Search-and-replace genome editing without double-str

Nature 576, 149-157 DOI: 10.1038/s41586-019-1711-4

Citation Report

#	Article	IF	CITATIONS
1	CRISPR–Cas in its prime. Nature Reviews Molecular Cell Biology, 2019, 20, 718-719.	16.1	1
2	CRISPR tool modifies genes precisely by copying RNA into the genome. Nature, 2019, 576, 48-49.	13.7	11
3	Liver targeted gene therapy: Insights into emerging therapies. Drug Discovery Today: Technologies, 2019, 34, 9-19.	4.0	3
4	Towards a cure: using edited hematopoietic stem cells. Annals of Blood, 0, 4, 28-28.	0.4	Ο
5	Prospects for Cell-Directed Curative Therapy of Phenylketonuria (PKU). Molecular Frontiers Journal, 2019, 03, 110-121.	0.9	0
6	Got mutation? â€~Base editors' fix genomes one nucleotide at a time. Nature, 2019, 575, 553-555.	13.7	11
7	Uncut but Primed for Change. CRISPR Journal, 2019, 2, 352-354.	1.4	0
8	Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. International Journal of Molecular Sciences, 2019, 20, 5897.	1.8	15
9	The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. Journal of Clinical Medicine, 2019, 8, 1959.	1.0	9
10	Precise Editing Enables Crop Broad-Spectrum Resistance. Molecular Plant, 2019, 12, 1542-1544.	3.9	4
11	Interplay between MicroRNAs and Oxidative Stress in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2019, 20, 6055.	1.8	144
12	Human germline genome editing. Nature Cell Biology, 2019, 21, 1479-1489.	4.6	45
13	Advances in genome editing through control of DNA repair pathways. Nature Cell Biology, 2019, 21, 1468-1478.	4.6	271
14	Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. Rice, 2019, 12, 95.	1.7	53
15	Prime Editing: A Novel Cas9-Reverse Transcriptase Fusion May Revolutionize Genome Editing. Human Gene Therapy, 2019, 30, 1445-1446.	1.4	6
16	Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature, 2019, 574, 464-465.	13.7	21
17	One Prime for All Editing. Cell, 2019, 179, 1448-1450.	13.5	23
18	Evolutionary Dynamics of Structural Variation at a Key Locus for Color Pattern Diversification in Cichlid Fishes. Genome Biology and Evolution, 2019, 11, 3452-3465.	1.1	15

ιτλτιών Ρερώ

#	Article	IF	CITATIONS
19	Expanding the gene editing landscape. Nature Reviews Drug Discovery, 2019, 18, 904-904.	21.5	0
20	SNP-CRISPR: A Web Tool for SNP-Specific Genome Editing. G3: Genes, Genomes, Genetics, 2020, 10, 489-494.	0.8	35
21	Context-Dependent Strategies for Enhanced Genome Editing of Genodermatoses. Cells, 2020, 9, 112.	1.8	29
22	CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Molecular Neurobiology, 2020, 57, 2085-2100.	1.9	13
23	Sharpening the Molecular Scissors: Advances in Gene-Editing Technology. IScience, 2020, 23, 100789.	1.9	81
24	Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. Molecular Therapy - Nucleic Acids, 2020, 19, 683-695.	2.3	11
25	Hematopoietic stem cell gene therapy: The optimal use of lentivirus and gene editing approaches. Blood Reviews, 2020, 40, 100641.	2.8	14
27	Strategies for the CRISPR-Based Therapeutics. Trends in Pharmacological Sciences, 2020, 41, 55-65.	4.0	39
28	An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies. Expert Review of Neurotherapeutics, 2020, 20, 65-84.	1.4	47
29	A prime alternative. Nature Reviews Genetics, 2020, 21, 3-3.	7.7	2
30	A heterodimer of evolved designer-recombinases precisely excises a human genomic DNA locus. Nucleic Acids Research, 2020, 48, 472-485.	6.5	20
31	Gene editing prospects for treating inherited retinal diseases. Journal of Medical Genetics, 2020, 57, 437-444.	1.5	32
32	Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biology, 2020, 21, 257.	3.8	153
33	Sensing through Non-Sensing Ocular Ion Channels. International Journal of Molecular Sciences, 2020, 21, 6925.	1.8	11
34	Synthetic regulation of multicellular systems for regenerative engineering. Current Opinion in Biomedical Engineering, 2020, 16, 42-51.	1.8	4
35	Base editing: advances and therapeutic opportunities. Nature Reviews Drug Discovery, 2020, 19, 839-859.	21.5	218
36	Precise Genome Editing in Poultry and Its Application to Industries. Genes, 2020, 11, 1182.	1.0	17
37	Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 2020, 21, 661-677.	16.1	433

#	Article	IF	CITATIONS
38	CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology, 2020, 5, 277-292.	1.8	33
39	Enhancing site-specific DNA integration by a Cas9 nuclease fused with a DNA donor-binding domain. Nucleic Acids Research, 2020, 48, 10590-10601.	6.5	20
40	CRISPR-Cas9: A Promising Genome Editing Therapeutic Tool for Alzheimer's Disease—A Narrative Review. Neurology and Therapy, 2020, 9, 419-434.	1.4	24
41	Progresses, Challenges, and Prospects of Genome Editing in Soybean (Glycine max). Frontiers in Plant Science, 2020, 11, 571138.	1.7	26
42	Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection. Stem Cell Reports, 2020, 15, 999-1013.	2.3	6
43	Prime editing for functional repair in patient-derived disease models. Nature Communications, 2020, 11, 5352.	5.8	134
44	Prime Editing: Making the Move to Prime Time. CRISPR Journal, 2020, 3, 319-321.	1.4	2
45	Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens. FASEB Journal, 2020, 34, 15907-15921.	0.2	11
46	Gene Editing by Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 7362.	1.8	30
47	How synthetic biology can help bioremediation. Current Opinion in Chemical Biology, 2020, 58, 86-95.	2.8	52
48	Translational perspectives to treat Epidermolysis bullosa—Where do we stand?. Experimental Dermatology, 2020, 29, 1112-1122.	1.4	10
49	Anticipating and Identifying Collateral Damage in Genome Editing. Trends in Genetics, 2020, 36, 905-914.	2.9	28
50	Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules, 2020, 10, 1378.	1.8	35
51	Sharpening gene editing toolbox in Arabidopsis for plants. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 769-784.	0.9	12
52	Genome editing systems across yeast species. Current Opinion in Biotechnology, 2020, 66, 255-266.	3.3	15
53	New gene discoveries highlight functional convergence in autism and related neurodevelopmental disorders. Current Opinion in Genetics and Development, 2020, 65, 195-206.	1.5	27
54	Mutation-Specific Guide RNA for Compound Heterozygous Porphyria On-target Scarless Correction by CRISPR/Cas9 in Stem Cells. Stem Cell Reports, 2020, 15, 677-693.	2.3	6
55	Thermoreversible Control of Nucleic Acid Structure and Function with Glyoxal Caging. Journal of the American Chemical Society, 2020, 142, 17766-17781.	6.6	33

#	Article	IF	CITATIONS
56	Modulating gene regulation to treat genetic disorders. Nature Reviews Drug Discovery, 2020, 19, 757-775.	21.5	41
57	Computational Methods for Analysis of Large-Scale CRISPR Screens. Annual Review of Biomedical Data Science, 2020, 3, 137-162.	2.8	4
58	Use of Cell and Genome Modification Technologies to Generate Improved "Off-the-Shelf―CAR T and CAR NK Cells. Frontiers in Immunology, 2020, 11, 1965.	2.2	85
59	PRPS-Associated Disorders and the Drosophila Model of Arts Syndrome. International Journal of Molecular Sciences, 2020, 21, 4824.	1.8	2
60	Synthetic biology approaches: the next tools for improved protein production from CHO cells. Current Opinion in Chemical Engineering, 2020, 30, 26-33.	3.8	2
61	Axenfeld-Rieger syndrome-associated mutants of the transcription factor FOXC1 abnormally regulate NKX2-5 in model zebrafish embryos. Journal of Biological Chemistry, 2020, 295, 11902-11913.	1.6	6
62	CRISPR/Cas-Mediated Genome Editing for the Improvement of Oilseed Crop Productivity. Critical Reviews in Plant Sciences, 2020, 39, 195-221.	2.7	10
63	Applying geneâ€editing technology to elucidate the functional consequence of genetic and epigenetic variation in Alzheimer's disease. Brain Pathology, 2020, 30, 992-1004.	2.1	8
64	Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Science Advances, 2020, 6, eaba1773.	4.7	55
65	Precise Modifications of Both Exogenous and Endogenous Genes in Rice by Prime Editing. Molecular Plant, 2020, 13, 671-674.	3.9	152
66	CRISPR-Directed Therapeutic Correction at the NCF1 Locus Is Challenged by Frequent Incidence of Chromosomal Deletions. Molecular Therapy - Methods and Clinical Development, 2020, 17, 936-943.	1.8	8
67	Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. Molecular Therapy, 2020, 28, 1422-1431.	3.7	34
68	Key Players in the Mutant p53 Team: Small Molecules, Gene Editing, Immunotherapy. Frontiers in Oncology, 2020, 10, 1460.	1.3	30
69	Can We Use Gene-Editing to Induce Apomixis in Sexual Plants?. Genes, 2020, 11, 781.	1.0	15
70	Current and Perspective Diagnostic Techniques for COVID-19. ACS Infectious Diseases, 2020, 6, 1998-2016.	1.8	116
71	Cost-effective generation of A-to-G mutant mice by zygote electroporation of adenine base editor ribonucleoproteins. Journal of Genetics and Genomics, 2020, 47, 337-340.	1.7	3
72	Prediction-based highly sensitive CRISPR off-target validation using target-specific DNA enrichment. Nature Communications, 2020, 11, 3596.	5.8	41
73	Applications of CRISPR for musculoskeletal research. Bone and Joint Research, 2020, 9, 351-359.	1.3	6

#	Article	IF	CITATIONS
74	Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy. European Journal of Immunology, 2020, 50, 1871-1884.	1.6	6
75	Genome Editing for CNS Disorders. Frontiers in Neuroscience, 2020, 14, 579062.	1.4	18
76	Pooled protein tagging, cellular imaging, and in situ sequencing for monitoring drug action in real time. Genome Research, 2020, 30, 1846-1855.	2.4	11
77	Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture. Environmental Sciences Europe, 2020, 32, .	2.6	43
78	Therapeutic implications of cortical spreading depression models in migraine. Progress in Brain Research, 2020, 255, 29-67.	0.9	6
79	Massively parallel techniques for cataloguing the regulome of the human brain. Nature Neuroscience, 2020, 23, 1509-1521.	7.1	39
80	CRISPR-Based Editing Techniques for Genetic Manipulation of Primary T Cells. Methods and Protocols, 2020, 3, 79.	0.9	9
81	Multiple gene substitution by Target-AID base-editing technology in tomato. Scientific Reports, 2020, 10, 20471.	1.6	36
82	Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes, 2020, 11, 1376.	1.0	18
83	Expediting rare disease diagnosis: a call to bridge the gap between clinical and functional genomics. Molecular Medicine, 2020, 26, 117.	1.9	10
84	From Basic Biology to Patient Mutational Spectra of GATA2 Haploinsufficiencies: What Are the Mechanisms, Hurdles, and Prospects of Genome Editing for Treatment. Frontiers in Genome Editing, 2020, 2, 602182.	2.7	5
85	A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nature Communications, 2020, 11, 6073.	5.8	45
86	Scientific progress and clinical uncertainty. European Heart Journal Supplements, 2020, 22, L146-L150.	0.0	0
87	Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities. Horticultural Plant Journal, 2020, 6, 372-384.	2.3	18
88	Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. Biotechnology and Bioprocess Engineering, 2020, 25, 829-847.	1.4	12
89	Base Editing in Human Cells to Produce Singleâ€Nucleotideâ€Variant Clonal Cell Lines. Current Protocols in Molecular Biology, 2020, 133, e129.	2.9	4
90	One-Step Homology Mediated CRISPR-Cas Editing in Zygotes for Generating Genome Edited Cattle. CRISPR Journal, 2020, 3, 523-534.	1.4	13
91	Cas9 in Human Embryos: On Target but No Repair. Cell, 2020, 183, 1464-1466.	13.5	5

#	Article	IF	CITATIONS
92	Amplification-free long-read sequencing reveals unforeseen CRISPR-Cas9 off-target activity. Genome Biology, 2020, 21, 290.	3.8	35
93	β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Frontiers in Genome Editing, 2020, 2, 571239.	2.7	6
94	Detection of CRISPR-mediated genome modifications through altered methylation patterns of CpG islands. BMC Genomics, 2020, 21, 856.	1.2	1
96	Effect of non-enzymatic glycosylation in the epigenetics of cancer. Seminars in Cancer Biology, 2022, 83, 543-555.	4.3	21
97	Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit―Genome-Editing Tools. Cells, 2020, 9, 2572.	1.8	4
98	Guide RNAs: it's good to be choosy. Nature Methods, 2020, 17, 1179-1182.	9.0	8
99	Control of Plant Viruses by CRISPR/Cas System-Mediated Adaptive Immunity. Frontiers in Microbiology, 2020, 11, 593700.	1.5	42
100	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	5.7	58
101	CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Frontiers in Oncology, 2020, 10, 1387.	1.3	247
102	A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement. International Journal of Molecular Sciences, 2020, 21, 5665.	1.8	62
103	Current Status and Challenges of DNA Base Editing Tools. Molecular Therapy, 2020, 28, 1938-1952.	3.7	72
104	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	1.0	3
105	Has the time come to implement gene therapy for sickle cell disease?. Archives of Gynecology and Obstetrics, 2020, 302, 1313-1316.	0.8	0
106	Precision Breeding Made Real with CRISPR: Illustration through Genetic Resistance to Pathogens. Plant Communications, 2020, 1, 100102.	3.6	32
107	Successful correction of factor V deficiency of patientâ€derived iPSCs by CRISPR/Cas9â€mediated gene editing. Haemophilia, 2020, 26, 826-833.	1.0	8
108	Gene Editing for Treatment and Prevention of Human Diseases: A Global Survey of Gene Editing-Related Researchers. Human Gene Therapy, 2020, 31, 852-862.	1.4	7
109	Applying gene editing to tailor precise genetic modifications in plants. Journal of Biological Chemistry, 2020, 295, 13267-13276.	1.6	29
110	The Role of Noncoding Variants in Heritable Disease. Trends in Genetics, 2020, 36, 880-891.	2.9	67

#	Article	IF	CITATIONS
111	Applications of CRISPR technology in studying plant-pathogen interactions: overview and perspective. Phytopathology Research, 2020, 2, .	0.9	21
112	Zebrafish: A Resourceful Vertebrate Model to Investigate Skeletal Disorders. Frontiers in Endocrinology, 2020, 11, 489.	1.5	74
113	CRISPR Start-Loss: A Novel and Practical Alternative for Gene Silencing through Base-Editing-Induced Start Codon Mutations. Molecular Therapy - Nucleic Acids, 2020, 21, 1062-1073.	2.3	16
114	Correction of Airway Stem Cells: Genome Editing Approaches for the Treatment of Cystic Fibrosis. Human Gene Therapy, 2020, 31, 956-972.	1.4	19
115	Recent Progress in Germplasm Evaluation and Gene Mapping to Enable Breeding of Drought-Tolerant Wheat. Frontiers in Plant Science, 2020, 11, 1149.	1.7	24
116	Overview of the current status of gene therapy for primary immune deficiencies (PIDs). Journal of Allergy and Clinical Immunology, 2020, 146, 229-233.	1.5	8
117	Brain organoids: Human 3D models to investigate neuronal circuits assembly, function and dysfunction. Brain Research, 2020, 1746, 147028.	1.1	25
118	Controlling metabolic flux by toehold-mediated strand displacement. Current Opinion in Biotechnology, 2020, 66, 150-157.	3.3	13
119	Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming. ACS Synthetic Biology, 2020, 9, 2228-2238.	1.9	14
120	The Development and Application of a Base Editor in Biomedicine. BioMed Research International, 2020, 2020, 1-12.	0.9	2
121	Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Progress in Retinal and Eye Research, 2021, 83, 100918.	7.3	16
122	The coding loci of evolution and domestication: current knowledge and implications for bio-inspired genome editing. Journal of Experimental Biology, 2020, 223, .	0.8	12
123	The Fascinating & Controversial New Science of CRISPR. American Biology Teacher, 2020, 82, 279-288.	0.1	1
124	Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. DNA Repair, 2020, 95, 102943.	1.3	25
125	SOD1-targeting therapies for neurodegenerative diseases: a review of current findings and future potential. Expert Opinion on Orphan Drugs, 2020, 8, 379-392.	0.5	2
126	Allele-Specific Chromosome Removal after Cas9 Cleavage in Human Embryos. Cell, 2020, 183, 1650-1664.e15.	13.5	198
127	Revisiting CRISPR/Cas-mediated crop improvement: Special focus on nutrition. Journal of Biosciences, 2020, 45, 1.	0.5	18
128	In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Frontiers in Oncology, 2020, 10, 584404.	1.3	7

		CITATION REPORT	
#	Article	IF	CITATIONS
129	Genome targeting by hybrid Flp-TAL recombinases. Scientific Reports, 2020, 10, 17479.	1.6	8
130	CRISPR-Cas12a (Cpf1): A Versatile Tool in the Plant Genome Editing Tool Box for Agricultural Advancement. Frontiers in Plant Science, 2020, 11, 584151.	1.7	66
131	Multicellular systems to translate somatic cell genome editors to human. Current Opinion in Biomedical Engineering, 2020, 16, 72-81.	1.8	1
132	New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation. Annual Review of Genetic 2020, 54, 287-307.	CS, 3.2	23
133	GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies. International Journal of Molecular Sciences, 2020, 21, 6213.	1.8	58
134	CRISPR-Cas9 DNA Base-Editing and Prime-Editing. International Journal of Molecular Sciences, 2020 6240.	, 21, 1.8	179
135	Biotechnology Tools Derived from the Bacteriophage/Bacteria Arms Race. , 2020, , .		0
136	Challenges and Prospects of New Plant Breeding Techniques for GABA Improvement in Crops: Toma as an Example. Frontiers in Plant Science, 2020, 11, 577980.	ito 1.7	34
137	Adenoviral vectors for in vivo delivery of CRISPR-Cas gene editors. Journal of Controlled Release, 2020, 327, 788-800.	4.8	26
138	Chronic wounds: Current status, available strategies and emerging therapeutic solutions. Journal of Controlled Release, 2020, 328, 532-550.	4.8	151
139	Interrogating genome function using CRISPR tools: a narrative review. Journal of Bio-X Research, 2020, 3, 83-91.	0.3	0
140	ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. Bl Biology, 2020, 18, 131.	MC 1.7	41
141	Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Resear 2020, 48, 10576-10589.	ch, 6.5	104
142	Double-Barreled CRISPR Technology as a Novel Treatment Strategy For COVID-19. ACS Pharmacolog and Translational Science, 2020, 3, 790-800.	gy 2.5	20
143	A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 2252-2257.	1.9	24
144	Synthetic Virus-Derived Nanosystems (SVNs) for Delivery and Precision Docking of Large Multifunctional DNA Circuitry in Mammalian Cells. Pharmaceutics, 2020, 12, 759.	2.0	13
145	New Directions in Pulmonary Gene Therapy. Human Gene Therapy, 2020, 31, 921-939.	1.4	10
146	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes, 2020, 11, 97	6. 1.0	9

#	Article	IF	CITATIONS
147	Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics, 2020, 12, 767.	2.0	23
148	CRISPR/Cas9 Delivery Potentials in Alzheimer's Disease Management: A Mini Review. Pharmaceutics, 2020, 12, 801.	2.0	15
149	The Potential of Genome Editing for Improving Seed Oil Content and Fatty Acid Composition in Oilseed Crops. Lipids, 2020, 55, 495-512.	0.7	24
150	Mitochondrial DNA Base Editing: Good Editing Things Still Come in Small Packages. Molecular Cell, 2020, 79, 708-709.	4.5	6
151	Innovative Therapies for Hemoglobin Disorders. BioDrugs, 2020, 34, 625-647.	2.2	7
152	Precise allele-specific genome editing by spatiotemporal control of CRISPR-Cas9 via pronuclear transplantation. Nature Communications, 2020, 11, 4593.	5.8	5
153	RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacological Reviews, 2020, 72, 862-898.	7.1	192
154	CRISPR–Cas-mediated gene editing in lactic acid bacteria. Molecular Biology Reports, 2020, 47, 8133-8144.	1.0	9
155	Novel Therapeutic Approaches for the Treatment of Retinal Degenerative Diseases: Focus on CRISPR/Cas-Based Gene Editing. Frontiers in Neuroscience, 2020, 14, 838.	1.4	12
156	Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 148.	1.4	20
157	New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. Frontiers in Plant Science, 2020, 11, 1234.	1.7	32
158	Generation and characterisation of a COV434 cell clone carrying a monoallelic FecBB mutation introduced by CRISPR/Cas9. Reproduction, Fertility and Development, 2020, , .	0.1	0
159	Treating Cystic Fibrosis with mRNA and CRISPR. Human Gene Therapy, 2020, 31, 940-955.	1.4	35
160	Using Gene Editing Approaches to Fine-Tune the Immune System. Frontiers in Immunology, 2020, 11, 570672.	2.2	13
161	Commentary: Code Dread?. Perspectives in Biology and Medicine, 2020, 63, 14-27.	0.3	0
162	The road ahead in genetics and genomics. Nature Reviews Genetics, 2020, 21, 581-596.	7.7	118
163	Sharing the CRISPR Toolbox with an Expanding Community. CRISPR Journal, 2020, 3, 248-252.	1.4	5
164	Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences, 2020, 21, 9604.	1.8	57

#	Article	IF	CITATIONS
165	AsCRISPR: A Web Server for Allele-Specific Single Guide RNA Design in Precision Medicine. CRISPR Journal, 2020, 3, 512-522.	1.4	8
166	Gene Editing and Genotoxicity: Targeting the Off-Targets. Frontiers in Genome Editing, 2020, 2, 613252.	2.7	31
167	Stem Cells and Organoid Technology in Precision Medicine in Inflammation: Are We There Yet?. Frontiers in Immunology, 2020, 11, 573562.	2.2	13
168	Human sensory neurons derived from pluripotent stem cells for disease modelling and personalized medicine. Neurobiology of Pain (Cambridge, Mass), 2020, 8, 100055.	1.0	27
169	Crispr as9 in der Anwendung – wo wir heute stehen. Nachrichten Aus Der Chemie, 2020, 68, 62-64.	0.0	0
170	Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nature Communications, 2020, 11, 6277.	5.8	7
171	Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Computational and Structural Biotechnology Journal, 2020, 18, 3649-3665.	1.9	7
172	Genetic interaction mapping informs integrative structure determination of protein complexes. Science, 2020, 370, .	6.0	24
173	Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Frontiers in Endocrinology, 2020, 11, 576632.	1.5	13
174	CRISPR_Cas systems for fungal research. Fungal Biology Reviews, 2020, 34, 189-201.	1.9	28
175	CRISPR/Cas9 nickaseâ€mediated efficient and seamless knockâ€in of lethal genes in the medaka fish <i>Oryzias latipes</i> . Development Growth and Differentiation, 2020, 62, 554-567.	0.6	11
176	Selecting for useful properties of plants and fungi – Novel approaches, opportunities, and challenges. Plants People Planet, 2020, 2, 409-420.	1.6	17
177	Highly efficient and safe genome editing by CRISPR-Cas12a using CRISPR RNA with a ribosyl-2′-O-methylated uridinylate-rich 3′-overhang in mouse zygotes. Experimental and Molecular Medicine, 2020, 52, 1823-1830.	3.2	6
178	Screening for functional transcriptional and splicing regulatory variants with GenIE. Nucleic Acids Research, 2020, 48, e131-e131.	6.5	8
179	Advances in engineering CRISPR-Cas9 as a molecular Swiss Army knife. Synthetic Biology, 2020, 5, ysaa021.	1.2	9
180	Ethical and Welfare Implications of Genetically Altered Non-Human Primates for Biomedical Research. Journal of Applied Animal Ethics Research, 2020, 2, 1-26.	0.2	7
181	Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. IScience, 2020, 23, 101478.	1.9	55
182	CRISPR-Cas Tools and Their Application in Genetic Engineering of Human Stem Cells and Organoids. Cell Stem Cell, 2020, 27, 705-731.	5.2	95

CITATION REPOR	Т

#	Article	IF	CITATIONS
183	Gene drive and resilience through renewal with next generation <i>Cleave and Rescue</i> selfish genetic elements. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9013-9021.	3.3	42
184	Stem cell-derived HCV infection systems illustrate the bright future of human hepatocyte research. Gut, 2020, 69, 1550-1551.	6.1	0
185	The Changing Face of Adrenoleukodystrophy. Endocrine Reviews, 2020, 41, 577-593.	8.9	38
186	Mutation-Directed Therapeutics for Neurofibromatosis Type I. Molecular Therapy - Nucleic Acids, 2020, 20, 739-753.	2.3	16
187	Amelioration of an Inherited Metabolic Liver Disease through Creation of a De Novo Start Codon by Cytidine Base Editing. Molecular Therapy, 2020, 28, 1673-1683.	3.7	24
188	Engineering herbicide resistance via prime editing in rice. Plant Biotechnology Journal, 2020, 18, 2370-2372.	4.1	142
189	A Cas9 with PAM recognition for adenine dinucleotides. Nature Communications, 2020, 11, 2474.	5.8	77
190	The expanded development and application of CRISPR system for sensitive nucleotide detection. Protein and Cell, 2020, 11, 624-629.	4.8	30
191	Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. Molecular Therapy - Nucleic Acids, 2020, 21, 1-12.	2.3	8
192	Molecular mechanisms, offâ€ŧarget activities, and clinical potentials of genome editing systems. Clinical and Translational Medicine, 2020, 10, 412-426.	1.7	31
193	Precision genome engineering in rice using prime editing system. Plant Biotechnology Journal, 2020, 18, 2167-2169.	4.1	117
194	A review of emerging physical transfection methods for CRISPR/Cas9-mediated gene editing. Theranostics, 2020, 10, 5532-5549.	4.6	96
195	Preclinical model systems of ryanodine receptor 1-related myopathies and malignant hyperthermia: a comprehensive scoping review of works published 1990–2019. Orphanet Journal of Rare Diseases, 2020, 15, 113.	1.2	19
196	Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes, 2020, 11, 511.	1.0	86
197	<i>Ptr1</i> evolved convergently with <i>RPS2</i> and <i>Mr5</i> to mediate recognition of AvrRpt2 in diverse solanaceous species. Plant Journal, 2020, 103, 1433-1445.	2.8	31
198	Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms, 2020, 8, 803.	1.6	12
199	Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, 2020, 9, 687.	1.6	27
200	Grand Challenges in Genome Editing in Plants. Frontiers in Genome Editing, 2020, 2, 2.	2.7	17

