistry Research, 2023, 62, 16757-16765.	3.7	0
174	Recent advances in electrically rechargeable transition metal-based-air batteries for electric mobility. Inorganic Chemistry Communication, 2024, 159, 111742.	3.9	0
175	From wasted polymers to N/O co-doped partially graphitic carbon with hierarchical porous architecture as a promising cathode for high performance Zn-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2024, 12, 1012-1025.	10.3	1
176	Metal Selenideâ€Based Superstructure Nanoarrays with Ultrahigh Capacity for Alkaline Zn Batteries. Small, 0, , .	10.0	0
177	MXene Based Zinc Ion Batteries: Recent Development and Prospects. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2024, 39, 204.	1.3	0
178	Organic nanorods deposited onto the carbon nanotube networks for flexible zinc-ion batteries. Carbon Letters, 2024, 34, 25-39.	5.9	0
179	Advancement of electrically rechargeable metal-air batteries for future mobility. Energy Reports, 2024, 11, 1199-1211.	5.1	0
180	Challenges and Strategies on Interphasial Regulation for Aqueous Rechargeable Batteries. Advanced Energy Materials, 2024, 14, .	19.5	0
181	Transition metal dichalcogenideâ€based materials for rechargeable aluminumâ€ion batteries: A miniâ€review. ChemSusChem, 0, , .	6.8	1
182	Low temperature deep eutectic solvents-assisted synthesis of amorphous MnO2 cathode for zinc ion batteries. Journal of Sol-Gel Science and Technology, 2024, 109, 695-706.	2.4	Ο

#	Article	IF	CITATIONS
183	Optimizing ammonium vanadate crystal structure by facile <i>in situ</i> phase transformation of VO ₂ /NH ₄ V ₄ O ₁₀ with special micro–nano feature for advanced aqueous zinc ion batteries. Inorganic Chemistry Frontiers, 2024, 11, 1266-1278.	6.0	0
184	Exploiting bifunctional ZnTe for Zn anode protection and conversion-type cathode toward compatible aqueous Zn-ion batteries. Energy Storage Materials, 2024, 66, 103228.	18.0	Ο
185	Enabling Wasted A4 Papers as a Promising Carbon Source to Construct Partially Graphitic Hierarchical Porous Carbon for High-Performance Aqueous Zn-Ion Storage. ACS Applied Materials & Interfaces, 2024, 16, 10126-10137.	8.0	0
186	Fabrication of cathode composite Co ₃ O ₄ /CC and study on electrochemical properties of zinc cobalt battery. World Journal of Engineering, 0, , .	1.6	Ο
187	Molecular Connectors Boosting the Performance of MoS ₂ Cathodes in Zincâ€ion Batteries. Small, 0, , .	10.0	0
188	Construction of Selective Ion Transport Polymer at Anode–Electrolyte Interface for Stable Aqueous Zinc-Ion Batteries. ACS Nano, 2024, 18, 8452-8462.	14.6	Ο
189	3D Hierarchical Sunflower‧haped MoS ₂ /SnO ₂ Photocathodes for Photoâ€Rechargeable Zinc Ion Batteries. Advanced Science, 0, , .	11.2	0