#	Article	IF	CITATIONS
201	CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188378.	3.3	25
202	Efficient genome editing by CRISPR-Mb3Cas12a in mice. Journal of Cell Science, 2020, 133, .	1.2	11
203	Genomics-guided pre-clinical development of cancer therapies. Nature Cancer, 2020, 1, 482-492.	5.7	23
204	Pipeline for the Generation and Characterization of Transgenic Human Pluripotent Stem Cells Using the CRISPR/Cas9 Technology. Cells, 2020, 9, 1312.	1.8	7
205	Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion?. Cells, 2020, 9, 1318.	1.8	41
206	CRISPR in medicine: applications and challenges. Briefings in Functional Genomics, 2020, 19, 151-153.	1.3	4
207	Fine-mapping within eQTL credible intervals by expression CROP-seq. Biology Methods and Protocols, 2020, 5, bpaa008.	1.0	8
208	Plant Genome Editing and the Relevance of Off-Target Changes. Plant Physiology, 2020, 183, 1453-1471.	2.3	68
209	CRISPR Meets Zebrafish: Accelerating the Discovery of New Therapeutic Targets. SLAS Discovery, 2020, 25, 552-567.	1.4	14
210	Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 2020, 20, 234.	1.6	152
211	Kidney Organoids and Tubuloids. Cells, 2020, 9, 1326.	1.8	52
212	Introducing Chemistry Students to Emerging Technologies in Gene Editing, Their Applications, and Ethical Considerations. Journal of Chemical Education, 2020, 97, 1931-1943.	1.1	5
213	New focuses of clinical and translational medicine in 2020. Clinical and Translational Medicine, 2020, 10, 17-19.	1.7	5
214	Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia-Pacific Journal of Ophthalmology, 2020, 9, 159-179.	1.3	20
215	Genetic engineering at the heart of agroecology. Outlook on Agriculture, 2020, 49, 21-28.	1.8	22
216	Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38, 824-844.	9.4	1,277
217	Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chemical Society Reviews, 2020, 49, 4615-4636.	18.7	246
218	Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA. RNA Biology, 2020, 17, 1472-1479.	1.5	10

#	Article	IF	Citations
219	Applications of Nanomaterials in Human Health. , 2020, , .		21
220	Polymeric vehicles for nucleic acid delivery. Advanced Drug Delivery Reviews, 2020, 156, 119-132.	6.6	106
221	Applications of CRISPR technologies in transplantation. American Journal of Transplantation, 2020, 20, 3285-3293.	2.6	12
222	Recent Advances in CRISPR/Cas9 Delivery Strategies. Biomolecules, 2020, 10, 839.	1.8	164
223	Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. International Journal of Molecular Sciences, 2020, 21, 3903.	1.8	39
224	Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme and Microbial Technology, 2020, 140, 109619.	1.6	22
225	Prime Editing: Game Changer for Modifying Plant Genomes. Trends in Plant Science, 2020, 25, 722-724.	4.3	30
226	An aurora of natural products-based drug discovery is coming. Synthetic and Systems Biotechnology, 2020, 5, 92-96.	1.8	11
227	Recent developments with advancing gene therapy to treat chronic infection with hepatitis B virus. Current Opinion in HIV and AIDS, 2020, 15, 200-207.	1.5	6
228	CRISPR with a Happy Ending: Nonâ€īemplated DNA Repair for Prokaryotic Genome Engineering. Biotechnology Journal, 2020, 15, e1900404.	1.8	9
229	Ethical considerations of gene editing and genetic selection. Journal of General and Family Medicine, 2020, 21, 37-47.	0.3	15
230	A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells. Acta Pharmacologica Sinica, 2020, 41, 1427-1432.	2.8	23
231	Various strategies of effector accumulation to improve the efficiency of genome editing and derivative methodologies. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 359-366.	0.7	5
232	The New Frontier of Functional Genomics: From Chromatin Architecture and Noncoding RNAs to Therapeutic Targets. SLAS Discovery, 2020, 25, 568-580.	1.4	3
233	Prime Editing: Genome Editing for Rare Genetic Diseases Without Double-Strand Breaks or Donor DNA. Frontiers in Genetics, 2020, 11, 528.	1.1	46
234	Genome Editing Technologies for Rice Improvement: Progress, Prospects, and Safety Concerns. Frontiers in Genome Editing, 2020, 2, 5.	2.7	51
235	Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell, 2020, 182, 463-480.e30.	13.5	166
236	In Vivo Genome Engineering for the Treatment of Muscular Dystrophies. Current Stem Cell Reports, 2020, 6, 52-66.	0.7	2

		ATION REPORT	
#	Article	IF	CITATIONS
237	Synthetic Biology Speeds Up Drug Target Discovery. Frontiers in Pharmacology, 2020, 11, 119.	1.6	13
238	Fetal gene therapy and pharmacotherapy to treat congenital hearing loss and vestibular dysfunction. Hearing Research, 2020, 394, 107931.	0.9	16
239	Prime genome editing in rice and wheat. Nature Biotechnology, 2020, 38, 582-585.	9.4	544
240	Human T cell glycosylation and implications on immune therapy for cancer. Human Vaccines and Immunotherapeutics, 2020, 16, 2374-2388.	1.4	22
241	Highly Parallel Profiling of Cas9 Variant Specificity. Molecular Cell, 2020, 78, 794-800.e8.	4.5	134
242	Achieving Plant Genome Editing While Bypassing Tissue Culture. Trends in Plant Science, 2020, 25, 427-429.	4.3	22
243	Towards Engineering Broad-Spectrum Disease-Resistant Crops. Trends in Plant Science, 2020, 25, 424-427.	4.3	8
244	Models of Technology Transfer for Genome-Editing Technologies. Annual Review of Genomics and Human Genetics, 2020, 21, 509-534.	2.5	10
245	Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nature Communications, 2020, 11, 1281.	5.8	279
246	Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Reports, 2020, 30, 3280-3295.e6.	2.9	7
247	Natural, modified DNA bases. Current Opinion in Chemical Biology, 2020, 57, 1-7.	2.8	28
248	Genomeâ€edited adult stem cells: Nextâ€generation advanced therapy medicinal products. Stem Cells Translational Medicine, 2020, 9, 674-685.	1.6	12
249	Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. Trends in Plant Science, 2020, 25, 525-537.	4.3	65
250	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	4.7	116
251	Recent advances in CRISPR research. Protein and Cell, 2020, 11, 786-791.	4.8	12
252	CRISPR-Edited Immune Effectors: The End of the Beginning. Molecular Therapy, 2020, 28, 995-996.	3.7	3
253	Tumour travel tours – Why circulating cancer cells value company. Biomedical Journal, 2020, 43, 1-7.	. 1.4	4
254	Modeling the complex genetic architectures of brain disease. Nature Genetics, 2020, 52, 363-369.	9.4	35

#	Article	IF	Citations
255	New Opportunities to Meet the Grand Challenges in Infectious Diseases. Frontiers in Genome Editing, 2020, 2, 1.	2.7	2
256	Highly efficient CRISPR-SaKKH tools for plant multiplex cytosine base editing. Crop Journal, 2020, 8, 418-423.	2.3	11
257	Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13, 667-670.	3.9	148
258	What would responsible remedial human germline editing look like?. Nature Biotechnology, 2020, 38, 398-400.	9.4	3
259	Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nature Biotechnology, 2020, 38, 954-961.	9.4	232
260	Genetically modified crops: current status and future prospects. Planta, 2020, 251, 91.	1.6	218
261	Next-generation stem cells — ushering in a new era of cell-based therapies. Nature Reviews Drug Discovery, 2020, 19, 463-479.	21.5	161
262	Principles of Genetic Engineering. Genes, 2020, 11, 291.	1.0	41
263	Somatic base editing to model oncogenic drivers in breast cancer. Lab Animal, 2020, 49, 115-116.	0.2	1
264	Niosome-Based Approach for In Situ Gene Delivery to Retina and Brain Cortex as Immune-Privileged Tissues. Pharmaceutics, 2020, 12, 198.	2.0	34
265	CRISPR/Cas9 Editing: Sparking Discussion on Safety in Light of the Need for New Therapeutics. Human Gene Therapy, 2020, 31, 794-807.	1.4	2
266	Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. Human Genomics, 2020, 14, 25.	1.4	53
267	Technologies and Computational Analysis Strategies for CRISPR Applications. Molecular Cell, 2020, 79, 11-29.	4.5	28
268	The delivery challenge: fulfilling the promise of therapeutic genome editing. Nature Biotechnology, 2020, 38, 845-855.	9.4	163
269	Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9. Nature Biotechnology, 2020, 38, 1460-1465.	9.4	49
270	Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Molecular Therapy, 2020, 28, 2120-2138.	3.7	38
271	Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9. Trends in Cardiovascular Medicine, 2021, 31, 341-348.	2.3	5
272	A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences, 2020, 45, 874-888.	3.7	23

#	Article	IF	CITATIONS
273	In vivo functional screening for systems-level integrative cancer genomics. Nature Reviews Cancer, 2020, 20, 573-593.	12.8	44
274	Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells, 2020, 9, 1608.	1.8	257
275	Therapeutic Editing of the TP53 Gene: Is CRISPR/Cas9 an Option?. Genes, 2020, 11, 704.	1.0	31
276	A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature, 2020, 583, 631-637.	13.7	409
277	A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Frontiers in Cellular Neuroscience, 2020, 14, 183.	1.8	18
278	Personalized stem cell-based therapy for degenerative retinal diseases. Stem Cell Reviews and Reports, 2020, 16, 1013-1015.	1.7	1
279	Regulatory noncoding RNAs and the major histocompatibility complex. Human Immunology, 2021, 82, 532-540.	1.2	7
280	CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 2020, 16, 465-480.	4.9	89
281	How Crisp is CRISPR? CRISPR-Cas-mediated crop improvement with special focus on nutritional traits. , 2020, , 159-197.		5
282	CRISPR in livestock: From editing to printing. Theriogenology, 2020, 150, 247-254.	0.9	48
283	Chemical genetics strategy to profile kinase target engagement reveals role of FES in neutrophil phagocytosis. Nature Communications, 2020, 11, 3216.	5.8	10
284	Current trends in gene recovery mediated by the CRISPR-Cas system. Experimental and Molecular Medicine, 2020, 52, 1016-1027.	3.2	30
285	CRISPR–Cas9, CRISPRi and CRISPR-BEST-mediated genetic manipulation in streptomycetes. Nature Protocols, 2020, 15, 2470-2502.	5.5	50
286	Ready for Repair? Gene Editing Enters the Clinic for the Treatment of Human Disease. Molecular Therapy - Methods and Clinical Development, 2020, 18, 532-557.	1.8	67
287	Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing <i>via</i> Deamination. ACS Synthetic Biology, 2020, 9, 2162-2171.	1.9	30
288	Prime editing: The state-of-the-art of genome editing. Meta Gene, 2020, 24, 100661.	0.3	2
289	Procreative Non-Maleficence: A South African Human Rights Perspective on Heritable Human Genome Editing. CRISPR Journal, 2020, 3, 32-36.	1.4	4
290	GO: a functional reporter system to identify and enrich base editing activity. Nucleic Acids Research, 2020, 48, 2841-2852.	6.5	27

#	Article	IF	CITATIONS
291	Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. Journal of Neuroscience Methods, 2020, 335, 108629.	1.3	6
292	Recent advances in the use of genetically encodable optical tools to elicit and monitor signaling events. Current Opinion in Cell Biology, 2020, 63, 114-124.	2.6	14
293	Recent advances in genome editing of stem cells for drug discovery and therapeutic application. , 2020, 209, 107501.		36
294	Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nature Cell Biology, 2020, 22, 282-288.	4.6	96
295	Improving Cancer Immunotherapy with CRISPRâ€Based Technology. Advanced Biology, 2020, 4, e1900253.	3.0	6
296	Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Frontiers in Aging Neuroscience, 2020, 12, 4.	1.7	74
297	Linking Engineered Cells to Their Digital Twins: A Version Control System for Strain Engineering. ACS Synthetic Biology, 2020, 9, 536-545.	1.9	23
298	The clinical potential of gene editing as a tool to engineer cellâ€based therapeutics. Clinical and Translational Medicine, 2020, 9, 15.	1.7	56
299	Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets. Science China Life Sciences, 2020, 63, 469-484.	2.3	26
300	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	1.7	37
301	Determining the Biological Mechanisms of Action for Environmental Exposures: Applying CRISPR/Cas9 to Toxicological Assessments. Toxicological Sciences, 2020, 175, 5-18.	1.4	11
302	Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular Constructs. Advanced Functional Materials, 2020, 30, 1909882.	7.8	19
303	Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology, 2020, 147, 25-33.	0.9	15
304	Upcoming Revolutionary Paths in Preclinical Modeling of Pancreatic Adenocarcinoma. Frontiers in Oncology, 2020, 9, 1443.	1.3	16
305	Are Pathogens Completely Harmful or Useless?. ACS Chemical Neuroscience, 2020, 11, 2388-2390.	1.7	6
306	The promise and challenge of therapeutic genome editing. Nature, 2020, 578, 229-236.	13.7	599
307	Ex vivo cell-based CRISPR/Cas9 genome editing for therapeutic applications. Biomaterials, 2020, 234, 119711.	5.7	58
308	2020: Gene Therapy Enters Its Fourth Decade. Human Gene Therapy, 2020, 31, 2-3.	1.4	4

#	Article	IF	CITATIONS
309	Rewriting Human History and Empowering Indigenous Communities with Genome Editing Tools. Genes, 2020, 11, 88.	1.0	9
310	Findings from a Genotyping Study of over 1000 People with Inherited Retinal Disorders in Ireland. Genes, 2020, 11, 105.	1.0	38
311	Prime Editing: Precision Genome Editing by Reverse Transcription. Molecular Cell, 2020, 77, 210-212.	4.5	21
312	The CRISPR toolbox in medical mycology: State of the art and perspectives. PLoS Pathogens, 2020, 16, e1008201.	2.1	49
313	Chromosome Engineering in Tropical Cash Crops. Agronomy, 2020, 10, 122.	1.3	3
314	Genome Editing for Mucopolysaccharidoses. International Journal of Molecular Sciences, 2020, 21, 500.	1.8	31
315	Prime Editing: A New Way for Genome Editing. Trends in Cell Biology, 2020, 30, 257-259.	3.6	45
316	Prime Time for Genome Editing?. New England Journal of Medicine, 2020, 382, 481-484.	13.9	7
317	Cellular plasticity: A mechanism for homeostasis in the kidney. Acta Physiologica, 2020, 229, e13447.	1.8	19
318	RNA Editing as a Therapeutic Approach for Retinal Gene Therapy Requiring Long Coding Sequences. International Journal of Molecular Sciences, 2020, 21, 777.	1.8	46
319	RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis. Oncogene, 2020, 39, 2692-2706.	2.6	15
320	Novel Approaches for Identifying the Molecular Background of Schizophrenia. Cells, 2020, 9, 246.	1.8	13
321	Therapeutic Germline Editing: Sense and Sensibility. Trends in Genetics, 2020, 36, 315-317.	2.9	4
322	Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMDÂgenetic mutation in canine Duchenne muscular dystrophy. PLoS ONE, 2020, 15, e0228072.	1.1	25
323	Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. Theoretical and Applied Genetics, 2020, 133, 1521-1539.	1.8	49
324	CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. International Journal of Molecular Sciences, 2020, 21, 3038.	1.8	27
325	Toward Precision Genome Editing in Crop Plants. Molecular Plant, 2020, 13, 811-813.	3.9	36
326	Efficient generation of mouse models with the prime editing system. Cell Discovery, 2020, 6, 27.	3.1	146

#	Article	IF	CITATIONS
327	Grand Challenges in Gene and Epigenetic Editing for Neurologic Disease. Frontiers in Genome Editing, 2020, 1, 1.	2.7	2
328	Editorial: Precise Genome Editing Techniques and Applications. Frontiers in Genetics, 2020, 11, 412.	1.1	5
329	Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants. Genes, 2020, 11, 466.	1.0	37
330	Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10976-10982.	3.3	72
331	Developing a baseâ€editing system to expand the carbon source utilization spectra of <i>Shewanella oneidensis</i> MRâ€I for enhanced pollutant degradation. Biotechnology and Bioengineering, 2020, 117, 2389-2400.	1.7	29
332	BEON: A Functional Fluorescence Reporter for Quantification and Enrichment of Adenine Base-Editing Activity. Molecular Therapy, 2020, 28, 1696-1705.	3.7	16
334	Challenges, Progress, and Prospects of Developing Therapies to Treat Autoimmune Diseases. Cell, 2020, 181, 63-80.	13.5	159
335	CRISPR-Based Therapeutic Genome Editing: Strategies and InÂVivo Delivery by AAV Vectors. Cell, 2020, 181, 136-150.	13.5	289
336	Development of Plant Prime-Editing Systems for Precise Genome Editing. Plant Communications, 2020, 1, 100043.	3.6	146
337	Design and analysis of CRISPR–Cas experiments. Nature Biotechnology, 2020, 38, 813-823.	9.4	127
338	A CRISPR way for accelerating improvement of food crops. Nature Food, 2020, 1, 200-205.	6.2	125
339	Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing. Nucleic Acids Research, 2020, 48, W340-W347.	6.5	13
340	Current and future gene therapies for hemoglobinopathies. Current Opinion in Hematology, 2020, 27, 149-154.	1.2	9
341	Multicellular In vitro Models of Cardiac Arrhythmias: Focus on Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 2020, 7, 43.	1.1	21
342	Adenoviral Vectors Meet Gene Editing: A Rising Partnership for the Genomic Engineering of Human Stem Cells and Their Progeny. Cells, 2020, 9, 953.	1.8	19
343	Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases. Theranostics, 2020, 10, 4374-4382.	4.6	80
344	Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nature Communications, 2020, 11, 1979.	5.8	66
345	Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Applied Economic Perspectives and Policy, 2020, 42, 129-150.	3.1	217

#	Article	IF	CITATIONS
346	Comparative analysis of genome editing systems, Cas9 and BE3, in silkworms. International Journal of Biological Macromolecules, 2020, 158, 486-492.	3.6	2
347	Gene therapy for inherited arrhythmias. Cardiovascular Research, 2020, 116, 1635-1650.	1.8	20
348	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
349	Versatile Nucleotides Substitution in Plant Using an Improved Prime Editing System. Molecular Plant, 2020, 13, 675-678.	3.9	133
350	The CRISP(Y) Future of Pediatric Soft Tissue Sarcomas. Frontiers in Chemistry, 2020, 8, 178.	1.8	3
351	Genome and base editing for genetic hearing loss. Hearing Research, 2020, 394, 107958.	0.9	18
352	Rodent models for psychiatric disorders: problems and promises. Laboratory Animal Research, 2020, 36, 9.	1.1	15
353	Therapeutic Plasticity of Neural Stem Cells. Frontiers in Neurology, 2020, 11, 148.	1.1	65
354	Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Therapy, 2021, 28, 6-15.	2.3	11
355	Common therapeutic advances for Duchenne muscular dystrophy (DMD). International Journal of Neuroscience, 2021, 131, 370-389.	0.8	22
356	Presynaptic dysfunction in neurodevelopmental disorders: Insights from the synaptic vesicle life cycle. Journal of Neurochemistry, 2021, 157, 179-207.	2.1	51
357	Retinal gene therapy: an eye-opener of the 21st century. Gene Therapy, 2021, 28, 209-216.	2.3	21
358	A primer to gene therapy: Progress, prospects, and problems. Journal of Inherited Metabolic Disease, 2021, 44, 54-71.	1.7	9
359	CRISPR/Cas9 for the treatment of haematological diseases: a journey from bacteria to the bedside. British Journal of Haematology, 2021, 192, 33-49.	1.2	4
360	Gene editing technology for improving life quality: A dream coming true?. Clinical Genetics, 2021, 99, 67-83.	1.0	1
361	Disease gene discovery in male infertility: past, present and future. Human Genetics, 2021, 140, 7-19.	1.8	50
362	Reverse Transcriptase: From Transcriptomics to Genome Editing. Trends in Biotechnology, 2021, 39, 194-210.	4.9	31
363	Therapeutic genome editing in cardiovascular diseases. Advanced Drug Delivery Reviews, 2021, 168, 147-157.	6.6	23

	CHATION		
# 364	ARTICLE Trends in science: successes and responsible research conduct. Biologia Futura, 2021, 72, 161-167.	IF 0.6	Citations
365	Glycosylase base editors enable C-to-A and C-to-G base changes. Nature Biotechnology, 2021, 39, 35-40.	9.4	277
366	CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 2021, 39, 41-46.	9.4	328
367	Novel culture system via wirelessly controllable optical stimulation of the FGF signaling pathway for human and pig pluripotency. Biomaterials, 2021, 269, 120222.	5.7	5
368	Directed Evolution of CRISPR/Cas Systems for Precise Gene Editing. Trends in Biotechnology, 2021, 39, 262-273.	4.9	32
369	A web tool for the design of prime-editing guide RNAs. Nature Biomedical Engineering, 2021, 5, 190-194.	11.6	85
370	One Cut to Change Them All: CRISPR/Cas, a Groundbreaking Tool for Genome Editing in <i>Botrytis cinerea</i> and Other Fungal Plant Pathogens. Phytopathology, 2021, 111, 474-477.	1.1	9
371	CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research, 2021, 29, 207-221.	4.4	136
372	Precise genome modification in tomato using an improved prime editing system. Plant Biotechnology Journal, 2021, 19, 415-417.	4.1	89
373	Engineering the Composition and Fate of Wild Populations with Gene Drive. Annual Review of Entomology, 2021, 66, 407-434.	5.7	61
374	Gene Delivery to the Skin – How Far Have We Come?. Trends in Biotechnology, 2021, 39, 474-487.	4.9	25
375	An overview of currently available molecular Cas-tools for precise genome modification. Gene, 2021, 769, 145225.	1.0	5
376	One-step genotyping method in CRISPR based on short inner primer-assisted, tetra primer-paired amplifications. Molecular and Cellular Probes, 2021, 55, 101675.	0.9	0
377	Next-Generation CRISPR Technologies and Their Applications in Gene and Cell Therapy. Trends in Biotechnology, 2021, 39, 692-705.	4.9	52
378	Designing future crops: challenges and strategies for sustainable agriculture. Plant Journal, 2021, 105, 1165-1178.	2.8	110
379	Gene editing to facilitate hybrid crop production. Biotechnology Advances, 2021, 46, 107676.	6.0	15
380	CRISPR-derived genome editing technologies for metabolic engineering. Metabolic Engineering, 2021, 63, 141-147.	3.6	23
381	Mutations in G Protein–Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacological Reviews, 2021, 73, 89-119.	7.1	60

#	Article	IF	CITATIONS
382	Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nature Protocols, 2021, 16, 182-217.	5.5	73
383	From kilobases to megabases: Design and delivery of large DNA constructs into mammalian genomes. Current Opinion in Systems Biology, 2021, 25, 1-10.	1.3	5
384	Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum, 2021, 172, 847-868.	2.6	131
385	Gene therapy using haematopoietic stem and progenitor cells. Nature Reviews Genetics, 2021, 22, 216-234.	7.7	151
386	Tools for experimental and computational analyses of off-target editing by programmable nucleases. Nature Protocols, 2021, 16, 10-26.	5.5	52
387	CRISPR gets crunchy. Lab Animal, 2021, 50, 9-11.	0.2	1
388	Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. Journal of Controlled Release, 2021, 330, 61-71.	4.8	54
389	Sophisticated CRISPR/Cas tools for fine-tuning plant performance. Journal of Plant Physiology, 2021, 257, 153332.	1.6	10
390	Rational Selection of CRISPR-Cas Triggering Homology-Directed Repair in Human Cells. Human Gene Therapy, 2021, 32, 302-309.	1.4	2
391	CRISPRing future medicines. Expert Opinion on Drug Discovery, 2021, 16, 463-473.	2.5	2
392	An unbiased method for evaluating the genome-wide specificity of base editors in rice. Nature Protocols, 2021, 16, 431-457.	5.5	11
393	Targeting aquaporins to alleviate hazardous metal(loid)s imposed stress in plants. Journal of Hazardous Materials, 2021, 408, 124910.	6.5	22
394	Emerging tools and paradigm shift of gene editing in cereals, fruits, and horticultural crops for enhancing nutritional value and food security. Food and Energy Security, 2021, 10, e258.	2.0	21
395	Legal and practical challenges to authorization of gene edited plants in the EU. New Biotechnology, 2021, 60, 183-188.	2.4	4
396	Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Advanced Drug Delivery Reviews, 2021, 168, 246-258.	6.6	39
397	Programmed sequential cutting endows Cas9 versatile base substitution capability in plants. Science China Life Sciences, 2021, 64, 1025-1028.	2.3	5
398	CRISPR-Mediated Engineering across the Central Dogma in Plant Biology for Basic Research and Crop Improvement. Molecular Plant, 2021, 14, 127-150.	3.9	71
399	CRISPR-based metabolic pathway engineering. Metabolic Engineering, 2021, 63, 148-159.	3.6	24

	CHATON R		
#	Article	IF	CITATIONS
400	Curative gene therapies for rare diseases. Journal of Community Genetics, 2021, 12, 267-276.	0.5	14
401	Novel therapies for mucopolysaccharidosis type <scp>III</scp> . Journal of Inherited Metabolic Disease, 2021, 44, 129-147.	1.7	31
402	Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of Neurochemistry, 2021, 157, 229-262.	2.1	36
403	CRISPR/Cas gene therapy. Journal of Cellular Physiology, 2021, 236, 2459-2481.	2.0	87
404	Predicting the efficiency of prime editing guide RNAs in human cells. Nature Biotechnology, 2021, 39, 198-206.	9.4	160
405	Genetic engineering in plants using CRISPRs. , 2021, , 223-233.		0
407	Induced pluripotent stem cell derivation from myoblasts. , 2021, , 37-55.		3
408	CRISPR-Cas9 for treating hereditary diseases. Progress in Molecular Biology and Translational Science, 2021, 181, 165-183.	0.9	10
409	Challenges and solutions for big data in personalized healthcare. , 2021, , 69-94.		7
410	Molecular Approaches for Disease Resistance in Rice. , 2021, , 315-378.		6
411	History, evolution and classification of CRISPR-Cas associated systems. Progress in Molecular Biology and Translational Science, 2021, 179, 11-76.	0.9	18
412	Base and Prime Editing Technologies for Blood Disorders. Frontiers in Genome Editing, 2021, 3, 618406.	2.7	36
413	Prime Editing Guide RNA Design Automation Using PINE-CONE. ACS Synthetic Biology, 2021, 10, 422-427.	1.9	30
414	Globally Important Wheat Diseases: Status, Challenges, Breeding and Genomic Tools to Enhance Resistance Durability. , 2021, , 59-128.		12
415	CRISPR-Cas systems for genome editing of mammalian cells. Progress in Molecular Biology and Translational Science, 2021, 181, 15-30.	0.9	2
419	CRISPR base editing applications for identifying cancer-driving mutations. Biochemical Society Transactions, 2021, 49, 269-280.	1.6	8
420	Genome editing and RNA interference technologies in plants. , 2021, , 195-212.		0
421	Is subretinal AAV gene replacement still the only viable treatment option for choroideremia?. Expert Opinion on Orphan Drugs, 2021, 9, 13-24.	0.5	4

0.			D	
	ТАТ	$1 \cap N$	RFL	PORT

#	Article	IF	CITATIONS
422	Harnessing CRISPR-Cas system diversity for gene editing technologies. Journal of Biomedical Research, 2021, 35, 91.	0.7	1
423	Synthetic biology is essential to unlock commercial biofuel production through hyper lipid-producing microalgae: a review. Applied Phycology, 2021, 2, 41-59.	0.6	6
424	CRISPR-Cas epigenome editing: improving crop resistance to pathogens. , 2021, , 65-106.		0
425	Precision genome editing using cytosine and adenine base editors in mammalian cells. Nature Protocols, 2021, 16, 1089-1128.	5.5	90
426	Identification of Drug Resistance Genes Using a Pooled Lentiviral CRISPR/Cas9 Screening Approach. Methods in Molecular Biology, 2021, 2381, 227-242.	0.4	5
427	CRISPR genome engineering for retinal diseases. Progress in Molecular Biology and Translational Science, 2021, 182, 29-79.	0.9	13
428	Genetic Disease and Therapy. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 145-166.	9.6	21
429	Gene-Editing Technologies and Applications for Molecular Imaging. , 2021, , 953-965.		Ο
430	Broadening the reach and investigating the potential of prime editors through fully viral gene-deleted adenoviral vector delivery. Nucleic Acids Research, 2021, 49, 11986-12001.	6.5	19
431	Targeted genome modifications in cereal crops. Breeding Science, 2021, 71, 405-416.	0.9	14
432	Alternative types of editing. , 2021, , 123-143.		1
434	CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome. Science China Life Sciences, 2021, 64, 1463-1472.	2.3	14
435	Genetic Variation and Unintended Risk in the Context of Old and New Breeding Techniques. Critical Reviews in Plant Sciences, 2021, 40, 68-108.	2.7	20
438	CRISPR/Cas system: A powerful approach for enhanced resistance against rice blast. , 2021, , 649-658.		Ο
439	Convergence of human pluripotent stem cell, organoid, and genome editing technologies. Experimental Biology and Medicine, 2021, 246, 861-875.	1.1	5
440	CRISPR/dCas9 as a Therapeutic Approach for Neurodevelopmental Disorders: Innovations and Limitations Compared to Traditional Strategies. Developmental Neuroscience, 2021, 43, 253-261.	1.0	10
441	Induced Mutagenesis in Date Palm (Phoenix dactylifera L.) Breeding. Compendium of Plant Genomes, 2021, , 121-154.	0.3	1
442	CRISPR-Cas9 in cancer therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 129-163.	0.9	2

#	Article	IF	CITATIONS
443	Recent advances in stem cells and gene editing: Drug discovery and therapeutics. Progress in Molecular Biology and Translational Science, 2021, 181, 231-269.	0.9	6
444	Rewriting CFTR to cure cystic fibrosis. Progress in Molecular Biology and Translational Science, 2021, 182, 185-224.	0.9	8
445	Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Cellular and Molecular Life Sciences, 2021, 78, 2683-2708.	2.4	29
446	Targeted editing of tomato carotenoid isomerase reveals the role of 5′ UTR region in gene expression regulation. Plant Cell Reports, 2021, 40, 621-635.	2.8	14
447	Engineered FnCas12a with enhanced activity through directional evolution in human cells. Journal of Biological Chemistry, 2021, 296, 100394.	1.6	11
448	Le sfide globali dell'era odierna da assumere come coordinate generali. Studi E Saggi, 0, , 55-87.	0.0	0
449	Precise and broad scope genome editing based on high-specificity Cas9 nickases. Nucleic Acids Research, 2021, 49, 1173-1198.	6.5	29
450	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70
451	Genome-wide detection and analysis of CRISPR-Cas off-targets. Progress in Molecular Biology and Translational Science, 2021, 181, 31-43.	0.9	11
452	Modulating Cas9 activity for precision gene editing. Progress in Molecular Biology and Translational Science, 2021, 181, 89-127.	0.9	2
453	The Evolution of Agriculture and Tools for Plant Innovation. , 2021, , 3-15.		0
454	Induced pluripotent stem cells for modeling of X-linked dystonia-parkinsonism. , 2021, , 239-250.		0
455	Genome editing approaches to β-hemoglobinopathies. Progress in Molecular Biology and Translational Science, 2021, 182, 153-183.	0.9	13
456	Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. Journal of Biomedical Research, 2021, 35, 148.	0.7	6
458	Engineering wheat for gluten safe. , 2021, , 177-197.		0
459	Application of CRISPR-Cas systems in neuroscience. Progress in Molecular Biology and Translational Science, 2021, 178, 231-264.	0.9	5
461	Precise Genome Editing in miRNA Target Site via Gene Targeting and Subsequent Single-Strand-Annealing-Mediated Excision of the Marker Gene in Plants. Frontiers in Genome Editing, 2020, 2, 617713.	2.7	6
462	Efficient and high-fidelity base editor with expanded PAM compatibility for cytidine dinucleotide. Science China Life Sciences, 2021, 64, 1355-1367.	2.3	26

ARTICLE IF CITATIONS # Differentiation of Stem Cells into Neuronal Lineage: In Vitro Cell Culture and In Vivo Transplantation 463 0.1 0 in Animal Models. Pancreatic Islet Biology, 2021, 73-102. Harnessing lipid nanoparticles for efficient CRISPR delivery. Biomaterials Science, 2021, 9, 6001-6011. 464 2.6 Universal toxin-based selection for precise genome engineering in human cells. Nature 465 5.8 29 Communications, 2021, 12, 497. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications, 2021, 12, 555. 5.8 148 CRISPR/Cas9 System, an Efficient Approach to Genome Editing of Plants for Crop Improvement. 467 0.6 1 Concepts and Strategies in Plant Sciences, 2021, , 369-391. Gene Therapy Vectors., 2021, , 1-6. The rapeutic gene editing strategies using CRISPR-Cas9 for the \hat{l}^2 -hemoglobinopathies. Journal of 469 0.7 6 Biomedical Research, 2021, 35, 115. CRISPR–Cas9-based genetic engineering for crop improvement under drought stress. Bioengineered, 1.4 2021, 12, 5814-5829. Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. Springer 471 0.1 0 Protocols, 2021, , 83-101. Challenges and Future Perspective of CRISPR/Cas Technology for Crop Improvement., 2021, , 289-306. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Frontiers in 473 2.7 7 Genome Editing, 2020, 2, 617780. Induced mutagenesis in wheat: from ionizing radiation to site-specific gene editing. Fiziologia Rastenij I 474 0.1 Genetika, <u>2021, 53, 29-54.</u> Hematopoietic Stem Cell-Targeted Gene-Addition and Gene-Editing Strategies for Î²-hemoglobinopathies. 475 5.2 17 Cell Stem Cell, 2021, 28, 191-208. Blue Lightâ€Operated CRISPR/Cas13bâ€Mediated mRNA Knockdown (Lockdown). Advanced Biology, 2021, 5, 1.4 e2000307. Development of CRISPR technology for precise single-base genome editing: a brief review. BMB Reports, 477 10 1.1 2021, 54, 98-105. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nature 5.8 Communications, 2021, 12, 1034. Mini review: genome and transcriptome editing using CRISPR-cas systems for haematological 480 1.34 malignancy gene therapy. Transgenic Research, 2021, 30, 129-141. Precise base editing for the in vivo study of developmental signaling and human pathologies in 2.8 zebrafish. ELife, 2021, 10, .

#	Article	IF	CITATIONS
483	History of genome editing: From meganucleases to CRISPR. Laboratory Animals, 2022, 56, 60-68.	0.5	25
484	Considerations for mosquito microbiome research from the Mosquito Microbiome Consortium. Microbiome, 2021, 9, 36.	4.9	25
485	Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Frontiers in Microbiology, 2021, 12, 638096.	1.5	42
486	In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal γ-globin in β-YAC mice. Blood Advances, 2021, 5, 1122-1135.	2.5	50
487	Evolving AAV-delivered therapeutics towards ultimate cures. Journal of Molecular Medicine, 2021, 99, 593-617.	1.7	41
488	Super-Treg: Toward a New Era of Adoptive Treg Therapy Enabled by Genetic Modifications. Frontiers in Immunology, 2020, 11, 611638.	2.2	26
489	Prospects of genome editing using CRISPR/CAS or how to master genetic scissors. Nobel Prize in Chemistry 2020. Ukrainian Biochemical Journal, 2021, 93, 113-128.	0.1	0
490	Applications of CRISPR Genome Editing to Advance the Next Generation of Adoptive Cell Therapies for Cancer. Cancer Discovery, 2021, 11, 560-574.	7.7	12
491	Cas9-directed immune tolerance in humans—a model to evaluate regulatory T cells in gene therapy?. Gene Therapy, 2021, 28, 549-559.	2.3	28
492	Recording of elapsed time and temporal information about biological events using Cas9. Cell, 2021, 184, 1047-1063.e23.	13.5	29
493	A blueprint for gene function analysis through Base Editing in the model plant <i>Physcomitrium (Physcomitrella) patens</i> . New Phytologist, 2021, 230, 1258-1272.	3.5	18
494	Gene-based therapies for neurodegenerative diseases. Nature Neuroscience, 2021, 24, 297-311.	7.1	83
495	Current and prospective control strategies of influenza A virus in swine. Porcine Health Management, 2021, 7, 23.	0.9	21
496	Gene Targeting Facilitated by Engineered Sequence-Specific Nucleases: Potential Applications for Crop Improvement. Plant and Cell Physiology, 2021, 62, 752-765.	1.5	6
497	Harnessing A3G for efficient and selective C-to-T conversion at C-rich sequences. BMC Biology, 2021, 19, 34.	1.7	5
498	Breaking Boundaries in the Brain—Advances in Editing Tools for Neurogenetic Disorders. Frontiers in Genome Editing, 2021, 3, 623519.	2.7	Ο
499	Gene editing technology: Towards precision medicine in inherited retinal diseases. Seminars in Ophthalmology, 2021, 36, 176-184.	0.8	1
500	Imaging-based screens of pool-synthesized cell libraries. Nature Methods, 2021, 18, 358-365.	9.0	15

#	Article	IF	CITATIONS
501	Advances and Obstacles in Homology-Mediated Gene Editing of Hematopoietic Stem Cells. Journal of Clinical Medicine, 2021, 10, 513.	1.0	11
502	Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics, 2021, 13, 278.	2.0	17
503	A comprehensive review on genetically modified fish: key techniques, applications and future prospects. Reviews in Aquaculture, 2021, 13, 1635-1660.	4.6	12
504	A CRISPR-Cas9-Based Near-Infrared Upconversion-Activated DNA Methylation Editing System. ACS Applied Materials & Interfaces, 2021, 13, 6043-6052.	4.0	10
506	In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline?. Frontiers in Neuroscience, 2021, 15, 632522.	1.4	11
507	A Living Organism in your CRISPR Toolbox: <i>Caenorhabditis elegans</i> Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR Journal, 2021, 4, 32-42.	1.4	9
508	Development and Characterization of a Modular CRISPR and RNA Aptamer Mediated Base Editing System. CRISPR Journal, 2021, 4, 58-68.	1.4	9
509	CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products. Molecular Breeding, 2021, 41, 1.	1.0	13
510	Expanding the Potential of Mammalian Genome Engineering <i>via</i> Targeted DNA Integration. ACS Synthetic Biology, 2021, 10, 429-446.	1.9	11
511	Model-guided design of mammalian genetic programs. Science Advances, 2021, 7, .	4.7	23
512	Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. Frontiers in Plant Science, 2021, 12, 644823.	1.7	32
513	Genetic engineering of T cells for immunotherapy. Nature Reviews Genetics, 2021, 22, 427-447.	7.7	63
514	Molecular Medicine: Found in Translation. Med, 2021, 2, 122-136.	2.2	13
515	Base editing and prime editing in laboratory animals. Laboratory Animals, 2022, 56, 35-49.	0.5	14
516	CRISPR/Cas9 gene editing therapies for cystic fibrosis. Expert Opinion on Biological Therapy, 2021, 21, 1-14.	1.4	9
517	The CRISPR revolution and its potential impact on global health security. Pathogens and Global Health, 2021, 115, 80-92.	1.0	8
518	Recent Advances in the Application of CRISPR/Cas9 Gene Editing System in Poultry Species. Frontiers in Genetics, 2021, 12, 627714.	1.1	15
519	Advanced domestication: harnessing the precision of gene editing in crop breeding. Plant Biotechnology Journal, 2021, 19, 660-670.	4.1	39

#	Article	IF	CITATIONS
520	State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. Plant Cell Reports, 2022, 41, 815-831.	2.8	29
521	Lb2Cas12a and its engineered variants mediate genome editing in human cells. FASEB Journal, 2021, 35, e21270.	0.2	5
522	Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. International Journal of Molecular Sciences, 2021, 22, 2887.	1.8	29
523	High-efficiency prime editing with optimized, paired pegRNAs in plants. Nature Biotechnology, 2021, 39, 923-927.	9.4	189
524	Programmable C:G to G:C genome editing with CRISPR-Cas9-directed base excision repair proteins. Nature Communications, 2021, 12, 1384.	5.8	117
525	Herbicide Resistance: Another Hot Agronomic Trait for Plant Genome Editing. Plants, 2021, 10, 621.	1.6	26
526	CRISPR/Cas9-Mediated Gene Editing Revolutionizes the Improvement of Horticulture Food Crops. Journal of Agricultural and Food Chemistry, 2021, 69, 13260-13269.	2.4	21
527	CRISPR Gene-Editing Models Geared Toward Therapy for Hereditary and Developmental Neurological Disorders. Frontiers in Pediatrics, 2021, 9, 592571.	0.9	4
528	CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regulation, 2021, 94, 115-129.	1.8	8
529	Genome-Editing Strategies for Treating Human Retinal Degenerations. Human Gene Therapy, 2021, 32, 247-259.	1.4	23
530	PnB Designer: a web application to design prime and base editor guide RNAs for animals and plants. BMC Bioinformatics, 2021, 22, 101.	1.2	254
531	Recent Advances in Genome Editing Tools in Medical Mycology Research. Journal of Fungi (Basel,) Tj ETQq1 1 0.7	84314 rgl 1.5	3TJOverlock
532	Spelling Changes and Fluorescent Tagging With Prime Editing Vectors for Plants. Frontiers in Genome Editing, 2021, 3, 617553.	2.7	30
534	Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies. Molecular Genetics and Genomics, 2021, 296, 485-500.	1.0	3
535	Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell, 2021, 184, 1561-1574.	13.5	19
536	Genome engineering for crop improvement and future agriculture. Cell, 2021, 184, 1621-1635.	13.5	405
537	CRISPR/Cas-Dependent and Nuclease-Free <i>In Vivo</i> Therapeutic Gene Editing. Human Gene Therapy, 2021, 32, 275-293.	1.4	26
538	CRISPR as9 Based Genome Editing in Wheat. Current Protocols, 2021, 1, e65.	1.3	22

#	Article	IF	CITATIONS
539	Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Frontiers in Genome Editing, 2021, 3, 644319.	2.7	11
540	CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process Biochemistry, 2021, 102, 261-268.	1.8	7
541	Precision Chemistry on the Genome: Interview with David R. Liu. Human Gene Therapy, 2021, 32, 237-242.	1.4	2
542	Precision medicine for genetic childhood movement disorders. Developmental Medicine and Child Neurology, 2021, 63, 925-933.	1.1	4
543	InÂvivo screens using a selective CRISPR antigen removal lentiviral vector system reveal immune dependencies in renal cell carcinoma. Immunity, 2021, 54, 571-585.e6.	6.6	50
544	Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Molecular Therapy, 2021, 29, 937-948.	3.7	12
545	<i>Ex vivo</i> gene modification therapy for genetic skin diseases—recent advances in gene modification technologies and delivery. Experimental Dermatology, 2021, 30, 887-896.	1.4	11
547	CRISPRâ€based knockâ€in mutagenesis of the pioneer transcription factor FOXA1: optimization of strategies for multiâ€allelic proteins in cancer cells. FEBS Open Bio, 2021, 11, 1537-1551.	1.0	5
549	Novel CRISPR/Cas applications in plants: from prime editing to chromosome engineering. Transgenic Research, 2021, 30, 529-549.	1.3	49
550	The Promise and the Hope of Gene Therapy. Frontiers in Genome Editing, 2021, 3, 618346.	2.7	38
551	Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction. Genome Biology, 2021, 22, 80.	3.8	23
552	Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Frontiers in Genome Editing, 2021, 3, 630600.	2.7	22
553	Role of gene therapy in Fanconi anemia: A systematic and literature review with future directions. Hematology/ Oncology and Stem Cell Therapy, 2021, 14, 290-301.	0.6	8
554	CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. International Journal of Molecular Sciences, 2021, 22, 3196.	1.8	23
555	Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biology, 2021, 22, 83.	3.8	62
556	Editing GWAS: experimental approaches to dissect and exploit disease-associated genetic variation. Genome Medicine, 2021, 13, 41.	3.6	32
557	Using TALENs for genome editing in plants. Burleigh Dodds Series in Agricultural Science, 2021, , 3-26.	0.1	0
558	A CRISPR Landing for Genome Rewriting at Locus-Scale. CRISPR Journal, 2021, 4, 163-166.	1.4	0

#	Article	IF	CITATIONS
559	The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana. Scientific Reports, 2021, 11, 8087.	1.6	20
560	Genome Editing in Bacteria: CRISPR-Cas and Beyond. Microorganisms, 2021, 9, 844.	1.6	57
561	Targeted DNA insertion in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	56
562	Cas9 deactivation with photocleavable guide RNAs. Molecular Cell, 2021, 81, 1553-1565.e8.	4.5	30
563	Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nature Communications, 2021, 12, 2121.	5.8	155
564	Plant genome editing: ever more precise and wide reaching. Plant Journal, 2021, 106, 1208-1218.	2.8	30
565	Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nature Genetics, 2021, 53, 895-905.	9.4	305
566	Viral gene therapy for paediatric neurological diseases: progress to clinical reality. Developmental Medicine and Child Neurology, 2021, 63, 1019-1029.	1.1	10
567	Using TALENs for genome editing in plants. , 2021, , 3-26.		0
568	Using TALENs for genome editing in plants. , 2021, , 3-26.		0
569	Genome editing of barley. , 2021, , 325-340.		1
		1.4	
569	Genome editing of barley. , 2021, , 325-340.	1.4	1
569 570	 Genome editing of barley. , 2021, , 325-340. Base Editors Flex Sights on Sickle-Cell Disease. CRISPR Journal, 2021, 4, 166-168. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. 		1 0
569 570 571	Genome editing of barley. , 2021, , 325-340. Base Editors Flex Sights on Sickle-Cell Disease. CRISPR Journal, 2021, 4, 166-168. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Molecular Therapy, 2022, 30, 47-53.	3.7	1 0 13
569 570 571 573	Genome editing of barley. , 2021, , 325-340. Base Editors Flex Sights on Sickle-Cell Disease. CRISPR Journal, 2021, 4, 166-168. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Molecular Therapy, 2022, 30, 47-53. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. MBio, 2021, 12, . CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nature	3.7 1.8	1 0 13 14
569 570 571 573 574	Genome editing of barley. , 2021, , 325-340. Base Editors Flex Sights on Sickle-Cell Disease. CRISPR Journal, 2021, 4, 166-168. Novel genome-editing-based approaches to treat motor neuron diseases: Promises and challenges. Molecular Therapy, 2022, 30, 47-53. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. MBio, 2021, 12, . CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells. Nature Biotechnology, 2022, 40, 189-193. Potential of genomic technologies to improve disease resistance in molluscan aquaculture.	3.7 1.8 9.4	1 0 13 14 118

#	Article	IF	CITATIONS
578	Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Science Advances, 2021, 7, .	4.7	127
579	Improving rice salt tolerance by precision breeding in a new era. Current Opinion in Plant Biology, 2021, 60, 101996.	3.5	61
581	A Novel Set of Cas9 Fusion Proteins to Stimulate Homologous Recombination: Cas9-HRs. CRISPR Journal, 2021, 4, 253-263.	1.4	11
582	CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genetics, 2021, 17, e1009515.	1.5	36
584	CRISPR Cas9 based genome editing in inherited retinal dystrophies. Ophthalmic Genetics, 2021, 42, 365-374.	0.5	5
585	Genome editing of barley. , 2021, , 325-340.		0
586	CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Current Gene Therapy, 2021, 21, 130-148.	0.9	6
587	De novo domestication of wild species to create crops with increased resilience and nutritional value. Current Opinion in Plant Biology, 2021, 60, 102006.	3.5	64
588	Immunotherapy to get on point with base editing. Drug Discovery Today, 2021, 26, 2350-2357.	3.2	4
592	CRISPR, animals, and FDA oversight: Building a path to success. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
593	Evolutionary Timeline of Genetic Delivery and Gene Therapy. Current Gene Therapy, 2021, 21, 89-111.	0.9	2
594	High-throughput functional variant screens via in vivo production of single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	53
595	Gene therapy for ALS: A review. Molecular Therapy, 2021, 29, 3345-3358.	3.7	95
596	Genome-wide specificity of prime editors in plants. Nature Biotechnology, 2021, 39, 1292-1299.	9.4	80
597	Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Frontiers in Genetics, 2021, 12, 615491.	1.1	24
598	CRISPR technologies for the treatment of Duchenne muscular dystrophy. Molecular Therapy, 2021, 29, 3179-3191.	3.7	31
599	Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding. ABIOTECH, 2021, 2, 375-385.	1.8	27
600	Parallel genetics of regulatory sequences using scalable genome editing inÂvivo. Cell Reports, 2021, 35, 108988.	2.9	9

		CITATION REPORT		
#	Article		IF	CITATIONS
602	Zebrafish Cancer Predisposition Models. Frontiers in Cell and Developmental Biology, 2	.021, 9, 660069.	1.8	15
603	Attaining the promise of plant gene editing at scale. Proceedings of the National Acade of the United States of America, 2021, 118, .	my of Sciences	3.3	51
604	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.		13.7	84
605	CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expres urchin. Developmental Biology, 2021, 472, 85-97.	sion in the sea	0.9	15
606	SH-SY5Y-derived neurons: a human neuronal model system for investigating TAU sortir subtype-specific TAU vulnerability. Reviews in the Neurosciences, 2022, 33, 1-15.	ıg and neuronal	1.4	35
607	CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene improvement. Journal of Zhejiang University: Science B, 2021, 22, 253-284.	therapy and crop	1.3	97
608	CRISPR Co-Editing Strategy for Scarless Homology-Directed Genome Editing. Internation Molecular Sciences, 2021, 22, 3741.	onal Journal of	1.8	9
609	Genetic therapies for the first molecular disease. Journal of Clinical Investigation, 2021	, 131, .	3.9	17
610	Beyond babies: Implications of human genome editing for women, children, and familie Accountability in Research, 2021, , 1-10.	'S.	1.6	1
611	CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Enviro Implications, Technical Limitations, Hazards and Bioethical Issues. Cells, 2021, 10, 969		1.8	15
612	Plant viral vectors: expanding the possibilities of precise gene editing in plant genomes Reports, 2021, 40, 931-934.	. Plant Cell	2.8	11
613	CRISPR-Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficien proteins in primary and immortalized cells. Nature Communications, 2021, 12, 2437.	nt disruption of	5.8	50
614	Agrobacterium-Mediated Capsicum annuum Gene Editing in Two Cultivars, Hot Pepper Pepper Dempsey. International Journal of Molecular Sciences, 2021, 22, 3921.	CM334 and Bell	1.8	14
615	On the Corner of Models and Cure: Gene Editing in Cystic Fibrosis. Frontiers in Pharma 12, 662110.	cology, 2021,	1.6	16
616	Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Scien Review of Biomedical Engineering, 2021, 23, 493-516.	ce. Annual	5.7	4
617	Novel plant breeding techniques to advance nitrogen use efficiency in rice: A review. G Food, 2021, 12, 627-646.	M Crops and	2.0	16
618	Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reducta Communications, 2021, 12, 2828.	ises. Nature	5.8	16
619	Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglo expression. Nature Genetics, 2021, 53, 869-880.	bin	9.4	37

#	ARTICLE	IF	CITATIONS
620	Advanced Therapies and Regulatory Framework in Different Areas of the Globe: Past, Present, and Future. Clinical Therapeutics, 2021, 43, e103-e138.	1.1	9
621	In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature, 2021, 593, 429-434.	13.7	408
623	Prime editing – an update on the field. Gene Therapy, 2021, 28, 396-401.	2.3	74
625	Fate and State of Vascular Smooth Muscle Cells in Atherosclerosis. Circulation, 2021, 143, 2110-2116.	1.6	130
627	Smart Breeding for Climate Resilient Agriculture. , 0, , .		2
629	Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. International Journal of Molecular Sciences, 2021, 22, 5671.	1.8	50
630	The application of genome editing technology in fish. Marine Life Science and Technology, 2021, 3, 326-346.	1.8	9
631	Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. International Journal of Molecular Sciences, 2021, 22, 5585.	1.8	27
632	Correction of the pathogenic mutation in TGM1 gene by adenine base editing in mutant embryos. Molecular Therapy, 2021, , .	3.7	5
633	Primary human hepatocyte gene editing: Prometheus' chains are loosening. Molecular Therapy, 2021, 29, 1666-1667.	3.7	0
634	A stress-free strategy to correct point mutations in patient iPS cells. Stem Cell Research, 2021, 53, 102332.	0.3	4
637	Polymeric Delivery of Therapeutic Nucleic Acids. Chemical Reviews, 2021, 121, 11527-11652.	23.0	138
638	PE-Designer and PE-Analyzer: web-based design and analysis tools for CRISPR prime editing. Nucleic Acids Research, 2021, 49, W499-W504.	6.5	57
639	Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. Frontiers in Plant Science, 2021, 12, 663849.	1.7	71
641	Next Generation Cereal Crop Yield Enhancement: From Knowledge of Inflorescence Development to Practical Engineering by Genome Editing. International Journal of Molecular Sciences, 2021, 22, 5167.	1.8	5
642	Students' attitudes towards somatic genome editing versus genome editing of the germline using an example of familial leukemia. Journal of Community Genetics, 2021, 12, 397-406.	0.5	1
643	Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes, 2021, 12, 805.	1.0	16
645	GTR 2.0: gRNA-tRNA Array and Cas9-NG Based Genome Disruption and Single-Nucleotide Conversion in <i>>Saccharomyces cerevisiae</i> >. ACS Synthetic Biology, 2021, 10, 1328-1337.	1.9	10

#	Article	IF	CITATIONS
646	Cell-Based Delivery Approaches for DNA-Binding Domains into the Central Nervous System. Current Neuropharmacology, 2021, 19, .	1.4	1
648	Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Research, 2021, 30, 551-584.	1.3	74
649	Novel and emerging biotechnological crop protection approaches. Plant Biotechnology Journal, 2021, 19, 1495-1510.	4.1	26
650	Interrogating immune cells and cancer with CRISPR-Cas9. Trends in Immunology, 2021, 42, 432-446.	2.9	13
651	CRISPR/Cas9 gene editing in legume crops: Opportunities and challenges. , 2021, 3, e96.		49
652	Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein and Cell, 2022, 13, 316-335.	4.8	17
653	Engineering three-dimensional genome folding. Nature Genetics, 2021, 53, 602-611.	9.4	9
654	CRISPR-Based Genome Editing Tools: Insights into Technological Breakthroughs and Future Challenges. Genes, 2021, 12, 797.	1.0	22
655	Novel therapies in βâ€ŧhalassaemia. British Journal of Clinical Pharmacology, 2022, 88, 2509-2524.	1.1	7
656	CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Reports, 2021, 40, 979-998.	2.8	32
657	High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nature Communications, 2021, 12, 2969.	5.8	73
658	pegIT -Âa web-based design tool for prime editing. Nucleic Acids Research, 2021, 49, W505-W509.	6.5	26
659	Advances in application of genome editing in tomato and recent development of genome editing technology. Theoretical and Applied Genetics, 2021, 134, 2727-2747.	1.8	35
660	CRISPR Adventures in China. CRISPR Journal, 2021, 4, 304-306.	1.4	Ο
661	Recent advances in CRISPR technologies for genome editing. Archives of Pharmacal Research, 2021, 44, 537-552.	2.7	5
662	Enhancing prime editing by Csy4-mediated processing of pegRNA. Cell Research, 2021, 31, 1134-1136.	5.7	74
663	Stem cell-based therapy for hirschsprung disease, do we have the guts to treat?. Gene Therapy, 2022, 29, 578-587.	2.3	7
665	Robust preclinical evidence in somatic cell genome editing: A key driver of responsible and efficient therapeutic innovations. Drug Discovery Today, 2021, 26, 2238-2243.	3.2	2

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
666	DNAzyme Cleavage of CAG Repeat RNA in Polyglutamine Diseases. Neurotherapeutics, 2021, 18, 1710-1728.	2.1	10
667	Nonviral genome engineering of natural killer cells. Stem Cell Research and Therapy, 2021, 12, 350.	2.4	18
668	Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond. Annual Review of Biochemistry, 2021, 90, 221-244.	5.0	28
669	CRISPR/Cas9: Principle, Applications, and Delivery through Extracellular Vesicles. International Journal of Molecular Sciences, 2021, 22, 6072.	1.8	56
670	Genome Editing for Plasmodesmal Biology. Frontiers in Plant Science, 2021, 12, 679140.	1.7	4
671	Genetic tools for the development of recombinant lactic acid bacteria. Microbial Cell Factories, 2021, 20, 118.	1.9	15
672	Modular optimization in metabolic engineering. Critical Reviews in Biochemistry and Molecular Biology, 2021, 56, 1-16.	2.3	4
673	Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review. Frontiers in Plant Science, 2021, 12, 688980.	1.7	18
674	Engineered prime editors with PAM flexibility. Molecular Therapy, 2021, 29, 2001-2007.	3.7	56
675	Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Research, 2021, 30, 353-379.	1.3	7
676	In-planta Gene Targeting in Barley Using Cas9 With and Without Geminiviral Replicons. Frontiers in Genome Editing, 2021, 3, 663380.	2.7	9
677	Identification and Evolution of Cas9 tracrRNAs. CRISPR Journal, 2021, 4, 438-447.	1.4	6
678	Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD inÂvitro. Molecular Therapy - Nucleic Acids, 2021, 24, 253-263.	2.3	17
680	RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annual Review of Chemical and Biomolecular Engineering, 2021, 12, 263-286.	3.3	8
681	CRISPR/Cas systems: The link between functional genes and genetic improvement. Crop Journal, 2021, 9, 678-687.	2.3	7
682	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	1.6	23
683	Biotechnological Resources to Increase Disease-Resistance by Improving Plant Immunity: A Sustainable Approach to Save Cereal Crop Production. Plants, 2021, 10, 1146.	1.6	14
684	Genome editing to define the function of risk loci and variants in rheumatic disease. Nature Reviews Rheumatology, 2021, 17, 462-474.	3.5	9

#	Article		CITATIONS
685	High-fidelity, efficient, and reversible labeling of endogenous proteins using CRISPR-based designer exon insertion. ELife, 2021, 10, .	2.8	23
686	Efficient C•C-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 2021, 39, 1414-1425.	9.4	118
687	New and novel genetic tools for improving crops. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	4
690	CRISPR Knock-in Designer: Automatic Oligonucleotide Design Software to Introduce Point Mutations by Gene Editing Methods. Re:GEN Open, 2021, 1, 53-67.	0.7	2
691	Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nature Plants, 2021, 7, 888-892.	4.7	54
692	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	1.3	7
693	CRISPR/Cas based gene editing: marking a new era in medical science. Molecular Biology Reports, 2021, 48, 4879-4895.	1.0	9
694	Base editors: Expanding the types of DNA damage products harnessed for genome editing. Gene and Genome Editing, 2021, 1, 100005.	1.3	19
695	The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing. Genes, 2021, 12, 912.	1.0	45
696	Targeted mutagenesis in mouse cells and embryos using an enhanced prime editor. Genome Biology, 2021, 22, 170.	3.8	66
697	CRISPAltRations: A validated cloud-based approach for interrogation of double-strand break repair mediated by CRISPR genome editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 478-491.	1.8	18
698	A Decade of CRISPR Gene Editing in China and Beyond: A Scientometric Landscape. CRISPR Journal, 2021, 4, 313-320.	1.4	5
699	Therapy Development by Genome Editing of Hematopoietic Stem Cells. Cells, 2021, 10, 1492.	1.8	15
700	Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Frontiers in Molecular Neuroscience, 2021, 14, 618171.	1.4	9
701	Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP. Pharmaceutics, 2021, 13, 878.	2.0	24
702	Overexpression of human BAG3P209L in mice causes restrictive cardiomyopathy. Nature Communications, 2021, 12, 3575.	5.8	17
703	Current widely-used web-based tools for CRISPR nucleases, base editors, and prime editors. Gene and Genome Editing, 2021, 1, 100004.	1.3	6
704	CRISPR Genome Editing Technology: A Powerful Tool Applied to Developing Agribusiness. Journal of Agricultural and Food Chemistry, 2021, 69, 6379-6395.	2.4	10

#	Article	IF	CITATIONS
705	Versatile and efficient inÂvivo genome editing with compact Streptococcus pasteurianus Cas9. Molecular Therapy, 2022, 30, 256-267.	3.7	16
706	A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Research, 2021, 49, e88-e88.	6.5	17
707	The Delivery Challenge of Genome Editing in Human Epithelia. Advanced Healthcare Materials, 2021, 10, e2100847.	3.9	4
708	Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomedical Engineering Letters, 2021, 11, 217-233.	2.1	11
709	Advances in CRISPR/Cas9-mediated genome editing on vegetable crops. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 672-682.	0.9	6
710	Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nature Communications, 2021, 12, 4219.	5.8	29
713	Understanding and Exploiting Post-Translational Modifications for Plant Disease Resistance. Biomolecules, 2021, 11, 1122.	1.8	14
714	Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision Clinical Medicine, 2021, 4, 179-191.	1.3	40
715	The metabolic-epigenetic nexus in type 2 diabetes mellitus. Free Radical Biology and Medicine, 2021, 170, 194-206.	1.3	16
716	CRISPR-based genome editing technology and its applications in oil crops. Oil Crop Science, 2021, 6, 105-113.	0.9	9
717	Non-viral transfection technologies for next-generation therapeutic T cell engineering. Biotechnology Advances, 2021, 49, 107760.	6.0	33
718	Induced Genetic Variations in Fruit Trees Using New Breeding Tools: Food Security and Climate Resilience. Plants, 2021, 10, 1347.	1.6	13
719	Therapeutic base editing in the adult liver. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 597-598.	8.2	2
720	Application of genome editing tools in plants. Tap Chi Cong Nghe Sinh Hoc, 2021, 19, 15-40.	0.0	0
721	Genome editing in cereal crops: an overview. Transgenic Research, 2021, 30, 461-498.	1.3	46
722	Investigational Treatments for Epidermolysis Bullosa. American Journal of Clinical Dermatology, 2021, 22, 801-817.	3.3	26
723	Secret messaging with endogenous chemistry. Scientific Reports, 2021, 11, 13960.	1.6	1
724	Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discovery, 2021, 7, 50.	3.1	19

#	Article	IF	CITATIONS
725	Advances in Accurate Microbial Genome-Editing CRISPR Technologies. Journal of Microbiology and Biotechnology, 2021, 31, 903-911.	0.9	6
726	Improved Specificity and Safety of Anti-Hepatitis B Virus TALENs Using Obligate Heterodimeric Fokl Nuclease Domains. Viruses, 2021, 13, 1344.	1.5	11
727	Base Editing in Plants: Applications, Challenges, and Future Prospects. Frontiers in Plant Science, 2021, 12, 664997.	1.7	31
728	Gene editing in tree and clonal crops: progress and challenges. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 683-699.	0.9	15
729	Get ready for the CRISPR/Cas system: A beginner's guide to the engineering and design of guide RNAs. Journal of Gene Medicine, 2021, 23, e3377.	1.4	3
730	CRISPR-Cas9 and beyond: what's next in plant genome engineering. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 584.	0.9	13
731	Screening and validation of genome-edited animals. Laboratory Animals, 2022, 56, 69-82.	0.5	8
732	Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Molecular Genetics and Metabolism, 2021, 134, 117-131.	0.5	13
733	Derepression of specific miRNA-target genes in rice using CRISPR/Cas9. Journal of Experimental Botany, 2021, 72, 7067-7077.	2.4	15
734	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	4.3	76
735	The glomerular filtration barrier: a structural target for novel kidney therapies. Nature Reviews Drug Discovery, 2021, 20, 770-788.	21.5	86
736	Targeted CRISPRâ€Cas9â€based gene knockouts in the model brown alga <i>Ectocarpus</i> . New Phytologist, 2021, 231, 2077-2091.	3.5	41
737	CRISPR/Cas9 gene editing: New hope for Alzheimer's disease therapeutics. Journal of Advanced Research, 2022, 40, 207-221.	4.4	37
738	Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives. Viruses, 2021, 13, 1288.	1.5	44
739	Seed Mucilage: Biological Functions and Potential Applications in Biotechnology. Plant and Cell Physiology, 2021, 62, 1847-1857.	1.5	24
740	Gene Editing and Modulation: the Holy Grail for the Genetic Epilepsies?. Neurotherapeutics, 2021, 18, 1515-1523.	2.1	7
741	OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. Plants, 2021, 10, 1423.	1.6	15
742	Dual-AAV delivering split prime editor system for inÂvivo genome editing. Molecular Therapy, 2022, 30, 283-294.	3.7	87

	CHATION	ILFOR I	
#	ARTICLE	IF	Citations
743	Rodent genetic models of Ah receptor signaling. Drug Metabolism Reviews, 2021, 53, 350-374.	1.5	7
744	Genome-wide genotype-phenotype associations in microbes. Journal of Bioscience and Bioengineering, 2021, 132, 1-8.	1.1	9
746	Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Communications, 2021, 2, 100211.	3.6	46
747	Tissue specificity of DNA repair: the CRISPR compass. Trends in Genetics, 2021, 37, 958-962.	2.9	14
748	CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D. Don). Scientific Reports, 2021, 11, 16186.	1.6	20
749	Plant genome engineering from lab to field—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 35-54.	1.8	4
751	Clinical trials in skeletal dysplasia: a paradigm for treating rare diseases. British Medical Bulletin, 2021, 139, 16-35.	2.7	2
752	Transversion Expansion of Base Editing. CRISPR Journal, 2021, 4, 462-463.	1.4	2
753	Allele-Specific Gene Editing Rescues Pathology in a Human Model of Charcot-Marie-Tooth Disease Type 2E. Frontiers in Cell and Developmental Biology, 2021, 9, 723023.	1.8	10
754	Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods. Nature Communications, 2021, 12, 4902.	5.8	28
755	The international governance of gene drive organisms. Environmental Politics, 0, , 1-20.	3.4	3
756	Strategies to Identify Genetic Variants Causing Infertility. Trends in Molecular Medicine, 2021, 27, 792-806.	3.5	9
758	Genome Editing in Medicine: Tools and Challenges. Acta Medica Lituanica, 2021, 28, 8.	0.2	2
759	Computational resources to define alleles and altered regulatory motifs at genomically edited candidate response elements. Nucleic Acids Research, 2021, 49, 9117-9131.	6.5	1
760	Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing. International Journal of Molecular Sciences, 2021, 22, 8571.	1.8	9
761	New technologies for improved relevance in miRNA research. Trends in Genetics, 2021, 37, 1060-1063.	2.9	7
763	Deafness-in-a-dish: modeling hereditary deafness with inner ear organoids. Human Genetics, 2022, 141, 347-362.	1.8	10
764	Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants. Plant Cell, 2021, 33, 3454-3469.	3.1	7

#	Article	IF	CITATIONS
765	Current advances in overcoming obstacles of CRISPR/Cas9 off-target genome editing. Molecular Genetics and Metabolism, 2021, 134, 77-86.	0.5	15
766	Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Science Alliance, 2021, 4, e202000940.	1.3	67
767	CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. Journal of Experimental and Clinical Cancer Research, 2021, 40, 269.	3.5	32
769	Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Frontiers in Immunology, 2021, 12, 670280.	2.2	1
770	Easy-Prime: a machine learning–based prime editor design tool. Genome Biology, 2021, 22, 235.	3.8	32
771	Development of an efficient plant dual cytosine and adenine editor. Journal of Integrative Plant Biology, 2021, 63, 1600-1605.	4.1	30
772	Genome editor-directed inÂvivo library diversification. Cell Chemical Biology, 2021, 28, 1109-1118.	2.5	7
773	Engineering Cas9 for human genome editing. Current Opinion in Structural Biology, 2021, 69, 86-98.	2.6	19
774	Scalable Manufacturing of CAR T Cells for Cancer Immunotherapy. Blood Cancer Discovery, 2021, 2, 408-422.	2.6	84
776	Enhanced genome editing efficiency of CRISPR PLUS: Cas9 chimeric fusion proteins. Scientific Reports, 2021, 11, 16199.	1.6	12
777	Therapy Approaches for Stargardt Disease. Biomolecules, 2021, 11, 1179.	1.8	26
778	Anthocyanin Biosynthesis Genes as Model Genes for Genome Editing in Plants. International Journal of Molecular Sciences, 2021, 22, 8752.	1.8	43
779	Fast and Efficient Generation of Isogenic Induced Pluripotent Stem Cell Lines Using Adenine Base Editing. CRISPR Journal, 2021, 4, 502-518.	1.4	6
780	Precise genome editing without exogenous donor DNA via retron editing system in human cells. Protein and Cell, 2021, 12, 899-902.	4.8	19
781	CRISPR/Cas9-based directed evolution in mammalian cells. Current Opinion in Structural Biology, 2021, 69, 35-40.	2.6	6
782	Linking genome variants to disease: scalable approaches to test the functional impact of human mutations. Human Molecular Genetics, 2021, 30, R187-R197.	1.4	27
783	Application of prime editing to the correction of mutations and phenotypes in adult mice with liver and eye diseases. Nature Biomedical Engineering, 2022, 6, 181-194.	11.6	92
784	Options for tackling pathogen resistance by genome editing in rice. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	1

#	Article	IF	CITATIONS
785	The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science. Journal of Genetics and Genomics, 2021, 48, 661-670.	1.7	31
786	A first step toward in vivo gene editing in patients. Nature Medicine, 2021, 27, 1515-1517.	15.2	5
787	Embryo-Engineered Nonhuman Primate Models: Progress and Gap to Translational Medicine. Research, 2021, 2021, 9898769.	2.8	3
789	Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease. Molecular Therapy, 2022, 30, 145-163.	3.7	6
790	Genome Editing for the Development of Rice Resistance against Stresses: A Review. Pertanika Journal of Science and Technology, 2021, 44, .	0.1	1
791	Rice breeding in the new era: Comparison of useful agronomic traits. Current Plant Biology, 2021, 27, 100211.	2.3	15
792	Comparative Analysis of Genome Editors Efficiency on a Model of Mice Zygotes Microinjection. International Journal of Molecular Sciences, 2021, 22, 10221.	1.8	0
793	Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Animal Genetics, 2021, 52, 799-812.	0.6	23
794	FnCas12a/crRNA-Mediated Genome Editing in Eimeria tenella. Frontiers in Genetics, 2021, 12, 738746.	1.1	6
795	Generation of a more efficient prime editor 2 by addition of the Rad51 DNA-binding domain. Nature Communications, 2021, 12, 5617.	5.8	47
796	Perfecting Targeting in CRISPR. Annual Review of Genetics, 2021, 55, 453-477.	3.2	10
797	CRISPR-Cas Gene Perturbation and Editing in Human Induced Pluripotent Stem Cells. CRISPR Journal, 2021, 4, 634-655.	1.4	5
798	Hearing impairment: new frontiers of regenerative medicine. Otorhinolaryngology(Italy), 2021, 71, .	0.1	0
799	Frontiers in the Standardization of the Plant Platform for High Scale Production of Vaccines. Plants, 2021, 10, 1828.	1.6	4
800	Deciphering pathogenicity of variants of uncertain significance with CRISPR-edited iPSCs. Trends in Genetics, 2021, 37, 1109-1123.	2.9	14
801	Innovations in CRISPR-Based Therapies. Molecular Biotechnology, 2021, , 1.	1.3	5
802	LATE–a novel sensitive cell-based assay for the study of CRISPR/Cas9-related long-term adverse treatment effects. Molecular Therapy - Methods and Clinical Development, 2021, 22, 249-262.	1.8	1
803	Progressive Genomic Approaches to Explore Drought- and Salt-Induced Oxidative Stress Responses in Plants under Changing Climate. Plants, 2021, 10, 1910.	1.6	24

#	Article		CITATIONS
804	From Descriptive to Functional Genomics of Leukemias Focusing on Genome Engineering Techniques. International Journal of Molecular Sciences, 2021, 22, 10065.	1.8	5
805	Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Molecular Therapy, 2021, 29, 3205-3218.	3.7	14
806	Advances in profiling chromatin architecture shed light on the regulatory dynamics underlying brain disorders. Seminars in Cell and Developmental Biology, 2021, 121, 153-153.	2.3	8
807	Optimized nickase- and nuclease-based prime editing in human and mouse cells. Nucleic Acids Research, 2021, 49, 10785-10795.	6.5	47
808	Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Frontiers in Genetics, 2021, 12, 728520.	1.1	11
809	Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell, 2021, 28, 1614-1624.e5.	5.2	35
810	Genomics in medicine: A new era in medicine. World Journal of Methodology, 2021, 11, 231-242.	1.1	5
811	Gene targeting techniques for Huntington's disease. Ageing Research Reviews, 2021, 70, 101385.	5.0	12
812	InÂvivo somatic cell base editing and prime editing. Molecular Therapy, 2021, 29, 3107-3124.	3.7	87
816	Nuclear dynamics and stress responses in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 65.	4.4	11
817	Precision Medicine Trials in Retinal Degenerations. Annual Review of Vision Science, 2021, 7, 851-865.	2.3	6
819	Synthetic directed evolution in plants: unlocking trait engineering and improvement. Synthetic Biology, 2021, 6, ysab025.	1.2	13
820	Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.	4.7	172
822	Modeling a cataract disorder in mice with prime editing. Molecular Therapy - Nucleic Acids, 2021, 25, 494-501.	2.3	15
823	Reduced off-target effect of NG-BE4max by using NG-HiFi system. Molecular Therapy - Nucleic Acids, 2021, 25, 168-172.	2.3	3
825	Engineering Properties of Sweet Potato Starch for Industrial Applications by Biotechnological Techniques including Genome Editing. International Journal of Molecular Sciences, 2021, 22, 9533.	1.8	17
826	Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nature Biotechnology, 2022, 40, 94-102.	9.4	119
827	Points of View on the Tools for Genome/Gene Editing. International Journal of Molecular Sciences, 2021, 22, 9872.	1.8	10

#	Article	IF	CITATIONS
828	Roadmap for the use of base editors to decipher drug mechanism of action. PLoS ONE, 2021, 16, e0257537.	1.1	1
829	Genetic and Epigenetic Therapies for β-Thalassaemia by Altering the Expression of α-Globin Gene. Frontiers in Genome Editing, 2021, 3, 752278.	2.7	8
830	Therapy Development for Epidermolysis Bullosa. , 0, , .		2
831	Current Advancements and Limitations of Gene Editing in Orphan Crops. Frontiers in Plant Science, 2021, 12, 742932.	1.7	20
832	CRISPR/Cas-mediated genome editing in sorghum — recent progress, challenges and prospects. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 720-730.	0.9	5
833	Efficient retroelement-mediated DNA writing in bacteria. Cell Systems, 2021, 12, 860-872.e5.	2.9	17
834	Recent advancements on use of CRISPR /Cas9 in maize yield and quality improvement. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021, 49, 12459.	0.5	5
835	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	2.9	82
836	Ex Vivo Expansion and CRISPR as9 Genome Editing of Primary Human Natural Killer Cells. Current Protocols, 2021, 1, e246.	1.3	2
837	A versatile genetic engineering toolkit for E. coli based on CRISPR-prime editing. Nature Communications, 2021, 12, 5206.	5.8	49
838	RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. Plants, 2021, 10, 1914.	1.6	17
839	A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa. Molecular Therapy - Nucleic Acids, 2021, 25, 237-250.	2.3	14
840	Recent progress in genome editing for gene therapy applications: the French perspective. Human Gene Therapy, 2021, 32, 1059-1075.	1.4	0
841	Functional interrogation of autoimmune disease genetics using CRISPR/Cas9 technologies and massively parallel reporter assays. Seminars in Immunopathology, 2022, 44, 137-147.	2.8	5
842	Progress in Gene-Editing Technology of Zebrafish. Biomolecules, 2021, 11, 1300.	1.8	12
844	Generating novel plant genetic variation via genome editing to escape the breeding lottery. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 627.	0.9	3
845	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	1.8	2
847	Macrophages M1-Related Prognostic Signature in Hepatocellular Carcinoma. Journal of Oncology, 2021, 2021, 1-10.	0.6	3

		CITATION REPORT		
#	Article		IF	CITATIONS
848	CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants,	2021, 10, 2055.	1.6	32
849	Approaches for the sensitive detection of rare base and prime editing events. Methods	, 2021, 194, 75-82.	1.9	1
850	Advances in base editing with an emphasis on an AAV-based strategy. Methods, 2021,	194, 56-64.	1.9	1
851	Introduction of mutations in plants with prime editing. Methods, 2021, 194, 83-93.		1.9	8
852	Progression and application of CRISPR-Cas genomic editors. Methods, 2021, 194, 65-7	'4.	1.9	9
853	Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system. 194, 48-55.	. Methods, 2021,	1.9	6
854	Toward the Treatment of Inherited Diseases of the Retina Using CRISPR-Based Gene Ec Medicine, 2021, 8, 698521.	liting. Frontiers in	1.2	6
855	Advances in genomics and genome editing for breeding next generation of fruit and nu Genomics, 2021, 113, 3718-3734.	ut crops.	1.3	19
856	Non-coding Natural Antisense Transcripts: Analysis and Application. Journal of Biotechr 340, 75-101.	10logy, 2021,	1.9	12
857	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408	3, 112844.	1.2	11
858	Moving from in vitro to in vivo CRISPR screens. Gene and Genome Editing, 2021, 2, 10	0008.	1.3	25
859	CABE-RY: A PAM-flexible dual-mutation base editor for reliable modeling of multi-nucleo Molecular Therapy - Nucleic Acids, 2021, 26, 114-121.	otide variants.	2.3	8
860	TALE and TALEN genome editing technologies. Gene and Genome Editing, 2021, 2, 100	0007.	1.3	54
861	Towards a CRISPeR understanding of homologous recombination with high-throughpu genomics. Current Opinion in Genetics and Development, 2021, 71, 171-181.	t functional	1.5	6
862	CRISPR-mediated genome editing for developing climate-resilient monocot and dicot c 393-411.	rops. , 2022, ,		1
863	The evolution and history of gene editing technologies. Progress in Molecular Biology a Translational Science, 2021, 178, 1-62.	and	0.9	7
864	Base editing: a brief review and a practical example. Journal of Biomedical Research, 20	21, 35, 107.	0.7	0
865	Targeted genome editing for the correction or alleviation of primary Immunodeficiencie Molecular Biology and Translational Science, 2021, 182, 111-151.	es. Progress in	0.9	3

		CITATION I	Report	
# 866	ARTICLE CRISPR/Cas-Based Techniques in Plants. , 2021, , 37-61.		IF	CITATIONS 3
867	Genome Editing for β-Hemoglobinopathies: Advances and Challenges. Journal of Clinical 10, 482.	Medicine, 2021,	1.0	17
868	Improvements in Gene Editing Technology Boost Its Applications in Livestock. Frontiers ir 2020, 11, 614688.	1 Genetics,	1.1	34
869	enAsCas12a Enables CRISPR-Directed Evolution to Screen for Functional Drug Resistance Sequences Inaccessible to SpCas9. Molecular Therapy, 2021, 29, 208-224.	Mutations in	3.7	8
870	Recombineering and MAGE. Nature Reviews Methods Primers, 2021, 1, .		11.8	47
871	Genome Editing. Advances in Environmental Engineering and Green Technologies Book S 253-303.	eries, 2021, ,	0.3	0
872	Principles and Applications of RNA-Based Genome Editing for Crop Improvement. Concep Strategies in Plant Sciences, 2021, , 247-278.	uts and	0.6	1
873	Gene and epigenetic editing in the treatment of primary ciliopathies. Progress in Molecula and Translational Science, 2021, 182, 353-401.	ar Biology	0.9	3
875	Utility of Zebrafish Models of Acquired and Inherited Long QT Syndrome. Frontiers in Phy 2020, 11, 624129.	siology,	1.3	4
876	Detection of CRISPR-Cas9-Mediated Mutations Using a Carbon Nanotube-Modified Electr Genosensor. Biosensors, 2021, 11, 17.	rochemical	2.3	8
877	Genome editing in lysosomal disorders. Progress in Molecular Biology and Translational S 2021, 182, 289-325.	cience,	0.9	1
878	DGK and DZHK position paper on genome editing: basic science applications and future p Basic Research in Cardiology, 2021, 116, 2.	berspective.	2.5	5
879	In vivo genome editing in single mammalian brain neurons through CRISPR-Cas9 and cyto editors. Computational and Structural Biotechnology Journal, 2021, 19, 2477-2485.	osine base	1.9	1
881	Modern Techniques for Plant Breeding in Ornamentals. , 2021, , 1-34.			0
882	Advances in gene editing strategies for epidermolysis bullosa. Progress in Molecular Biolo Translational Science, 2021, 182, 81-109.	igy and	0.9	10
883	The TRACE-Seq method tracks recombination alleles and identifies clonal reconstitution or gene targeted human hematopoietic stem cells. Nature Communications, 2021, 12, 472.	lynamics of	5.8	23
884	Advances in Genome Editing With CRISPR Systems and Transformation Technologies for Manipulation. Frontiers in Plant Science, 2020, 11, 637159.	Plant DNA	1.7	61
885	Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editin tackle sensorineural hearing loss. Stem Cells, 2021, 39, 673-696.	g: Platforms to	1.4	23

#	Article	IF	CITATIONS
886	Wide Horizons of CRISPR-Cas-Derived Technologies for Basic Biology, Agriculture, and Medicine. Springer Protocols, 2020, , 1-23.	0.1	15
887	Neuroenhancement and Law. , 2020, , 189-214.		3
888	Application of Nanomaterials in Cancer Diagnosis, Drug Delivery, and Therapy. , 2020, , 147-171.		1
889	Genetic Engineering and Genome Editing Strategies to Enhance Diseases Resistance of Rice Plants: A Review of Progress and Future Prospects. , 2020, , 35-59.		2
890	Functional Genomics for Cancer Drug Target Discovery. Cancer Cell, 2020, 38, 31-43.	7.7	46
891	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	1.9	100
892	CRISPR screens in the era of microbiomes. Current Opinion in Microbiology, 2020, 57, 70-77.	2.3	15
893	Celebrating Rosalind Franklin's Centennial with a Nobel Win for Doudna and Charpentier. Molecular Therapy, 2020, 28, 2519-2520.	3.7	2
894	Quest to use CRISPR against disease gains ground. Nature, 2020, 577, 156-156.	13.7	22
895	RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nature Cell Biology, 2020, 22, 143-150.	4.6	48
896	Crop reproductive meristems in the genomic era: a brief overview. Biochemical Society Transactions, 2020, 48, 853-865.	1.6	3
897	Editor's cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochemical Society Transactions, 2020, 48, 207-219.	1.6	14
898	CRISPR-based gene expression control for synthetic gene circuits. Biochemical Society Transactions, 2020, 48, 1979-1993.	1.6	30
899	Real-time observation of Cas9 postcatalytic domain motions. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2010650118.	3.3	17
900	Efficient CRISPR-mediated base editing in <i>Agrobacterium</i> spp Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
901	Precise genome engineering in <i>Drosophila</i> using prime editing. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	65
902	CRISPR-Cas "Non-Target―Sites Inhibit On-Target Cutting Rates. CRISPR Journal, 2020, 3, 550-561.	1.4	17
903	Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. Journal of Molecular Cell Biology, 2021, 12, 828-856.	1.5	9

		CITATION RE	PORT	
#	Article		IF	CITATIONS
904	Genomic Screening for Malignant Hyperthermia Susceptibility. Anesthesiology, 2020,	133, 1277-1282.	1.3	18
937	A most formidable arsenal: genetic technologies for building a better mouse. Genes an 2020, 34, 1256-1286.	id Development,	2.7	24
938	Precision genome editing in plants via gene targeting and subsequent breakâ€inducec annealing. Plant Biotechnology Journal, 2021, 19, 563-574.	l singleâ€ s trand	4.1	17
939	Gene therapy in wound healing using nanotechnology. Wound Repair and Regeneratic 225-239.	on, 2021, 29,	1.5	11
940	Correction of muscular dystrophies by CRISPR gene editing. Journal of Clinical Investig 130, 2766-2776.	ation, 2020,	3.9	60
941	Beyond Seek and Destroy: how to Generate Allelic Series Using Genome Editing Tools.	Rice, 2020, 13, 5.	1.7	7
942	CRISPR-based strategies for targeted transgene knock-in and gene correction. Faculty 20.	Reviews, 2020, 9,	1.7	8
943	The protective mutation A673T in amyloid precursor protein gene decreases Aβ peptic 14 forms of Familial Alzheimer's Disease in SH-SY5Y cells. PLoS ONE, 2020, 15, e0	les production for 237122.	1.1	11
944	Genetically Engineering the Nervous System with CRISPR-Cas. ENeuro, 2020, 7, ENEUR	₹0.0419-19.2020.	0.9	12
945	<scp>CRISPR</scp> ― <scp>TAPE</scp> : proteinâ€centric <scp>CRISPR</scp> guide proteome engineering. Molecular Systems Biology, 2020, 16, e9475.	e design for targeted	3.2	4
946	Embryo-mediated genome editing for accelerated genetic improvement of livestock. F Agricultural Science and Engineering, 2020, 7, 148.	rontiers of	0.9	22
947	Regulatory issues for genetically modified animals. Frontiers of Agricultural Science an Engineering, 2020, 7, 188.	d	0.9	3
948	Base editing in pigs for precision breeding. Frontiers of Agricultural Science and Engine 161.	ering, 2020, 7,	0.9	6
949	Genome-edited crops: how to move them from laboratory to market. Frontiers of Agric Science and Engineering, 2020, 7, 181.	cultural	0.9	14
950	Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. E 20, 19-45.	XCLI Journal, 2021,	0.5	6
951	Could Seeking Human Germline Genome Editing Force Journeys of Transnational Care 9, 184.	?. Generos, 2020,	0.5	3
952	multicrispr: gRNA design for prime editing and parallel targeting of thousands of targe Alliance, 2020, 3, e202000757.	ts. Life Science	1.3	21
953	Applicability of the EFSA Opinion on siteâ€directed nucleases type 3 for the safety ass developed using siteâ€directed nucleases type 1 and 2 and oligonucleotideâ€directed Journal, 2020, 18, e06299.	essment of plants mutagenesis. EFSA	0.9	31

#	Article	IF	CITATIONS
954	Precision Genome Engineering for the Breeding of Tomatoes: Recent Progress and Future Perspectives. Frontiers in Genome Editing, 2020, 2, 612137.	2.7	17
955	On-Target CRISPR/Cas9 Activity Can Cause Undesigned Large Deletion in Mouse Zygotes. International Journal of Molecular Sciences, 2020, 21, 3604.	1.8	30
956	Drug Screening with Genetically Encoded Fluorescent Sensors: Today and Tomorrow. International Journal of Molecular Sciences, 2021, 22, 148.	1.8	13
957	Biosystems Design to Accelerate C ₃ -to-CAM Progression. Biodesign Research, 2020, 2020, .	0.8	16
958	Plant Biosystems Design Research Roadmap 1.0. Biodesign Research, 2020, 2020, .	0.8	16
959	Diverse Systems for Efficient Sequence Insertion and Replacement in Precise Plant Genome Editing. Biodesign Research, 2020, 2020, .	0.8	3
960	Reconfiguring Plant Metabolism for Biodegradable Plastic Production. Biodesign Research, 2020, 2020, .	0.8	7
961	Prime Editing Technology and Its Prospects for Future Applications in Plant Biology Research. Biodesign Research, 2020, 2020, .	0.8	34
962	Targeting complexes of super‑enhancers is a promising strategy for cancer therapy (Review). Oncology Letters, 2020, 20, 2557-2566.	0.8	12
963	Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms. Journal of Microbiology and Biotechnology, 2020, 30, 793-803.	0.9	56
964	Semiochemicals for bark beetle (Coleoptera: Curculionidae) management in western North America: where do we go from here?. Canadian Entomologist, 2021, 153, 121-135.	0.4	15
965	Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity. BMB Reports, 2020, 53, 341-348.	1.1	4
966	Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18. ELife, 2020, 9, .	2.8	23
967	RNA-guided retargeting of Sleeping Beauty transposition in human cells. ELife, 2020, 9, .	2.8	44
968	Enhancement of homology-directed repair with chromatin donor templates in cells. ELife, 2020, 9, .	2.8	18
969	HTATSF1-Nucleated PARylation and Phosphorylation Cascade Dictates Homologous Recombination and Modulates Chemotherapeutic Response of Breast Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
970	Probing the stability of the SpCas9–DNA complex after cleavage. Nucleic Acids Research, 2021, 49, 12411-12421.	6.5	11
971	Biotechnology of Twenty-First Century. , 2021, , 17-42.		Ο

#	Article	IF	CITATIONS
972	Prime Editing, a Novel Genome-Editing Tool That May Surpass Conventional CRISPR-Cas9. Re:GEN Open, 2021, 1, 75-82.	0.7	4
973	Deletion and replacement of long genomic sequences using prime editing. Nature Biotechnology, 2022, 40, 227-234.	9.4	90
974	Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers, 2021, 13, 4986.	1.7	6
975	Beyond GWAS: from simple associations to functional insights. Seminars in Immunopathology, 2022, 44, 3-14.	2.8	13
976	Multiplex Genome-Editing Technologies for Revolutionizing Plant Biology and Crop Improvement. Frontiers in Plant Science, 2021, 12, 721203.	1.7	36
977	Engineered pegRNAs improve prime editing efficiency. Nature Biotechnology, 2022, 40, 402-410.	9.4	293
978	CRISPR-derived genome editing therapies: Progress from bench to bedside. Molecular Therapy, 2021, 29, 3125-3139.	3.7	14
979	Editing outside the body: ExÂvivo gene-modification for β-hemoglobinopathy cellular therapy. Molecular Therapy, 2021, 29, 3163-3178.	3.7	12
980	NBS1 I171V variant underlies individual differences in chromosomal radiosensitivity within human populations. Scientific Reports, 2021, 11, 19661.	1.6	3
981	Determination of Factors Driving the Genome Editing Field in the CRISPR Era Using Bibliometrics. CRISPR Journal, 2021, 4, 728-738.	1.4	3
982	Hepatocyte organoids and cell transplantation: What the future holds. Experimental and Molecular Medicine, 2021, 53, 1512-1528.	3.2	23
983	Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell, 2021, 184, 5635-5652.e29.	13.5	332
984	Precise genomic deletions using paired prime editing. Nature Biotechnology, 2022, 40, 218-226.	9.4	117
985	Strategies for genetic manipulation of adult stem cell-derived organoids. Experimental and Molecular Medicine, 2021, 53, 1483-1494.	3.2	19
986	Recent progress on n-butanol production by lactic acid bacteria. World Journal of Microbiology and Biotechnology, 2021, 37, 205.	1.7	2
987	Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics, 2021, 18, 1500-1514.	2.1	9
988	Recent Advances in CRISPR/Cas9-Based Genome Editing Tools for Cardiac Diseases. International Journal of Molecular Sciences, 2021, 22, 10985.	1.8	5
989	Efficient Multi-Sites Genome Editing and Plant Regeneration via Somatic Embryogenesis in Picea glauca. Frontiers in Plant Science, 2021, 12, 751891.	1.7	15

~				
(ПТ	ATIO	N R	FD	JDT
	ALIO			

#	Article	IF	CITATIONS
990	Future Perspectives of Oral Delivery of Next Generation Therapies for Treatment of Skin Diseases. Pharmaceutics, 2021, 13, 1722.	2.0	4
992	Gene Therapies for Monogenic Autism Spectrum Disorders. Genes, 2021, 12, 1667.	1.0	15
993	Modelling of primary ciliary dyskinesia using patientâ€derived airway organoids. EMBO Reports, 2021, 22, e52058.	2.0	24
994	Genome editing of Corynebacterium glutamicum mediated with Cpf1 plus Ku/LigD. Biotechnology Letters, 2021, 43, 2273-2281.	1.1	3
995	Prenatal Gene Therapy for Metabolic Disorders. Clinical Obstetrics and Gynecology, 2021, 64, 904-916.	0.6	1
996	In Utero Fetal Therapy: Stem Cells, Cell Transplantation, Gene Therapy, and CRISPR-Cas9. Clinical Obstetrics and Gynecology, 2021, 64, 861-875.	0.6	3
997	Gene editing to enhance the efficacy of cancer cell therapies. Molecular Therapy, 2021, 29, 3153-3162.	3.7	5
998	The Functional Association of ACQOS/VICTR with Salt Stress Resistance in Arabidopsis thaliana Was Confirmed by CRISPR-Mediated Mutagenesis. International Journal of Molecular Sciences, 2021, 22, 11389.	1.8	17
999	Efficient Breeding of Early-Maturing Rice Cultivar by Editing PHYC via CRISPR/Cas9. Rice, 2021, 14, 86.	1.7	11
1006	21st century miniguide to fungal biotechnology. Mexican Journal of Biotechnology, 2019, 5, 11-42.	0.2	4
1007	A 53BP1 Inhibitory Compound Enhances CRISPR Efficiency for Generating Knock-In Mice. SSRN Electronic Journal, 0, , .	0.4	0
1008	Application of genome editing technology in human gene therapy. Translational and Regulatory Sciences, 2020, 2, 100-106.	0.2	0
1011	TecnologÃas disruptivas como alternativa a la obtención de órganos y tejidos artificiales. Revista Colombiana De Bioética, 2020, 15, .	0.0	1
1014	O que hÃ; de realmente atemorizador nos cenÃ;rios tipo-Gattaca?. VÉritas, 2020, 65, e36605.	0.0	0
1016	Neurociencia, Humanismo y Posthumanismo. Logos (Spain), 0, 53, 9-31.	0.1	5
1019	Correction of RNA splicing defect in β ⁶⁵⁴ -thalassemia mice using CRISPR/Cas9 gene-editing technology. Haematologica, 2022, 107, 1427-1437.	1.7	9
1020	Increasing the efficiency and precision of prime editing with guide RNA pairs. Nature Chemical Biology, 2022, 18, 29-37.	3.9	60
1021	Gene therapy for cystic fibrosis: new tools for precision medicine. Journal of Translational Medicine, 2021, 19, 452.	1.8	23

#	Article	IF	CITATIONS
1022	Automated design of CRISPR prime editors for 56,000 human pathogenic variants. IScience, 2021, 24, 103380.	1.9	11
1023	Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Frontiers in Genome Editing, 2021, 3, 737632.	2.7	13
1024	An Outlook on Global Regulatory Landscape for Genome-Edited Crops. International Journal of Molecular Sciences, 2021, 22, 11753.	1.8	43
1025	Illuminating the path to DNA repair. Cell, 2021, 184, 5503-5505.	13.5	1
1026	The Next Generation of Molecular and Cellular Therapeutics for Inherited Retinal Disease. International Journal of Molecular Sciences, 2021, 22, 11542.	1.8	7
1027	Genome editing from Cas9 to IscB: Backwards and forwards towards new breakthroughs. Engineering Microbiology, 2021, 1, 100004.	2.2	1
1029	Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nature Communications, 2021, 12, 6267.	5.8	52
1031	Analysis of requests for journals <i>Nature Food</i> and <i>npj Science of Food</i> by the data of the SCI-HUB service for the first half of 2020. Teoriâ I Praktika Pererabotki Mâsa, 2020, 5, 35-38.	0.2	1
1032	Regulating innovation in the early development of cell therapies. Immunotherapy Advances, 2021, 1, .	1.2	2
1033	PROSPECTS FOR GENE EDITING USING CRISPR/CAS, OR HOW TO MASTER THE GENETIC SCISSORS Nobel Prize in Chemistry for 2020. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2020, , 31-49.	0.0	0
1035	DENT-seq for genome-wide strand-specific identification of DNA single-strand break sites with single-nucleotide resolution. Genome Research, 2021, 31, 75-87.	2.4	6
1036	Genetically-modified cell lines: categorisation and considerations for characterisation. Stem Cell Research, 2020, 49, 102103.	0.3	1
1038	Introduction on translational autoimmunity: From bench to bedside. , 2022, , 1-12.		0
1039	Conditional and tissue-specific approaches to dissect essential mechanisms in plant development. Current Opinion in Plant Biology, 2022, 65, 102119.	3.5	6
1040	CRISPR/Cas9 technology in neurological disorders: An update for clinicians. Annals of Movement Disorders, 2020, 3, 23.	0.3	2
1041	Search-and-replace editing of genetic information. Frontiers of Agricultural Science and Engineering, 2020, 7, 231.	0.9	0
1042	Reflections on the system of evaluation of gene-edited livestock. Frontiers of Agricultural Science and Engineering, 2020, 7, 211.	0.9	3
1043	A brief review of genome editing technology for generating animal models. Frontiers of Agricultural Science and Engineering, 2020, 7, 123.	0.9	5

		15	0
#	ARTICLE	IF	CITATIONS
1045	Biocomputers: Problems They Solve, State of the Art, and Prospects. Nanotechnologies in Russia, 2020, 15, 3-12.	0.7	2
1048	La ediciÃ ³ n del ADN. latreia, 2020, 33, 262-272.	0.1	0
1052	Sorghum genetic, genomic, and breeding resources. Planta, 2021, 254, 114.	1.6	28
1057	BEAR reveals that increased fidelity variants can successfully reduce the mismatch tolerance of adenine but not cytosine base editors. Nature Communications, 2021, 12, 6353.	5.8	10
1059	Fine-tuning shoot meristem size to feed the world. Trends in Plant Science, 2022, 27, 355-363.	4.3	10
1060	Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Frontiers in Cardiovascular Medicine, 2021, 8, 760140.	1.1	14
1062	Functional pre-therapeutic evaluation by genome editing of variants of uncertain significance of essential tumor suppressor genes. Genome Medicine, 2021, 13, 174.	3.6	2
1075	Heritable Human Genome Editing: A Basic Biology Perspective. Trends in the Sciences, 2020, 25, 10_12-10_18.	0.0	0
1076	THE GORDON WILSON LECTURE: THE ETHICS OF HUMAN GENOME EDITING. Transactions of the American Clinical and Climatological Association, 2020, 131, 99-118.	0.9	1
1078	Employing the CRISPR-Cas System for Clonal Hematopoiesis Research. International Journal of Physical Medicine & Rehabilitation, 2021, 9, .	0.5	1
1080	Expansion of methods of gene editing therapy and analysis of safety and efficacy. , 2022, , 155-179.		0
1081	Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Current Opinion in Immunology, 2022, 74, 76-84.	2.4	12
1082	LncRNAs in domesticated animals: from dog to livestock species. Mammalian Genome, 2022, 33, 248-270.	1.0	10
1083	Advances in gene therapy for neurogenetic diseases: a brief review. Journal of Molecular Medicine, 2022, 100, 385-394.	1.7	3
1085	In Silico Analysis of Pathogenic CRB1 Single Nucleotide Variants and Their Amenability to Base Editing as a Potential Lead for Therapeutic Intervention. Genes, 2021, 12, 1908.	1.0	4
1086	Applications of CRISPR-Cas Technologies to Proteomics. Genes, 2021, 12, 1790.	1.0	5
1088	Discovering new biology with drug-resistance alleles. Nature Chemical Biology, 2021, 17, 1219-1229.	3.9	11
1089	Identification and characterization of a natural polymorphism in FT-A2 associated with increased number of grains per spike in wheat. Theoretical and Applied Genetics, 2022, 135, 679-692.	1.8	13

	CHAIR	JN KEPORT	
#	Article	IF	CITATIONS
1090	Prime Editing for Inherited Retinal Diseases. Frontiers in Genome Editing, 2021, 3, 775330.	2.7	17
1091	A selectable all-in-one CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human cell lines. Scientific Reports, 2021, 11, 22154.	1.6	19
1092	Genetic therapies for neurological disorders. Human Genetics, 2022, 141, 1085-1091.	1.8	2
1093	Current technological interventions and applications of CRISPR/Cas for crop improvement. Molecular Biology Reports, 2022, 49, 5751-5770.	1.0	6
1094	Pathways to de novo domestication of crop wild relatives. Plant Physiology, 2022, 188, 1746-1756.	2.3	27
1095	Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Molecular Therapy, 2022, 30, 1018-1035.	3.7	26
1096	Metagenomic discovery of CRISPR-associated transposons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	38
1098	Random-PE: an efficient integration of random sequences into mammalian genome by prime editing. Molecular Biomedicine, 2021, 2, 36.	1.7	4
1099	piggyPrime: High-Efficacy Prime Editing in Human Cells Using piggyBac-Based DNA Transposition. Frontiers in Genome Editing, 2021, 3, 786893.	2.7	11
1100	Challenges Posed by Gene Manipulations and Sport Performance. , 2022, , 47-59.		0
1101	A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Current Issues in Molecular Biology, 2021, 43, 1950-1976.	1.0	48
1102	Developing nociceptor-selective treatments for acute and chronic pain. Science Translational Medicine, 2021, 13, eabj9837.	5.8	22
1103	Modulating CRISPR/Cas9 genome-editing activity by small molecules. Drug Discovery Today, 2022, 27, 951-966.	3.2	12
1104	Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Progress in Retinal and Eye Research, 2022, 89, 101029.	7.3	58
1105	Towards precise large genomic fragment deletion. Trends in Genetics, 2022, 38, 214-215.	2.9	2
1106	Generation of AAVS1 integrated doxycycline-inducible CRISPR-Prime Editor human induced pluripotent stem cell line. Stem Cell Research, 2021, 57, 102610.	0.3	4
1107	Mg ²⁺ -dependent conformational rearrangements of CRISPR-Cas12a R-loop complex are mandatory for complete double-stranded DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
1108	Wheat Breeding, Fertilizers, and Pesticides: Do They Contribute to the Increasing Immunogenic Properties of Modern Wheat?. Gastrointestinal Disorders, 2021, 3, 247-264.	0.4	1

#	Article	IF	CITATIONS
1100	Development of Lipid Nanoparticles for the Delivery of Macromolecules Based on the Molecular	.	
1109	Design of pH-Sensitive Cationic Lipids. Chemical and Pharmaceutical Bulletin, 2021, 69, 1141-1159.	0.6	14
1110	The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. Journal of Advanced Research, 2022, 40, 135-152.	4.4	16
1111	Find and cut-and-transfer (FiCAT) mammalian genome engineering. Nature Communications, 2021, 12, 7071.	5.8	21
1112	Advances of Biotechnology in Quinoa Production: A Global Perspective. , 2021, , 79-111.		2
1113	Potato improvement through genetic engineering. GM Crops and Food, 2021, 12, 479-496.	2.0	11
1114	A detection method for the capture of genomic signatures: From disease diagnosis to genome editing. Methods in Enzymology, 2021, 661, 251-282.	0.4	2
1115	Towards Precision Therapies for Inherited Disorders of Neurodegeneration with Brain Iron Accumulation. Tremor and Other Hyperkinetic Movements, 2021, 11, 51.	1.1	7
1116	Applications of CRISPR-Cas System in Tumor Biology. Oncologie, 2021, 23, 463-492.	0.2	1
1117	The application of new breeding technology based on gene editing in pig industry — A review. Animal Bioscience, 2022, 35, 791-803.	0.8	8
1118	CRISPR guides induce gene silencing in plants in the absence of Cas. Genome Biology, 2022, 23, 6.	3.8	22
1119	Enhanced High Mutation Rate and Natural Selection to Produce Attenuated Viral Vaccine with CRISPR Toolkit in RNA Viruses especially SARS-CoV-2. Infection, Genetics and Evolution, 2022, 97, 105188.	1.0	4
1120	Beyond Genome Editing: CRISPR Approaches. , 2022, , 187-218.		2
1121	Moving toward genome-editing therapies for cardiovascular diseases. Journal of Clinical Investigation, 2022, 132, .	3.9	22
1122	A New Era in Herbicide-Tolerant Crops Development by Targeted Genome Editing. ACS Agricultural Science and Technology, 2022, 2, 184-191.	1.0	4
1123	Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. Journal of Controlled Release, 2022, 342, 345-361.	4.8	82
1124	Review of gene therapies for age-related macular degeneration. Eye, 2022, 36, 303-311.	1.1	38
1125	CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells. Advanced Drug Delivery Reviews, 2022, 181, 114087.	6.6	18
1126	Prime Editing in the model plant Physcomitrium patens and its potential in the tetraploid potato. Plant Science, 2022, 316, 111162.	1.7	32

#	Article	IF	CITATIONS
1127	Gene therapy as a possible option to treat hereditary hearing loss. Medizinische Genetik, 2020, 32, 149-159.	0.1	2
1129	Update of Regulatory Options of New Breeding Techniques and Biosafety Approaches among Selected Countries: A Review. Asian Journal of Biotechnology and Bioresource Technology, 0, , 18-35.	0.1	1
1130	Gene Therapy Vectors. , 2021, , 689-694.		0
1131	A working model for condensate RNA-binding proteins as matchmakers for protein complex assembly. Rna, 2022, 28, 76-87.	1.6	22
1132	SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. Neurochemical Journal, 2021, 15, 376-389.	0.2	0
1133	CRISPR-Cas9 Delivery with the Ribonucleoprotein Complexes Increased EGFP Editing Efficiency. Neurochemical Journal, 2021, 15, 390-397.	0.2	0
1134	Genome editing in cultured fishes. CABI Agriculture and Bioscience, 2021, 2, .	1.1	7
1135	Available Toolkits for CRISPR/CAS Genome Editing in Plants. Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	4
1136	Green Fluorescent Protein Tagged Polycistronic Reporter System Reveals Functional Editing Characteristics of CRISPR-Cas. CRISPR Journal, 2022, 5, 254-263.	1.4	1
1137	Recent advances in molecular farming using monocot plants. Biotechnology Advances, 2022, 58, 107913.	6.0	16
1138	Expanding the plant genome editing toolbox with recently developed CRISPR–Cas systems. Plant Physiology, 2022, 188, 1825-1837.	2.3	39
1139	Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virologica Sinica, 2022, 37, 1-10.	1.2	8
1140	Improved gRNA secondary structures allow editing of target sites resistant to CRISPR-Cas9 cleavage. Nature Communications, 2022, 13, 489.	5.8	35
1142	The CRISPR-Cas toolbox and gene editing technologies. Molecular Cell, 2022, 82, 333-347.	4.5	151
1143	Gene Therapy Using Nanocarriers for Pancreatic Ductal Adenocarcinoma: Applications and Challenges in Cancer Therapeutics. Pharmaceutics, 2022, 14, 137.	2.0	4
1144	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	1.8	16
1145	Synthetic mRNA for exÂvivo therapeutic applications. Drug Metabolism and Pharmacokinetics, 2022, 44, 100447.	1.1	4
1146	Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases. Frontiers in Genome Editing, 2022, 4, 780238.	2.7	21

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1147	Bioengineering strategies for restoring vision. Nature Biomedical Engineering, 2023, 7	, 387-404.	11.6	30
1148	An update on precision genome editing by homology-directed repair in plants. Plant Pl 188, 1780-1794.	nysiology, 2022,	2.3	18
1149	Protein visualization and manipulation in Drosophila through the use of epitope tags r nanobodies. ELife, 2022, 11, .	ecognized by	2.8	22
1150	Monitoring and modulation of the tumor microenvironment for enhanced cancer mod Experimental Biology and Medicine, 2022, 247, 598-613.	eling.	1.1	Ο
1151	High-throughput methods for genome editing: the more the better. Plant Physiology, 2 1731-1745.	2022, 188,	2.3	10
1152	Targeting Cancer with CRISPR/Cas9-Based Therapy. International Journal of Molecular 23, 573.	Sciences, 2022,	1.8	18
1153	CRISPR/Cas: The New Frontier in Plant Improvement. ACS Agricultural Science and Tec 202-214.	hnology, 2022, 2,	1.0	4
1155	The Role of Recombinant AAV in Precise Genome Editing. Frontiers in Genome Editing,	2021, 3, 799722.	2.7	24
1156	Drug delivery systems for RNA therapeutics. Nature Reviews Genetics, 2022, 23, 265-2	280.	7.7	417
1157	Targeted editing and evolution of engineered ribosomes in vivo by filtered editing. Nat Communications, 2022, 13, 180.	ure	5.8	6
1159	Retinal cadherins and the retinal cadherinopathies: Current concepts and future direct in Retinal and Eye Research, 2022, 90, 101038.	ions. Progress	7.3	11
1160	Automation and Expansion of EMMA Assembly for Fast-Tracking Mammalian System E Synthetic Biology, 2022, 11, 587-595.	ngineering. ACS	1.9	4
1161	High-throughput navigation of the sequence space. , 2022, , 123-146.			0
1162	The application of iPSC-derived kidney organoids and genome editing in kidney disease , 111-136.	e modeling. , 2022,		2
1163	CRISPR Editing Enables Consequential Tag-Activated MicroRNA-Mediated Endogene D International Journal of Molecular Sciences, 2022, 23, 1082.	eactivation.	1.8	5
1164	First Small-Molecule Inhibitors Targeting the RNA-Binding Protein IGF2BP2/IMP2 for Ca ACS Chemical Biology, 2022, 17, 361-375.	ancer Therapy.	1.6	23
1165	Kinetic Modulation of Amyloid-β (1–42) Aggregation and Toxicity by Structure-Base Journal of the American Chemical Society, 2022, 144, 1603-1611.	d Rational Design.	6.6	10
1166	hiPSCs for population genetics. , 2022, , 19-44.			0

#	Article	IF	CITATIONS
1167	From systems to structure — using genetic data to model protein structures. Nature Reviews Genetics, 2022, 23, 342-354.	7.7	14
1168	CRISPR-based genome editing through the lens of DNA repair. Molecular Cell, 2022, 82, 348-388.	4.5	90
1169	Advances in potato functional genomics: implications for crop improvement. Plant Cell, Tissue and Organ Culture, 2022, 148, 447-464.	1.2	4
1170	Powerful, efficient QTL mapping in <i>Drosophila melanogaster</i> using bulked phenotyping and pooled sequencing. Genetics, 2022, 220, .	1.2	2
1171	Crop Quality Improvement Through Genome Editing Strategy. Frontiers in Genome Editing, 2021, 3, 819687.	2.7	3
1172	Applications of CRISPR/Cas9 technology for modification of the plant genome. Genetica, 2022, 150, 1-12.	0.5	8
1173	Advances in Delivery Mechanisms of CRISPR Gene-Editing Reagents in Plants. Frontiers in Genome Editing, 2022, 4, 830178.	2.7	29
1174	Optimisation of root traits to provide enhanced ecosystem services in agricultural systems: A focus on cover crops. Plant, Cell and Environment, 2022, 45, 751-770.	2.8	31
1175	Strategies for Enhancing the Homology-Directed Repair Efficiency of CRISPR-Cas Systems. CRISPR Journal, 2022, 5, 7-18.	1.4	8
1176	The Scope of Pathogenic ABCA4 Mutations Targetable by CRISPR DNA Base Editing Systems—A Systematic Review. Frontiers in Genetics, 2021, 12, 814131.	1.1	4
1177	CRISPR/Cas System: Applications and Prospects for Maize Improvement. ACS Agricultural Science and Technology, 2022, 2, 174-183.	1.0	11
1179	Two high-fidelity variants: efSaCas9 and SaCas9-HF, which one is better?. Gene Therapy, 2022, 29, 458-463.	2.3	4
1180	Application of CRISPR/Cas system in iPSC-based disease model of hereditary deafness. , 2022, , 225-245.		0
1181	Massively parallel phenotyping of coding variants in cancer with Perturb-seq. Nature Biotechnology, 2022, 40, 896-905.	9.4	44
1182	A flexible split prime editor using truncated reverse transcriptase improves dual-AAV delivery in mouse liver. Molecular Therapy, 2022, 30, 1343-1351.	3.7	45
1183	Comprehensive analysis of prime editing outcomes in human embryonic stem cells. Nucleic Acids Research, 2022, 50, 1187-1197.	6.5	49
1184	Reading Frame Repair of <i>TTN</i> Truncation Variants Restores Titin Quantity and Functions. Circulation, 2022, 145, 194-205.	1.6	14
1185	Harnessing the Power of Stem Cell Models to Study Shared Genetic Variants in Congenital Heart Diseases and Neurodevelopmental Disorders. Cells, 2022, 11, 460.	1.8	0

#	Article	IF	CITATIONS
1186	Genome Editing in Crop Plant Research—Alignment of Expectations and Current Developments. Plants, 2022, 11, 212.	1.6	7
1187	New Frontiers: Precise Editing of Allergen Genes Using CRISPR. Frontiers in Allergy, 2021, 2, 821107.	1.2	7
1188	Basic Principles and Clinical Applications of CRISPR-Based Genome Editing. Yonsei Medical Journal, 2022, 63, 105.	0.9	11
1189	Bacterial Retrons Enable Precise Gene Editing in Human Cells. CRISPR Journal, 2022, 5, 31-39.	1.4	22
1190	Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nature Communications, 2022, 13, 474.	5.8	23
1191	Updates on gene editing and its applications. Plant Physiology, 2022, 188, 1725-1730.	2.3	15
1192	Using Prime Editing and Mesenchymal Stem Cell-Derived Exosomes to Treat Cystic Fibrosis: A Research Protocol. , 2022, 6, 1-8.		0
1193	Of mice and human-specific long noncoding RNAs. Mammalian Genome, 2022, 33, 281-292.	1.0	6
1194	CRISPR-based therapeutics: current challenges and future applications. Trends in Pharmacological Sciences, 2022, 43, 151-161.	4.0	32
1195	MOF effectively deliver CRISPR and enhance gene-editing efficiency via MOF's hydrolytic activity of phosphate ester bonds. Chemical Engineering Journal, 2022, 439, 134992.	6.6	7
1196	Generation of a CRISPR/Cas edited human induced pluripotent stem cell line DHMi005-A-1 carrying a patient-specific disease-causing point mutation in the TBX5 gene. Stem Cell Research, 2022, 60, 102691.	0.3	4
1199	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	155
1200	Versioning biological cells for trustworthy cell engineering. Nature Communications, 2022, 13, 765.	5.8	6
1201	Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair. Nature Communications, 2022, 13, 760.	5.8	74
1202	High-content CRISPR screening. Nature Reviews Methods Primers, 2022, 2, .	11.8	24
1203	Identification of novel HPFH-like mutations by CRISPR base editing that elevate the expression of fetal hemoglobin. ELife, 2022, 11, .	2.8	29
1205	The use of new CRISPR tools in cardiovascular research and medicine. Nature Reviews Cardiology, 2022, 19, 505-521.	6.1	21
1206	CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Molecular Therapy, 2022, 30, 1407-1420.	3.7	16

#	Article	IF	CITATIONS
1207	dCas9-VPR-mediated transcriptional activation of functionally equivalent genes for gene therapy. Nature Protocols, 2022, 17, 781-818.	5.5	11
1208	Twin prime editor: seamless repair without damage. Trends in Biotechnology, 2022, 40, 374-376.	4.9	6
1209	Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger. GM Crops and Food, 2021, 12, 601-615.	2.0	17
1210	Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Frontiers in Cell and Developmental Biology, 2021, 9, 803252.	1.8	10
1212	CRISPR Therapeutics for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 1832.	1.8	14
1213	Insertion of the Icelandic Mutation (A673T) by Prime Editing: A Potential Preventive Treatment for Familial and Sporadic Alzheimer's Disease. CRISPR Journal, 2022, 5, 109-122.	1.4	13
1214	Current approaches in CRISPR-Cas9 mediated gene editing for biomedical and therapeutic applications. Journal of Controlled Release, 2022, 343, 703-723.	4.8	25
1215	Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 2022, 40, 731-740.	9.4	230
1216	mRNA, a Revolution in Biomedicine. Pharmaceutics, 2021, 13, 2090.	2.0	26
1217	Feel That Base: An Interview with Base Editing Pioneer David Liu. , 2021, 3, 187-196.		0
1219	The Development of DNA/RNA-Editing Technology Using PPR Protein, a Plant Specific Nucleotide Binding Module: Establishment of a New DNA/RNA Engineering Platform. Kagaku To Seibutsu, 2021, 59, 113-121.	0.0	0
1220	<i>In vivo</i> outer hair cell gene editing ameliorates progressive hearing loss in dominant-negative <i>Kcnq4</i> murine model. Theranostics, 2022, 12, 2465-2482.	4.6	26
1221	Reinventing positive-strand RNA virus reverse genetics. Advances in Virus Research, 2022, , 1-29.	0.9	4
1222	CRISPR DNA- and RNP-Mediated Genome Editing via Nicotiana benthamiana Protoplast Transformation and Regeneration. Methods in Molecular Biology, 2022, 2464, 65-82.	0.4	2
1223	Mechanisms of torsades de pointes. , 2022, , 51-77.		0
1225	Genomic Designing for Biotic Stress Resistant Grapevine. , 2022, , 87-255.		11
1227	Efficient targeted insertion of large DNA fragments without DNA donors. Nature Methods, 2022, 19, 331-340.	9.0	65

# 1230	ARTICLE CRISPR Genome Editing: Into the Second Decade. , 2022, 1, 37-39.	IF	CITATIONS
1231	The recent progress of CRISPR/Cas genome editing technology and its application in crop improvement. Chinese Science Bulletin, 2022, 67, 1923-1937.	0.4	1
1232	How Various Drug Delivery Methods Could Aid in the Translation of Genome Prime Editing Technologies. Genetical Research, 2022, 2022, 1-8.	0.3	0
1233	CRISPR towards a Sustainable Agriculture. Encyclopedia, 2022, 2, 538-558.	2.4	7
1234	Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. Nature Biotechnology, 2022, 40, 862-873.	9.4	44
1235	Saturation variant interpretation using CRISPR prime editing. Nature Biotechnology, 2022, 40, 885-895.	9.4	86
1236	Current Status of CRISPR/Cas9 Application in Clinical Cancer Research: Opportunities and Challenges. Cancers, 2022, 14, 947.	1.7	17
1237	PEAR, a flexible fluorescent reporter for the identification and enrichment of successfully prime edited cells. ELife, 2022, 11, .	2.8	22
1238	The Central Dogma revisited: Insights from protein synthesis, CRISPR, and beyond. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1718.	3.2	10
1239	Recent Advances in the Production of Genome-Edited Rats. International Journal of Molecular Sciences, 2022, 23, 2548.	1.8	10
1240	Treating Cardiovascular Disease with Liver Genome Engineering. Current Atherosclerosis Reports, 2022, 24, 75-84.	2.0	0
1241	Efficient polymer nanoparticle-mediated delivery of gene editing reagents into human hematopoietic stem and progenitor cells. Molecular Therapy, 2022, 30, 2186-2198.	3.7	16
1243	Multiplexed Genome Editing for Efficient Phenotypic Screening in Zebrafish. Veterinary Sciences, 2022, 9, 92.	0.6	3
1244	Genome Editing of Pluripotent Stem Cells for Adoptive and Regenerative Cell Therapies. , 2022, 1, 77-90.		0
1245	CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics, 2022, 19, 931-941.	2.1	17
1246	Powerful CRISPR-Based Biosensing Techniques and Their Integration With Microfluidic Platforms. Frontiers in Bioengineering and Biotechnology, 2022, 10, 851712.	2.0	9
1247	CRISPR in cancer biology and therapy. Nature Reviews Cancer, 2022, 22, 259-279.	12.8	157
1248	Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Viruses, 2022, 14, 437.	1.5	3

1249 å^©ç"^{...}CRISPR/Cas9基å›ç¼—辑技æœ⁻治痗&beta;-地ä,æµ·è´«è;€çš,,最旰进展. Chinese SciencœBulletin, 2022, , .

1250	Chimeric RNA: DNA TracrRNA Improves Homology-Directed Repair <i>In Vitro</i> and <i>In Vivo</i> . CRISPR Journal, 2022, 5, 40-52.	1.4	1
1251	A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. Journal of Zhejiang University: Science B, 2022, 23, 141-152.	1.3	3
1254	Predictable NHEJ Insertion and Assessment of HDR Editing Strategies in Plants. Frontiers in Genome Editing, 2022, 4, 825236.	2.7	16
1255	Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nature Communications, 2022, 13, 1669.	5.8	52
1256	Phage peptides mediate precision base editing with focused targeting window. Nature Communications, 2022, 13, 1662.	5.8	4
1257	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	1.6	19
1258	Mutation-specific reporter for optimization and enrichment of prime editing. Nature Communications, 2022, 13, 1028.	5.8	16
1259	Targeting DNA polymerase to DNA double-strand breaks reduces DNA deletion size and increases templated insertions generated by CRISPR/Cas9. Nucleic Acids Research, 2022, 50, 3944-3957.	6.5	12
1260	Therapeutic Strategies for Dystrophin Replacement in Duchenne Muscular Dystrophy. Frontiers in Medicine, 2022, 9, 859930.	1.2	21
1262	Curative Cell and Gene Therapy for Osteogenesis Imperfecta. Journal of Bone and Mineral Research, 2020, 37, 826-836.	3.1	15
1265	In vivo prime editing of a metabolic liver disease in mice. Science Translational Medicine, 2022, 14, eabl9238.	5.8	71
1266	Strategies for Optimization of the Clustered Regularly Interspaced Short Palindromic Repeat-Based Genome Editing System for Enhanced Editing Specificity. Human Gene Therapy, 2022, 33, 358-370.	1.4	2
1267	Increasing the Targeting Scope of CRISPR Base Editing System Beyond NGG. CRISPR Journal, 2022, 5, 187-202.	1.4	12
1270	Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Molecular Cancer, 2022, 21, 78.	7.9	88
1272	Cas13d: A New Molecular Scissor for Transcriptome Engineering. Frontiers in Cell and Developmental Biology, 2022, 10, 866800.	1.8	21
1273	CRISPR/Cas-Based Gene Editing Strategies for DOCK8 Immunodeficiency Syndrome. Frontiers in Genome Editing, 2022, 4, 793010.	2.7	2
1274	Development and Optimization of CRISPR Prime Editing System in Photoautotrophic Cells. Molecules, 2022, 27, 1758.	1.7	4

#	Article	IF	CITATIONS
1276	CRISPR/Cas9 and next generation sequencing in the personalized treatment of Cancer. Molecular Cancer, 2022, 21, 83.	7.9	26
1277	Singleâ€cell RNA sequencing technologies and applications: A brief overview. Clinical and Translational Medicine, 2022, 12, e694.	1.7	218
1278	Computational Tools and Resources for CRISPR/Cas Genome Editing. Genomics, Proteomics and Bioinformatics, 2023, 21, 108-126.	3.0	51
1279	CRISPR/Cas gene editing in the human germline. Seminars in Cell and Developmental Biology, 2022, 131, 93-107.	2.3	8
1280	Application of CRISPR/Cas9 in Rapeseed for Gene Function Research and Genetic Improvement. Agronomy, 2022, 12, 824.	1.3	7
1281	DNA methylation–independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins. Life Science Alliance, 2022, 5, e202101321.	1.3	3
1282	Genomic and Transcriptomic Analyses of Prime Editing Guide RNA–Independent Off-Target Effects by Prime Editors. CRISPR Journal, 2022, 5, 276-293.	1.4	31
1283	Immunological barriers to haematopoietic stem cell gene therapy. Nature Reviews Immunology, 2022, 22, 719-733.	10.6	22
1284	Principles and Applications of CRISPR Toolkit in Virus Manipulation, Diagnosis, and Virus-Host Interactions. Cells, 2022, 11, 999.	1.8	3
1286	CRISPR–Cas9 gene editing induced complex on-target outcomes in human cells. Experimental Hematology, 2022, 110, 13-19.	0.2	6
1287	Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing. Nature Communications, 2022, 13, 1240.	5.8	18
1288	Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. Frontiers in Plant Science, 2022, 13, 847169.	1.7	8
1289	ABIN1 is a signalâ€induced autophagy receptor that attenuates NFâ€î®B activation by recognizing linear ubiquitin chains. FEBS Letters, 2022, 596, 1147-1164.	1.3	8
1291	Predicting base editing outcomes using position-specific sequence determinants. Nucleic Acids Research, 2022, 50, 3551-3564.	6.5	15
1292	An engineered prime editor with enhanced editing efficiency in plants. Nature Biotechnology, 2022, 40, 1394-1402.	9.4	89
1294	Nanoscale delivery platforms for RNA therapeutics: Challenges and the current state of the art. Med, 2022, 3, 167-187.	2.2	7
1295	Funding CRISPR: Understanding the role of government and philanthropic institutions in supporting academic research within the CRISPR innovation system. Quantitative Science Studies, 2022, 3, 443-456.	1.6	0
1296	Swiftly Evolving CRISPR Genome Editing: A Revolution in Genetic Engineering for Developing Stress-Resilient Crops. Current Chinese Science, 2022, 2, 382-399.	0.2	2

#	Article	IF	CITATIONS
1298	The heat is on: a simple method to increase genome editing efficiency in plants. BMC Plant Biology, 2022, 22, 142.	1.6	18
1299	Target residence of Cas9: challenges and opportunities in genome editing. Genome Instability & Disease, 2022, 3, 57-69.	0.5	1
1300	Gene Editing for Inherited Red Blood Cell Diseases. Frontiers in Physiology, 2022, 13, 848261.	1.3	5
1302	Genome Engineering Technology for Durable Disease Resistance: Recent Progress and Future Outlooks for Sustainable Agriculture. Frontiers in Plant Science, 2022, 13, 860281.	1.7	12
1303	CRISPR somatic genome engineering and cancer modeling in the mouse pancreas and liver. Nature Protocols, 2022, 17, 1142-1188.	5.5	13
1304	A cytosine base editor toolkit with varying activity windows and target scopes for versatile gene manipulation in plants. Nucleic Acids Research, 2022, 50, 3565-3580.	6.5	21
1306	Targeted Gene Insertion for Functional CFTR Restoration in Airway Epithelium. Frontiers in Genome Editing, 2022, 4, 847645.	2.7	1
1307	Membrane anchorageâ€induced (MAGIC) knockâ€down of nonâ€synonymous point mutations. ChemBioChem, 2022, , .	1.3	0
1308	CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation. Molecular Therapy - Nucleic Acids, 2022, 28, 450-461.	2.3	13
1309	Current developments in gene therapy for epidermolysis bullosa. Expert Opinion on Biological Therapy, 2022, 22, 1137-1150.	1.4	7
1310	KPT330 improves Cas9 precision genome- and base-editing by selectively regulating mRNA nuclear export. Communications Biology, 2022, 5, 237.	2.0	4
1311	Genetic Engineering Technologies for Improving Crop Yield and Quality. Agronomy, 2022, 12, 759.	1.3	5
1312	Breaking Yield Ceiling in Wheat: Progress and Future Prospects. , 0, , .		10
1313	Therapeutic Approaches to Amyotrophic Lateral Sclerosis from the Lab to the Clinic. Current Drug Metabolism, 2022, 23, 200-222.	0.7	4
1314	A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Reviews and Reports, 2022, 18, 1525-1545.	1.7	66
1317	CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nature Biotechnology, 2022, 40, 1378-1387.	9.4	81
1318	Genome Editing Technology and Its Application to Metabolic Engineering in Rice. Rice, 2022, 15, 21.	1.7	7
1319	Donor T cells for CAR T cell therapy. Biomarker Research, 2022, 10, 14.	2.8	9

#	Article	IF	CITATIONS
1320	Integrative structure determination of histones H3 and H4 using genetic interactions. FEBS Journal, 2023, 290, 2565-2575.	2.2	0
1321	Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative IncRNA and DNA methylation machinery. Nature Communications, 2022, 13, 1855.	5.8	16
1322	Development and Application of CRISPR-Cas Based Tools. Frontiers in Cell and Developmental Biology, 2022, 10, 834646.	1.8	13
1323	CRISPR and cardiovascular diseases. Cardiovascular Research, 2023, 119, 79-93.	1.8	10
1324	Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 2022, 13, 1856.	5.8	51
1326	A split prime editor with untethered reverse transcriptase and circular RNA template. Nature Biotechnology, 2022, 40, 1388-1393.	9.4	71
1327	mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology, 2022, 76, 869-887.	3.6	11
1328	Controlling <scp>CRISPR as9</scp> by guide <scp>RNA</scp> engineering. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1731.	3.2	6
1329	CRISPR/Cas9 and Nanotechnology Pertinence in Agricultural Crop Refinement. Frontiers in Plant Science, 2022, 13, 843575.	1.7	13
1330	Broad antiviral peptides against PRRSV based on novel linear epitopes on porcine CD163. International Journal of Biological Macromolecules, 2022, 207, 635-643.	3.6	4
1331	CRISPR/Cas-based Human T cell Engineering: Basic Research and Clinical Application. Immunology Letters, 2022, 245, 18-28.	1.1	5
1332	mRNA-mediated delivery of gene editing tools to human primary muscle stem cells. Molecular Therapy - Nucleic Acids, 2022, 28, 47-57.	2.3	14
1333	SgRNA engineering for improved genome editing and expanded functional assays. Current Opinion in Biotechnology, 2022, 75, 102697.	3.3	12
1334	Long-term maintenance of dystrophin expression and resistance to injury of skeletal muscle in gene edited DMD mice. Molecular Therapy - Nucleic Acids, 2022, 28, 154-167.	2.3	12
1335	Variant Library Annotation Tool (VaLiAnT): an oligonucleotide library design and annotation tool for saturation genome editing and other deep mutational scanning experiments. Bioinformatics, 2022, 38, 892-899.	1.8	3
1336	Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. Plants, 2022, 11, 51.	1.6	26
1337	Targeted insertion of large genetic payloads using cas directed LINE-1 reverse transcriptase. Scientific Reports, 2021, 11, 23625.	1.6	3
1338	A design optimized prime editor with expanded scope and capability in plants. Nature Plants, 2022, 8, 45-52.	4.7	51

#	Article	IF	Citations
1339	Intellectual disability genomics: current state, pitfalls and future challenges. BMC Genomics, 2021, 22, 909.	1.2	31
1340	Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nature Chemical Biology, 2022, 18, 8-17.	3.9	28
1341	Improvement of base editors and prime editors advances precision genome engineering in plants. Plant Physiology, 2022, 188, 1795-1810.	2.3	24
1342	Improving CRISPR tools by elucidating DNA repair. Nature Biotechnology, 2021, 39, 1512-1514.	9.4	1
1343	Compact SchCas9 Recognizes the Simple NNGR PAM. Advanced Science, 2022, 9, e2104789.	5.6	13
1344	A Versatile and Efficient Plant Protoplast Platform for Genome Editing by Cas9 RNPs. Frontiers in Genome Editing, 2021, 3, 719190.	2.7	12
1345	Development of a genome-targeting mutator for the adaptive evolution of microbial cells. Nucleic Acids Research, 2022, 50, e38-e38.	6.5	7
1346	Mechanistic insights into the versatile class II CRISPR toolbox. Trends in Biochemical Sciences, 2022, 47, 433-450.	3.7	11
1347	Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. Journal of Dermatological Science, 2021, 104, 164-176.	1.0	10
1348	Plant prime editing goes prime. Nature Plants, 2022, 8, 20-22.	4.7	13
1349	State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila. Trends in Genetics, 2022, 38, 437-453.	2.9	26
1350	Adaptation Strategies to Improve the Resistance of Oilseed Crops to Heat Stress Under a Changing Climate: An Overview. Frontiers in Plant Science, 2021, 12, 767150.	1.7	30
1351	Phenotypic Variability in iPSC-Induced Cardiomyocytes and Cardiac Fibroblasts Carrying Diverse LMNA Mutations. Frontiers in Physiology, 2021, 12, 778982.	1.3	7
1353	Precise genome editing across kingdoms of life using retron-derived DNA. Nature Chemical Biology, 2022, 18, 199-206.	3.9	31
1354	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	2.3	20
1355	Cancer therapies: Caveats, concerns, and momentum. , 2022, , 401-430.		0
1356	The use of base editing technology to characterize single nucleotide variants. Computational and Structural Biotechnology Journal, 2022, 20, 1670-1680.	1.9	4
1357	Oligo targeting for profiling drug resistance mutations in the parasitic trypanosomatids. Nucleic Acids Research, 2022, 50, e79-e79.	6.5	5

#	Article	IF	CITATIONS
1358	Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum). BMC Biology, 2022, 20, 45.	1.7	33
1359	Expansion of the prime editing modality with Cas9 from Francisella novicida. Genome Biology, 2022, 23, 92.	3.8	13
1360	CRISPR/Cas9-Mediated Allele-Specific Disruption of a Dominant COL6A1 Pathogenic Variant Improves Collagen VI Network in Patient Fibroblasts. International Journal of Molecular Sciences, 2022, 23, 4410.	1.8	5
1361	Application of CRISPR-Cas9 System to Study Biological Barriers to Drug Delivery. Pharmaceutics, 2022, 14, 894.	2.0	2
1362	Enhancing prime editing efficiency by modified pegRNA with RNA G-quadruplexes. Journal of Molecular Cell Biology, 2022, 14, .	1.5	25
1363	WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduction and Targeted Therapy, 2022, 7, 108.	7.1	25
1365	Therapeutic homology-independent targeted integration in retina and liver. Nature Communications, 2022, 13, 1963.	5.8	14
1366	Novel Plant Breeding Techniques Shake Hands with Cereals to Increase Production. Plants, 2022, 11, 1052.	1.6	14
1367	Phosphonoacetate Modifications Enhance the Stability and Editing Yields of Guide RNAs for Cas9 Editors. Biochemistry, 2023, 62, 3512-3520.	1.2	2
1368	Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnology Advances, 2022, 59, 107963.	6.0	22
1372	Recent advancements in CRISPR/Cas technology for accelerated crop improvement. Planta, 2022, 255, 109.	1.6	9
1373	Sources, resolution and physiological relevance of R-loops and RNA–DNA hybrids. Nature Reviews Molecular Cell Biology, 2022, 23, 521-540.	16.1	108
1374	Enhancing prime editing via inhibition of mismatch repair pathway. Molecular Biomedicine, 2022, 3, 7.	1.7	4
1375	CRISPR/Cas genome editing in grapevine: recent advances, challenges and future prospects. Fruit Research, 2022, 2, 1-9.	0.9	10
1376	Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. Forestry Research, 2022, 2, 0-0.	0.5	2
1377	Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches. World Journal of Microbiology and Biotechnology, 2022, 38, 100.	1.7	12
1378	Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Seminars in Cell and Developmental Biology, 2023, 141, 33-42.	2.3	12
1379	Natural and Experimental Rewiring of Gene Regulatory Regions. Annual Review of Genomics and Human Genetics, 2022, 23, .	2.5	1

#	Article	IF	CITATIONS
1380	Base edit your way to better crops. Nature, 2022, 604, 790-792.	13.7	5
1381	Prime Editor 3 Mediated Beta-Thalassemia Mutations of the HBB Gene in Human Erythroid Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 5002.	1.8	5
1382	The SoyaGen Project: Putting Genomics to Work for Soybean Breeders. Frontiers in Plant Science, 2022, 13, 887553.	1.7	1
1383	Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives. Frontiers in Genome Editing, 2022, 4, 875243.	2.7	3
1385	Using Stem Cell Models to Explore the Genetics Underlying Psychiatric Disorders: Linking Risk Variants, Genes, and Biology in Brain Disease. American Journal of Psychiatry, 2022, 179, 322-328.	4.0	7
1386	Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. Molecular Therapy - Nucleic Acids, 2022, 28, 732-742.	2.3	8
1387	Viral Vectors for the in Vivo Delivery of CRISPR Components: Advances and Challenges. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	38
1388	Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond. IScience, 2022, , 104389.	1.9	9
1389	Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Progress in Retinal and Eye Research, 2022, 90, 101065.	7.3	4
1390	CRISPR/Cas therapeutic strategies for autosomal dominant disorders. Journal of Clinical Investigation, 2022, 132, .	3.9	8
1391	Advance of Clustered Regularly Interspaced Short Palindromic Repeats-Cas9 System and Its Application in Crop Improvement. Frontiers in Plant Science, 2022, 13, .	1.7	11
1392	Enhancing cereal productivity by genetic modification of root architecture. Biotechnology Journal, 2022, 17, e2100505.	1.8	4
1394	Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality. BMC Genomics, 2022, 23, 348.	1.2	6
1395	Reverting TP53 Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations. Cells, 2022, 11, 1612.	1.8	7
1396	Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnology Advances, 2022, 59, 107970.	6.0	3
1397	Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic <i>CRB1</i> single nucleotide variant. Ophthalmic Genetics, 2022, 43, 661-670.	0.5	1
1398	Application and Prospect of CRISPR/Cas9 Technology in Reversing Drug Resistance of Non-Small Cell Lung Cancer. Frontiers in Pharmacology, 2022, 13, .	1.6	2
1399	New Editing Tools for Gene Therapy in Inherited Retinal Dystrophies. CRISPR Journal, 2022, 5, 377-388.	1.4	9

#	Article	IF	Citations
1400	Targeting double-strand break indel byproducts with secondary guide RNAs improves Cas9 HDR-mediated genome editing efficiencies. Nature Communications, 2022, 13, 2351.	5.8	11
1401	A <scp>CRISPR</scp> View of Hematopoietic Stem Cells: Moving Innovative Bioengineering into the Clinic. American Journal of Hematology, 2022, , .	2.0	3
1402	Development and expansion of the CRISPR/Cas9 toolboxes for powerful genome engineering in yeast. Enzyme and Microbial Technology, 2022, 159, 110056.	1.6	4
1403	Deciphering Common Long QT Syndrome Using CRISPR/Cas9 in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	2
1404	From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	4
1405	VvEPFL9-1 Knock-Out via CRISPR/Cas9 Reduces Stomatal Density in Grapevine. Frontiers in Plant Science, 2022, 13, .	1.7	21
1406	Pathogenic or benign?. Nature Biotechnology, 2022, , .	9.4	0
1407	Application of CRISPR/Cas9 System in Establishing Large Animal Models. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	8
1408	Modern therapeutic approaches to liver-related disorders. Journal of Hepatology, 2022, 76, 1392-1409.	1.8	22
1409	Engineered Cas9 extracellular vesicles as a novel gene editing tool. Journal of Extracellular Vesicles, 2022, 11, e12225.	5.5	47
1410	Genome editing and beyond: what does it mean for the future of plant breeding?. Planta, 2022, 255, 130.	1.6	17
1411	CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Molecular Biology Reports, 2022, 49, 5595-5609.	1.0	12
1412	Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally 3′-End-Truncated crRNAs. ACS Synthetic Biology, 2022, , .	1.9	5
1413	Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communications, 2022, 13, 2771.	5.8	30
1414	Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Frontiers in Neuroscience, 2022, 16, .	1.4	14
1415	Correction of Beta-Thalassemia IVS-II-654 Mutation in a Mouse Model Using Prime Editing. International Journal of Molecular Sciences, 2022, 23, 5948.	1.8	10
1417	Application of CRISPR/Cas Genomic Editing Tools for HIV Therapy: Toward Precise Modifications and Multilevel Protection. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	6
1418	A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination. Molecular Cell, 2022, 82, 2571-2587.e9.	4.5	11

# 1419	ARTICLE The origin of unwanted editing byproducts in gene editing. Acta Biochimica Et Biophysica Sinica, 2022,	IF 0.9	CITATIONS
1419	54, 767-781.	0.9	0
1420	Structural basis for RNA-guided DNA cleavage by IscB-ï‰RNA and mechanistic comparison with Cas9. Science, 2022, 376, 1476-1481.	6.0	37
1423	De novo design of future rapeseed crops: Challenges and opportunities. Crop Journal, 2022, 10, 587-596.	2.3	18
1424	Improving Homology-Directed Repair in Genome Editing Experiments by Influencing the Cell Cycle. International Journal of Molecular Sciences, 2022, 23, 5992.	1.8	9
1425	Targeted Therapeutics for Rare Disorders. , 2024, , 249-271.		1
1426	Application of CRISPR-Cas-Based Genome Editing for Precision Breeding in Wheat. , 2022, , 539-556.		0
1427	Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas. , 2022, , 61-83.		1
1429	<scp>Siteâ€directed</scp> integration of exogenous <scp>DNA</scp> into the soybean genome by <scp>LbCas12a</scp> fused to a plant viral <scp>HUH</scp> endonuclease. Plant Journal, 2022, 111, 905-916.	2.8	2
1431	Phenotypic drug discovery: recent successes, lessons learned and new directions. Nature Reviews Drug Discovery, 2022, 21, 899-914.	21.5	81
1432	Advances in CRISPR-Based Functional Genomics and Nucleic Acid Detection in Pigs. Frontiers in Genetics, 0, 13, .	1.1	1
1433	Prime Editing Permits the Introduction of Specific Mutations in the Gene Responsible for Duchenne Muscular Dystrophy. International Journal of Molecular Sciences, 2022, 23, 6160.	1.8	16
1434	Speciation and adaptation research meets genome editing. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	7
1435	Multiplex precision gene editing by a surrogate prime editor in rice. Molecular Plant, 2022, 15, 1077-1080.	3.9	24
1436	Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. Frontiers in Plant Science, 2022, 13, .	1.7	4
1439	Integrated Management Strategies for Epidermolysis Bullosa: Current Insights. International Journal of General Medicine, 0, Volume 15, 5133-5144.	0.8	1
1440	In vivo hypermutation and continuous evolution. Nature Reviews Methods Primers, 2022, 2, .	11.8	39
1443	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
1444	HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. Molecular Therapy - Nucleic Acids, 2022, 29, 36-46.	2.3	27

#	Article	IF	Citations
1445	Prime editor integrase systems boost targeted DNA insertion and beyond. Trends in Biotechnology, 2022, 40, 907-909.	4.9	4
1447	If Mendel Was Using CRISPR: Genome Editing Meets Nonâ€Mendelian Inheritance. Advanced Functional Materials, 0, , 2202585.	7.8	2
1448	Conditional mutagenesis strategies in zebrafish. Trends in Genetics, 2022, 38, 856-868.	2.9	5
1449	Hematopoietic Stem Cell Gene-Addition/Editing Therapy in Sickle Cell Disease. Cells, 2022, 11, 1843.	1.8	12
1450	Reading the glyco-code: New approaches to studying protein–carbohydrate interactions. Current Opinion in Structural Biology, 2022, 75, 102395.	2.6	13
1452	Generation of Double-Muscled Sheep and Goats by CRISPR/Cas9-Mediated Knockout of the Myostatin Gene. Methods in Molecular Biology, 2022, , 295-323.	0.4	4
1454	Development and clinical translation of ex vivo gene therapy. Computational and Structural Biotechnology Journal, 2022, 20, 2986-3003.	1.9	1
1455	Tools for Efficient Genome Editing; ZFN, TALEN, and CRISPR. Methods in Molecular Biology, 2022, , 29-46.	0.4	16
1456	Genome Editing Crops in Food and Futuristic Crops. , 2022, , 401-445.		1
1457	Active genetics comes alive. BioEssays, 2022, 44, .	1.2	8
1458	Cas9-induced large deletions and small indels are controlled in a convergent fashion. Nature Communications, 2022, 13, .	5.8	32
1459	Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Molecular Therapy, 2022, 30, 2664-2679.	3.7	20
1460	Advancement in CRISPR/Cas9 Technology to Better Understand and Treat Neurological Disorders. Cellular and Molecular Neurobiology, 2023, 43, 1019-1035.	1.7	3
1461	CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Current Issues in Molecular Biology, 2022, 44, 2664-2682.	1.0	20
1462	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
1463	Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Discover Oncology, 2022, 13, .	0.8	2
1464	Exploring the genetic space of the <scp>DNA</scp> damage response for cancer therapy through <scp>CRISPR</scp> â€based screens. Molecular Oncology, 2022, 16, 3778-3791.	2.1	5
1465	Improvements in pig agriculture through gene editing. CABI Agriculture and Bioscience, 2022, 3, .	1.1	8

CITA	ELONI	REPOR	-
		KFF()K	
011/1			

#	Article	IF	CITATIONS
1466	Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nature Communications, 2022, 13, .	5.8	8
1467	Reprogramming Microbial CO2-Metabolizing Chassis With CRISPR-Cas Systems. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
1468	Generation of C-to-G transversion in mouse embryos via CG editors. Transgenic Research, 0, , .	1.3	3
1469	Challenges and opportunities when transitioning from <i>in vivo</i> gene replacement to <i>in vivo</i> CRISPR/Cas9 therapies – a spotlight on hemophilia. Expert Opinion on Biological Therapy, 2022, 22, 1091-1098.	1.4	1
1471	Dissecting Plant Gene Functions Using CRISPR Toolsets for Crop Improvement. Journal of Agricultural and Food Chemistry, 2022, 70, 7343-7359.	2.4	4
1472	Functional Allele Validation by Gene Editing to Leverage the Wealth of Genetic Resources for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 6565.	1.8	6
1473	Review: Precision Medicine Approaches for Genetic Cardiomyopathy: Targeting Phospholamban R14del. Current Heart Failure Reports, 2022, 19, 170-179.	1.3	6
1474	HideRNAs protect against CRISPR-Cas9 re-cutting after successful single base-pair gene editing. Scientific Reports, 2022, 12, .	1.6	0
1475	Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nature Communications, 2022, 13, .	5.8	20
1476	Compact Cje3Cas9 for Efficient <i>In Vivo</i> Genome Editing and Adenine Base Editing. CRISPR Journal, 2022, 5, 472-486.	1.4	15
1477	Peptide fusion improves prime editing efficiency. Nature Communications, 2022, 13, .	5.8	27
1479	CRISPR screening in cancer stem cells. Essays in Biochemistry, 0, , .	2.1	1
1480	Bi-PE: bi-directional priming improves CRISPR/Cas9 prime editing in mammalian cells. Nucleic Acids Research, 2022, 50, 6423-6434.	6.5	31
1482	Origin of the genome editing systems: application for crop improvement. , 2022, 77, 3353-3383.		1
1483	CFTR RNA- and DNA-based therapies. Current Opinion in Pharmacology, 2022, 65, 102247.	1.7	7
1484	Innovative cancer nanomedicine based on immunology, gene editing, intracellular trafficking control. Journal of Controlled Release, 2022, 348, 357-369.	4.8	3
1485	Epigenetic marks for mitigating abiotic stresses in plants. Journal of Plant Physiology, 2022, 275, 153740.	1.6	15
1486	Genome edited wheat- current advances for the second green revolution. Biotechnology Advances, 2022, 60, 108006.	6.0	19

		CITATION REPORT		
# 1487	ARTICLE Molecular Approaches in Conservation and Restoration of Agrobiodiversity. , 2022, , 16	9-216.	IF	Citations
1488	Cisgenic Crops: Major Strategies to Create Cisgenic Plants Based on Genome Editing. C Strategies in Plant Sciences, 2022, , 213-235.	oncepts and	0.6	2
1489	Modern Techniques for Plant Breeding in Ornamentals. , 2022, , 523-555.			3
1490	Genomic Region Analysis and Genome Editing for Grain Quality Improvement in Cereals	. , 2022, , 315-345.		1
1491	Opportunities and challenges of gene therapy for retinitis pigmentosa. Scientia Sinica V 1015-1022.	'itae, 2022, 52,	0.1	1
1492	CRISPR/Cas9 applications for improvement of soybeans, current scenarios, and future p Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2022, 50, 12678.	erspectives.	0.5	3
1493	Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Preci Editing. International Journal of Molecular Sciences, 2022, 23, 7331.	se Genome	1.8	2
1495	The application of CRISPR/Cas technologies to Brassica crops: current progress and futu perspectives. ABIOTECH, 2022, 3, 146-161.	ure	1.8	9
1496	Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Futur Frontiers in Genetics, 0, 13, .	e Prospects.	1.1	13
1497	Improving the efficiency of prime editing with epegRNAs and high-temperature treatme Science China Life Sciences, 2022, 65, 2328-2331.	nt in rice.	2.3	21
1498	Frequency and mechanisms of LINE-1 retrotransposon insertions at CRISPR/Cas9 sites. Communications, 2022, 13, .	Nature	5.8	30
1499	CRISPR/Cas9-mediated Genetic Correction Reverses Spinocerebellar Ataxia 3 Disease-as Phenotypes in Differentiated Cerebellar Neurons. , 0, , .	sociated		3
1500	Therapeutic applications of gene editing in chronic liver diseases: an update. BMB Repo 251-258.	rts, 2022, 55,	1.1	0
1501	DNA base editing in nuclear and organellar genomes. Trends in Genetics, 2022, 38, 114	7-1169.	2.9	14
1502	A truncated reverse transcriptase enhances prime editing by split AAV vectors. Molecula 2022, 30, 2942-2951.	ar Therapy,	3.7	37
1503	An Artificial Intelligence Approach for Gene Editing Off-Target Quantification: Convoluti Self-attention Neural Network Designs and Considerations. Statistics in Biosciences, 0,	onal	0.6	1
1504	A time-resolved, multi-symbol molecular recorder via sequential genome editing. Nature 98-107.	, 2022, 608,	13.7	59
1505	Identification of RPGR ORF15 mutation for X-linked retinitis pigmentosa in a large Chine vitro correction with prime editor. Gene Therapy, 0, , .	ese family and in	2.3	3

#	Article	IF	CITATIONS
1506	Broadening prime editing toolkits using RNA-Pol-II-driven engineered pegRNA. Molecular Therapy, 2022, 30, 2923-2932.	3.7	11
1507	Phenotypic Characterization of High Carotenoid Tomato Mutants Generated by the Target-AID Base-Editing Technology. Frontiers in Plant Science, 0, 13, .	1.7	4
1508	Optimizing CRISPR/Cas9 Editing of Repetitive Single Nucleotide Variants. Frontiers in Genome Editing, 0, 4, .	2.7	4
1509	Tutorial: design and execution of CRISPR in vivo screens. Nature Protocols, 2022, 17, 1903-1925.	5.5	12
1510	The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiology Reviews, 2022, 46, .	3.9	23
1511	CRISPR Del/Rei: a simple, flexible, and efficient pipeline for scarless genome editing. Scientific Reports, 2022, 12, .	1.6	1
1512	Application of CRISPR/Cas9 Genome Editing System to Reduce the Pre- and Post-Harvest Yield Losses in Cereals. Open Biotechnology Journal, 2022, 16, .	0.6	4
1513	A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Science, 2022, 323, 111376.	1.7	43
1514	Massively targeted evaluation of therapeutic CRISPR off-targets in cells. Nature Communications, 2022, 13, .	5.8	11
1515	Programmable RNA-Guided Large DNA Transgenesis by CRISPR/Cas9 and Site-Specific Integrase Bxb1. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
1516	Chemical Modifications of CRISPR RNAs to Improve Gene-Editing Activity and Specificity. Journal of the American Chemical Society, 2022, 144, 12584-12594.	6.6	21
1517	Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells, 2022, 11, 2186.	1.8	25
1518	Cytoplasmic Injection of Zygotes to Genome Edit Naturally Occurring Sequence Variants Into Bovine Embryos. Frontiers in Genetics, 0, 13, .	1.1	1
1519	Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Research, 2022, 50, 7783-7799.	6.5	15
1520	Therapeutic Strategies For Tay-Sachs Disease. Frontiers in Pharmacology, 0, 13, .	1.6	7
1522	Current landscape of geneâ€editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm, 2022, 3, .	3.1	2
1523	Therapeutic inÂvivo delivery of gene editing agents. Cell, 2022, 185, 2806-2827.	13.5	131
1524	The role of single-cell genomics in human genetics. Journal of Medical Genetics, 2022, 59, 827-839.	1.5	11

	CITATION REF	UKI	
#	Article	IF	CITATIONS
1525	Genome-Edited T Cell Therapies. Hematology/Oncology Clinics of North America, 2022, 36, 729-744.	0.9	0
1526	A Curative DNA Code for Hematopoietic Defects. Hematology/Oncology Clinics of North America, 2022, 36, 647-665.	0.9	6
1527	CRISPR-Cas9 mediated genome tailoring to improve nutritional quality and shelf life in crops: A review. Plant Gene, 2022, 31, 100369.	1.4	1
1528	Tiny tots for a big-league in wound repair: Tools for tissue regeneration by nanotechniques of today. Journal of Controlled Release, 2022, 349, 443-459.	4.8	11
1529	Development of a highly efficient prime editor 2 system in plants. Genome Biology, 2022, 23, .	3.8	34
1530	A straightforward plant prime editing system enabled highly efficient precise editing of rice Waxy gene. Plant Science, 2022, 323, 111400.	1.7	9
1531	Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing, 0, 4, .	2.7	5
1532	Targeted-Deletion of a Tiny Sequence via Prime Editing to Restore SMN Expression. International Journal of Molecular Sciences, 2022, 23, 7941.	1.8	12
1533	Pioneer Factor Improves CRISPRâ€Based Câ€Toâ€G and Câ€Toâ€T Base Editing. Advanced Science, 0, , 2202957.	5.6	5
1534	DNA nicks induce mutational signatures associated with BRCA1 deficiency. Nature Communications, 2022, 13, .	5.8	8
1535	A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science, 2022, 377, .	6.0	111
1536	<scp>hnRNP</scp> R negatively regulates transcription by modulating the association of <scp>Pâ€TEFb</scp> with <scp>7SK</scp> and <scp>BRD4</scp> . EMBO Reports, 2022, 23, .	2.0	5
1537	Idelalisib inhibits experimental proliferative vitroretinopathy. Laboratory Investigation, 2022, 102, 1296-1303.	1.7	2
1538	Gene Editing and Rett Syndrome: Does It Make the Cut?. CRISPR Journal, 2022, 5, 490-499.	1.4	1
1539	Enhancing the diversity of self-replicating structures using active self-adapting mechanisms. Frontiers in Genetics, 0, 13, .	1.1	0
1540	CRISPR DNA Base Editing Strategies for Treating Retinitis Pigmentosa Caused by Mutations in Rhodopsin. Genes, 2022, 13, 1327.	1.0	5
1542	Genome Editing and CRISPR Technology. , 2022, , .		0
1543	Advances in Crop Breeding Through Precision Genome Editing. Frontiers in Genetics, 0, 13, .	1.1	22

#	Article	IF	Citations
1544	Use of <scp>CRISPR as</scp> tools to engineer <i>Trichoderma</i> species. Microbial Biotechnology, 2022, 15, 2521-2532.	2.0	15
1545	The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy. Current Opinion in Cardiology, 2022, 37, 413-418.	0.8	2
1546	Enhancing Prime Editing Efficiency and Flexibility with Tethered and Split pegRNAs. Protein and Cell, 0,	4.8	7
1547	Understanding floral biology for CRISPR-based modification of color and fragrance in horticultural plants. F1000Research, 0, 11, 854.	0.8	2
1548	Perspectives on Genetic Medicine for Cystic Fibrosis. Current Gene Therapy, 2022, 22, .	0.9	0
1549	CRISPR/Cas9 system in breast cancer therapy: advancement, limitations and future scope. Cancer Cell International, 2022, 22, .	1.8	21
1550	Prime editor-mediated correction of a pathogenic mutation in purebred dogs. Scientific Reports, 2022, 12, .	1.6	1
1551	Systematicidentification of CRISPR off-target effects by CROss-seq. Protein and Cell, 0, , .	4.8	2
1552	Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors. Nature Biomedical Engineering, 2022, 6, 1272-1283.	11.6	70
1553	<scp>CRISPR</scp> applications for Duchenne muscular dystrophy: From animal models to potential therapies. WIREs Mechanisms of Disease, 2023, 15, .	1.5	6
1555	Increasing disease resistance in host plants through genome editing. Proceedings of the Indian National Science Academy, 2022, 88, 417-429.	0.5	7
1556	The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye, 2023, 37, 607-617.	1.1	7
1557	Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing. Nucleic Acids Research, 2022, 50, e109-e109.	6.5	3
1558	Comprehending the evolution of gene editing platforms for crop trait improvement. Frontiers in Genetics, 0, 13, .	1.1	6
1559	From Evolution to Revolution: Accelerating Crop Domestication through Genome Editing. Plant and Cell Physiology, 2022, 63, 1607-1623.	1.5	7
1560	Genome editing for primary immunodeficiencies: A therapeutic perspective on Wiskott-Aldrich syndrome. Frontiers in Immunology, 0, 13, .	2.2	6
1561	Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR Journal, 2022, 5, 517-535.	1.4	3
1562	Hypercompact adenine base editors based on a Cas12f variant guided by engineered RNA. Nature Chemical Biology, 2022, 18, 1005-1013.	3.9	21

#	Article	IF	CITATIONS
1563	Programmable Genome-Editing Technologies as Single-Course Therapeutics for Atherosclerotic Cardiovascular Disease. Current Atherosclerosis Reports, 0, , .	2.0	0
1564	Overcoming tumor resistance mechanisms in CAR-NK cell therapy. Frontiers in Immunology, 0, 13, .	2.2	22
1565	Designing and executing prime editing experiments in mammalian cells. Nature Protocols, 2022, 17, 2431-2468.	5.5	35
1566	Biomolecular Insights into Extracellular Pollutant Reduction Pathways of <i>Geobacter sulfurreducens</i> Using a Base Editor System. Environmental Science & Technology, 2022, 56, 12247-12256.	4.6	5
1567	Multiplex base editing to convert TAG into TAA codons in the human genome. Nature Communications, 2022, 13, .	5.8	6
1568	Global spectrum of USH2A mutation in inherited retinal dystrophies: Prompt message for development of base editing therapy. Frontiers in Aging Neuroscience, 0, 14, .	1.7	6
1569	Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 9521.	1.8	8
1570	Regulatory Consideration for the Nonclinical Safety Assessment of Gene Therapies. Human Gene Therapy, 0, , .	1.4	0
1571	In vivo processing of digital information molecularly with targeted specificity and robust reliability. Science Advances, 2022, 8, .	4.7	13
1572	Closely related type II-C Cas9 orthologs recognize diverse PAMs. ELife, 0, 11, .	2.8	13
1575	Gene Therapy for Rhodopsin Mutations. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a041283.	2.9	2
1576	Translational potential of base-editing tools for gene therapy of monogenic diseases. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	5
1577	Precise somatic genome editing for treatment of inborn errors of immunity. Frontiers in Immunology, 0, 13, .	2.2	1
1578	The steep uphill path leading to ex vivo gene therapy for genodermatoses. American Journal of Physiology - Cell Physiology, 2022, 323, C896-C906.	2.1	4
1579	Effective therapies for sickle cell disease: are we there yet?. Trends in Genetics, 2022, , .	2.9	3
1580	Harnessing nucleic acid technologies for human health on earth and in space. Life Sciences in Space Research, 2022, 35, 113-126.	1.2	2
1581	Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. Molecular Therapy - Nucleic Acids, 2022, 29, 551-562.	2.3	8
1582	High-throughput continuous evolution of compact Cas9 variants targeting single-nucleotide-pyrimidine PAMs. Nature Biotechnology, 2023, 41, 96-107.	9.4	36

#	Article	IF	CITATIONS
1583	Removal of a 10-kb <i>Gret1</i> transposon from <i>VvMybA1</i> of <i>Vitis vinifera</i> cv. Chardonnay. Horticulture Research, 2022, 9, .	2.9	5
1584	Generation of corrected hiPSC clones from a Cornelia de Lange Syndrome (CdLS) patient through CRISPR-Cas-based technology. Stem Cell Research and Therapy, 2022, 13, .	2.4	0
1585	CRISPR/Cas9 Technology and Its Utility for Crop Improvement. International Journal of Molecular Sciences, 2022, 23, 10442.	1.8	12
1586	Defining and targeting patterns of T cell dysfunction in inborn errors of immunity. Frontiers in Immunology, 0, 13, .	2.2	3
1587	Genome editing in cancer: Challenges and potential opportunities. Bioactive Materials, 2023, 21, 394-402.	8.6	3
1588	Genome Editing Toward Rice Improvement. , 2022, , 211-240.		0
1589	Plant Genome Editing Mediated by CRISPR/Cas12a System. , 2022, , 109-118.		0
1590	CRISPR/Cas9 Tools for Multiplex Genome Editing in Crops. , 2022, , 95-107.		0
1591	Genome Editing Tools for Potato Improvement. , 2022, , 393-427.		0
1592	CRISPR Genome Editing Brings Global Food Security into the First Lane: Enhancing Nutrition and Stress Resilience in Crops. , 2022, , 285-344.		2
1593	Genetic Engineering of Nonhuman Primate Models for Studying Neurodevelopmental Disorders. Neuromethods, 2022, , 235-262.	0.2	0
1594	Genome Editing Is Revolutionizing Crop Improvement. , 2022, , 3-41.		0
1595	Genome Editing Technologies Contribute for Precision Breeding in Soybean. , 2022, , 349-366.		0
1596	Utilizing Directed Evolution to Interrogate and Optimize CRISPR/Cas Guide RNA Scaffolds. SSRN Electronic Journal, 0, , .	0.4	0
1597	CRISPR/Cas for Improved Stress Tolerance in Rice. , 2022, , 397-431.		0
1598	Current status and trends in forest genomics. Forestry Research, 2022, 2, 0-0.	0.5	12
1599	Accelerating Cereal Breeding for Disease Resistance Through Genome Editing. , 2022, , 323-347.		1
1600	Genome Editing Toward Wheat Improvement. , 2022, , 241-269.		1

#	ARTICLE The Use of CRISPR Technologies for Crop Improvement in Maize. , 2022, , 271-294.	IF	CITATIONS 2
1601	Prime Editing for Precise Genome Engineering in Drosophila. Methods in Molecular Biology, 2022, , 113-134.	0.4	1
1603	Plant Precise Genome Editing by Prime Editing. , 2022, , 177-183.		0
1604	High-efficient CRISPR/Cas9-mediated gene targeting to establish cell models of ciliopathies. Methods in Cell Biology, 2023, , 85-95.	0.5	0
1605	New Frontier in the Management of Corneal Dystrophies: Basics, Development, and Challenges in Corneal Gene Therapy and Gene Editing. Asia-Pacific Journal of Ophthalmology, 2022, 11, 346-359.	1.3	6
1606	Xenotransplantation: The Contribution of CRISPR/Cas9 Gene Editing Technology. Current Transplantation Reports, 2022, 9, 268-275.	0.9	1
1608	The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells, 2022, 11, 2682.	1.8	18
1609	Emerging CRISPR Technologies. , 0, , .		0
1611	Applications of In Vitro Tissue Culture Technologies in Breeding and Genetic Improvement of Wheat. Plants, 2022, 11, 2273.	1.6	10
1612	CRISPR/Cas9 as a promising genome-editing technology for generating low-immunogenic wheat variety: recent legislation and global implementation of genetically engineered crops. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	0
1613	MERTK missense variants in three patients with retinitis pigmentosa. Ophthalmic Genetics, 0, , 1-9.	0.5	1
1614	Prime Editing: An All-Rounder for Genome Editing. International Journal of Molecular Sciences, 2022, 23, 9862.	1.8	13
1615	Optimization of Prime Editing in Rice, Peanut, Chickpea, and Cowpea Protoplasts by Restoration of GFP Activity. International Journal of Molecular Sciences, 2022, 23, 9809.	1.8	18
1616	Metabolic pathway genes for editing to enhance multiple disease resistance in plants. Journal of Plant Research, 0, , .	1.2	2
1618	Functional Phosphoproteomics in Cancer Chemoresistance Using CRISPRâ€Mediated Base Editors. Advanced Science, 2022, 9, .	5.6	6
1619	Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform. Genes and Development, 2022, 36, 936-949.	2.7	14
1620	A Pan-RNase Inhibitor Enabling CRISPR-mRNA Platforms for Engineering of Primary Human Monocytes. International Journal of Molecular Sciences, 2022, 23, 9749.	1.8	0
1621	A tunable genome editing system of the prime editor mediated by dihydrofolate reductase. Journal of Genetics and Genomics, 2023, 50, 204-207.	1.7	2

#	Article	IF	CITATIONS
1622	Engineering the plastid and mitochondrial genomes of flowering plants. Nature Plants, 2022, 8, 996-1006.	4.7	20
1623	Newborn screening research sponsored by the <scp>NIH</scp> : From diagnostic paradigms to precision therapeutics. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2022, 190, 138-152.	0.7	2
1624	Past, Present, and Future of Genome Modification in Escherichia coli. Microorganisms, 2022, 10, 1835.	1.6	2
1625	Editing human hematopoietic stem cells: advances and challenges. Cytotherapy, 2023, 25, 261-269.	0.3	4
1626	Highly efficient generation of isogenic pluripotent stem cell models using prime editing. ELife, 0, 11, .	2.8	28
1627	CRISPR/Cas systems accelerating the development of aptasensors. TrAC - Trends in Analytical Chemistry, 2023, 158, 116775.	5.8	7
1628	CureHeart wins Big Beat Challenge, a $\hat{A} \pm 30$ million research award from the British Heart Foundation. European Heart Journal, 0, , .	1.0	0
1629	Engineered CRISPR prime editors with compact, untethered reverse transcriptases. Nature Biotechnology, 2023, 41, 337-343.	9.4	32
1631	Massively parallel genomic perturbations with multi-target CRISPR interrogates Cas9 activity and DNA repair at endogenous sites. Nature Cell Biology, 2022, 24, 1433-1444.	4.6	14
1632	Treatment of Genetic Diseases With CRISPR Genome Editing. JAMA - Journal of the American Medical Association, 2022, 328, 980.	3.8	9
1633	Multiplexed functional genomic assays to decipher the noncoding genome. Human Molecular Genetics, 2022, 31, R84-R96.	1.4	4
1634	Scalable Functional Assays for the Interpretation of Human Genetic Variation. Annual Review of Genetics, 2022, 56, 441-465.	3.2	18
1635	Synthetic evolution of herbicide resistance using a T7 RNAP–based random DNA base editor. Life Science Alliance, 2022, 5, e202201538.	1.3	8
1636	Targeted genomic translocations and inversions generated using a paired prime editing strategy. Molecular Therapy, 2023, 31, 249-259.	3.7	19
1637	hPSC gene editing for cardiac disease therapy. Pflugers Archiv European Journal of Physiology, 0, , .	1.3	0
1638	Genome editing using a versatile vector-based CRISPR/Cas9 system in Fusarium species. Scientific Reports, 2022, 12, .	1.6	3
1640	Small Molecules for Enhancing the Precision and Safety of Genome Editing. Molecules, 2022, 27, 6266.	1.7	6
1641	CRISPR-Based Therapeutic Gene Editing for Duchenne Muscular Dystrophy: Advances, Challenges and Perspectives. Cells, 2022, 11, 2964.	1.8	8

ARTICLE IF CITATIONS Engineering plant immune circuit: walking to the bright future with a novel toolbox. Plant 4.1 7 1642 Biotechnology Journal, 2023, 21, 17-45. Towards next-generation cell factories by rational genome-scale engineering. Nature Catalysis, 2022, 1643 16.1 5,751-765. CRISPR/Cas9â€"A Promising Therapeutic Tool to Cure Blindness: Current Scenario and Future Prospects. 1644 1.8 8 International Journal of Molecular Sciences, 2022, 23, 11482. Recent Advances in <i>In Vivo</i> Genome Editing Targeting Mammalian Preimplantation Embryos., 0, , . 1645 Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in 1646 2.9 7 chimeric mice. Cell Reports, 2022, 40, 111321. 1647 CRISPR/Cas9 in the era of nanomedicine and synthetic biology. Drug Discovery Today, 2023, 28, 103375. 3.2 Targeted Mutagenesis of the Multicopy Myrosinase Gene Family in Allotetraploid Brassica juncea 1648 1.6 11 Reduces Pungency in Fresh Leaves across Environments. Plants, 2022, 11, 2494. Precision genome editing in the eye. Proceedings of the National Academy of Sciences of the United 1649 3.3 States of America, 2022, 119, . A competitive precision CRISPR method to identify the fitness effects of transcription factor binding 1651 9.4 3 sites. Nature Biotechnology, 0, , . Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune 1.8 Diseases. International Journal of Molecular Sciences, 2022, 23, 11297. Optimized prime editing efficiently generates glyphosate-resistant rice plants carrying homozygous 1653 29 3.9 TAP-IVS mutation in EPSPS. Molecular Plant, 2022, 15, 1646-1649. Establishment of MDR1-knockout human enteroids for pharmaceutical application. Drug Metabolism 1654 1.1 and Pharmacokinetics, 2023, 48, 100476. Optimized Guide RNA Selection Improves <i>Streptococcus pyogenes</i> Cas9 Gene Editing of Human 1655 1.4 4 Hematopoietic Stem and Progenitor Cells. CRISPR Journal, 2022, 5, 702-716. Recent Advances in Double-Strand Break-Free Kilobase-Scale Genome Editing Technologies. 1.2 Biochemistry, 2023, 62, 3493-3499. Translational enhancement by base editing of the Kozak sequence rescues haploinsufficiency. Nucleic 1657 2 6.5 Acids Research, 2022, 50, 10756-10771. Rice grain yield and quality improvement via CRISPR/Cas9 system: an updated review. Notulae Botanicae Horti Agrobotanici Cluj-Nápoca, 2022, 50, 12388. Non-Viral Delivery of CRISPR/Cas Cargo to the Retina Using Nanoparticles: Current Possibilities, 1660 2.015 Challenges, and Limitations. Pharmaceutics, 2022, 14, 1842. RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and 1.4 Potential Applications. CRISPR Journal, 2022, 5, 642-659.

	Сітатіо	n Report	
#	Article	IF	CITATIONS
1662	In vivo correction of cystic fibrosis mediated by PNA nanoparticles. Science Advances, 2022, 8, .	4.7	16
1663	Marker-free co-selection for successive rounds of prime editing in human cells. Nature Communications, 2022, 13, .	5.8	14
1664	Prime editing optimized RTT permits the correction of the c.8713C>T mutation in DMD gene. Molecular Therapy - Nucleic Acids, 2022, 30, 272-285.	2.3	13
1665	Precise DNA cleavage using CRISPR-SpRYgests. Nature Biotechnology, 2023, 41, 409-416.	9.4	18
1666	Improving editing efficiency of prime editor in plants. Trends in Plant Science, 2023, 28, 1-3.	4.3	7
1667	Histone methylation antagonism drives tumor immune evasion in squamous cell carcinomas. Molecular Cell, 2022, 82, 3901-3918.e7.	4.5	19
1669	CRISPR for accelerating genetic gains in under-utilized crops of the drylands: Progress and prospects. Frontiers in Genetics, 0, 13, .	1.1	3
1670	CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacological Research, 2022, 185, 106480.	3.1	3
1671	Turning Tables for CRISPR/Cas9 Editing System: From Scratch to Advanced Delivery Platforms. , 2022, , 1-27.		1
1672	CRISPR/Cas9 Nano-delivery Approaches for Targeted Gene Therapy. Nanotechnology in the Life Sciences, 2022, , 27-64.	0.4	0
1673	Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25Âyears. Journal of Biomedical Science, 2022, 29, .	2.6	8
1674	Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	17
1675	Selecting for CRISPR-Edited Knock-In Cells. International Journal of Molecular Sciences, 2022, 23, 11919.	1.8	5
1676	Current advances of CRISPR-Cas technology in cell therapy. , 2022, 1, 100067.		10
1678	Base and Prime Editing in the Retina—From Preclinical Research toward Human Clinical Trials. International Journal of Molecular Sciences, 2022, 23, 12375.	1.8	4
1679	ATF4-dependent fructolysis fuels growth of glioblastoma multiforme. Nature Communications, 2022, 13, .	5.8	5
1680	Prime Editing: An Emerging Tool in Cancer Treatment. Molecular Biotechnology, 0, , .	1.3	0
1681	Genetically modified organisms: adapting regulatory frameworks for evolving genome editing technologies. Biological Research, 2022, 55, .	1.5	10

щ		15	CITATIONS
#	ARTICLE Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise	IF	CITATIONS
1682	editing in plants and animals. Plant Molecular Biology, 2023, 111, 1-20.	2.0	11
1683	The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells, 2022, 11, 3235.	1.8	3
1684	In vivo application of base and prime editing to treat inherited retinal diseases. Progress in Retinal and Eye Research, 2023, 94, 101132.	7.3	3
1685	A Mutation in the MYBL2-1 Gene Is Associated with Purple Pigmentation in Brassica oleracea. International Journal of Molecular Sciences, 2022, 23, 11865.	1.8	4
1686	Application of CRISPR for In Vivo Mouse Cancer Studies. Cancers, 2022, 14, 5014.	1.7	6
1687	Stem Cell Models for Context-Specific Modeling in Psychiatric Disorders. Biological Psychiatry, 2023, 93, 642-650.	0.7	9
1688	Adding a Chemical Biology Twist to CRISPR Screening. Israel Journal of Chemistry, 0, , .	1.0	0
1689	Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. International Journal of Molecular Sciences, 2022, 23, 12053.	1.8	20
1690	Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nature Biotechnology, 2023, 41, 488-499.	9.4	53
1691	Updated scientific opinion on plants developed through cisgenesis and intragenesis. EFSA Journal, 2022, 20, .	0.9	7
1692	Gene Editing in Human Haematopoietic Stem Cells for the Treatment of Primary Immunodeficiencies. Molecular Diagnosis and Therapy, 2023, 27, 15-28.	1.6	1
1693	Nucleic Acid Delivery to the Vascular Endothelium. Molecular Pharmaceutics, 2022, 19, 4466-4486.	2.3	2
1694	The Potential of Novel Gene Editing-Based Approaches in Forages and Rumen Archaea for Reducing Livestock Methane Emissions. Agriculture (Switzerland), 2022, 12, 1780.	1.4	1
1695	CRISPR Gene Editing of Hematopoietic Stem and Progenitor Cells. Methods in Molecular Biology, 2023, , 39-62.	0.4	1
1696	Direct delivery and fast-treated Agrobacterium co-culture (Fast-TrACC) plant transformation methods for Nicotiana benthamiana. Nature Protocols, 2023, 18, 81-107.	5.5	19
1697	CRISPR/Cas systems usher in a new era of disease treatment and diagnosis. Molecular Biomedicine, 2022, 3, .	1.7	5
1698	Transgene-free genome editing and RNAi ectopic application in fruit trees: Potential and limitations. Frontiers in Plant Science, 0, 13, .	1.7	2
1699	Contribution of CRISPRable DNA to human complex traits. Communications Biology, 2022, 5, .	2.0	2

	CHANON		
#	Article	IF	Citations
1700	Gene therapy for cystic fibrosis: Challenges and prospects. Frontiers in Pharmacology, 0, 13, .	1.6	12
1701	Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Frontiers in Neuroscience, 0, 16, .	1.4	3
1702	Gene editing for cardiomyopathy takes a step forward. Cardiovascular Research, 2022, 118, 3011-3012.	1.8	2
1703	RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases. Molecular Aspects of Medicine, 2023, 91, 101148.	2.7	5
1704	Advances in CRISPR therapeutics. Nature Reviews Nephrology, 2023, 19, 9-22.	4.1	41
1705	Trait Improvement of Solanaceae Fruit Crops for Vertical Farming by Genome Editing. Journal of Plant Biology, 2023, 66, 1-14.	0.9	2
1707	Developing Genetic Engineering Techniques for Control of Seed Size and Yield. International Journal of Molecular Sciences, 2022, 23, 13256.	1.8	8
1708	Enhancement of Gene Editing and Base Editing with Therapeutic Ribonucleoproteins through In Vivo Delivery Based on Absorptive Silica Nanoconstruct. Advanced Healthcare Materials, 2023, 12, .	3.9	6
1711	The Virtue of Mortality. Journal of Religious Ethics, 0, , .	0.1	1
1712	A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nature Communications, 2022, 13, .	5.8	10
1713	DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Molecular Cell, 2022, 82, 4160-4175.e6.	4.5	13
1714	The Crispr Revolution in Genome Engineering: Perspectives from Religious Ethics. Journal of Religious Ethics, O, , .	0.1	2
1715	Overview of CRISPR-Cas Mediated Genome Engineering. Journal of Applied Life Sciences International, 0, , 37-46.	0.2	0
1716	In vivo delivery of CRISPR-Cas9 genome editing components for therapeutic applications. Biomaterials, 2022, 291, 121876.	5.7	13
1717	Molecular and Cellular In Utero Therapy. Clinics in Perinatology, 2022, 49, 811-820.	0.8	1
1718	Gene editing hPSCs for modeling neurological disorders. , 2023, , 289-311.		0
1719	New Cas Endonuclease Variants Broadening the Scope of the CRISPR Toolbox. , 2022, , 133-141.		0
1720	Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) as a Platform for Modeling Arrhythmias. , 2022, , 875-893.		0

D

#	Article	IF	Citations
1721	Genome Editing: A Review of the Challenges and Approaches. , 2022, , 71-101.		0
1722	Prime editing for precise and highly versatile genome manipulation. Nature Reviews Genetics, 2023, 24, 161-177.	7.7	134
1723	CRISPR nuclease off-target activity and mitigation strategies. Frontiers in Genome Editing, 0, 4, .	2.7	14
1724	Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, .	3.2	8
1725	High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Microbiology Spectrum, 2022, 10, .	1.2	4
1726	Generation and comparative analysis of an Itga8-CreERT2 mouse with preferential activity in vascular smooth muscle cells. , 2022, 1, 1084-1100.		27
1727	Systematic discovery and functional dissection of enhancers needed for cancer cell fitness and proliferation. Cell Reports, 2022, 41, 111630.	2.9	10
1728	SuperFi-Cas9 exhibits remarkable fidelity but severely reduced activity yet works effectively with ABE8e. Nature Communications, 2022, 13, .	5.8	15
1729	Novel methods for the generation of genetically engineered animal models. Bone, 2023, 167, 116612.	1.4	1
1730	A CRISPR Path to Finding Vulnerabilities and Solving Drug Resistance: Targeting the Diverse Cancer Landscape and Its Ecosystem. Genetics & Genomics Next, 2022, 3, .	0.8	3
1731	Prime editing in chicken fibroblasts and primordial germ cells. Development Growth and Differentiation, 2022, 64, 548-557.	0.6	4
1732	Gene targeting as a therapeutic avenue in diseases mediated by the complement alternative pathway. Immunological Reviews, 2023, 313, 402-419.	2.8	10
1733	Site-specific genome editing in treatment of inherited diseases: possibility, progress, and perspectives. Medical Review, 2022, 2, 471-500.	0.3	6
1735	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
1736	Genome editing is induced in a binary manner in single human cells. IScience, 2022, 25, 105619.	1.9	1
1737	Hearing of Otof-deficient mice restored by trans-splicing of N- and C-terminal otoferlin. Human Genetics, 2023, 142, 289-304.	1.8	22
1738	Applying CRISPR-Cas9 screens to dissect hematological malignancies. Blood Advances, 2023, 7, 2252-2270.	2.5	2
1739	ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Scientific Reports, 2022, 12, .	1.6	10

#	Article	IF	CITATIONS
1740	Leveraging a natural murine meiotic drive to suppress invasive populations. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
1741	Genome editing in chickens. Gene and Genome Editing, 2022, 3-4, 100015.	1.3	1
1742	Gene editing strategies to treat lysosomal disorders: The example of mucopolysaccharidoses. Advanced Drug Delivery Reviews, 2022, 191, 114616.	6.6	4
1743	From nuclease-based gene knock-in to prime editing – promising technologies of precision gene engineering. Gene and Genome Editing, 2022, 3-4, 100017.	1.3	1
1744	Genetics of Cystic Fibrosis. Clinics in Chest Medicine, 2022, 43, 591-602.	0.8	4
1745	Elucidation of the etiological mechanisms underlying rare hereditary cilia/centrosome disorders using genome editing technology. Gene and Genome Editing, 2022, 3-4, 100016.	1.3	Ο
1746	Genome editing and bioinformatics. Gene and Genome Editing, 2022, 3-4, 100018.	1.3	2
1747	EpiCas-DL: Predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning. Computational and Structural Biotechnology Journal, 2023, 21, 202-211.	1.9	5
1748	Clinical trials and promising preclinical applications of CRISPR/Cas gene editing. Life Sciences, 2023, 312, 121204.	2.0	4
1749	Towards elucidating disease-relevant states of neurons and glia by CRISPR-based functional genomics. Genome Medicine, 2022, 14, .	3.6	1
1750	<scp>CRISPR</scp> â€induced <scp>miRNA156</scp> â€recognition element mutations in <i>TaSPL13</i> improve multiple agronomic traits in wheat. Plant Biotechnology Journal, 2023, 21, 536-548.	4.1	25
1751	Applications and challenges for CRISPR/Cas9-mediated gene editing. AIP Conference Proceedings, 2022, ,	0.3	0
1752	Japanese Regulatory Framework and Approach for Genome-edited Foods Based on Latest Scientific Findings. Food Safety (Tokyo, Japan), 2022, 10, 113-128.	1.0	7
1753	Getting better all the time — recent progress in the development of CRISPR/Cas-based tools for plant genome engineering. Current Opinion in Biotechnology, 2023, 79, 102854.	3.3	10
1754	Improvements in the genetic editing technologies: CRISPR-Cas and beyond. Gene, 2023, 852, 147064.	1.0	1
1755	Molecular recording: transcriptional data collection into the genome. Current Opinion in Biotechnology, 2023, 79, 102855.	3.3	7
1756	Gene therapies for RyR1-related myopathies. Current Opinion in Pharmacology, 2023, 68, 102330.	1.7	1
1757	A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced off-target effect. Molecular Therapy - Nucleic Acids, 2023, 31, 78-87.	2.3	1

#	Article	IF	CITATIONS
1758	Multiplexing with CRISPR-Cas Arrays. , 2022, , .		0
1759	The Obstacles and Potential Solution Clues of Prime Editing Applications in Tomato. Biodesign Research, 2022, 2022, .	0.8	5
1760	Tay-Sachs Disease: From Molecular Characterization to Ethical Quandaries and the Possibility of Genetic Medicine. Journal of Neurological Research and Therapy, 2022, 4, 1-13.	0.2	0
1761	Genome editing. Scientific Reports, 2022, 12, .	1.6	1
1762	Systematic assays and resources for the functional annotation of non-coding variants. Medizinische Genetik, 2022, 34, 275-286.	0.1	1
1763	Reducing uncertainty in genetic testing with Saturation Genome Editing. Medizinische Genetik, 2022, 34, 297-304.	0.1	0
1764	Versatile and efficient genome editing with Neisseria cinerea Cas9. Communications Biology, 2022, 5, .	2.0	2
1765	Engineering of efficiency-enhanced Cas9 and base editors with improved gene therapy efficacies. Molecular Therapy, 2023, 31, 744-759.	3.7	6
1766	In Vivo Hematopoietic Stem Cell Genome Editing: Perspectives and Limitations. Genes, 2022, 13, 2222.	1.0	6
1767	Gene Editing Technologies to Target HBV cccDNA. Viruses, 2022, 14, 2654.	1.5	10
1768	Anthocyanin-assisted Agrobacterium infiltration for the rapid evaluation of genome editing efficiencies across multiple plant species. , 2022, , .		1
1769	Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nature Protocols, 2023, 18, 831-853.	5.5	21
1770	Maize Lethal Necrosis disease: review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa. BMC Plant Biology, 2022, 22, .	1.6	2
1771	Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology, 2023, 41, 500-512.	9.4	121
1772	A review on bioinformatics advances in CRISPR-Cas technology. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 791-807.	0.9	1
1773	The Power and Perils of De Novo Domestication Using Genome Editing. Annual Review of Plant Biology, 2023, 74, 727-750.	8.6	10
1774	Multiplexed engineering and precision gene editing in cellular immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	4
1775	Duchenne Muscular Dystrophy Gene Therapy. Current Gene Therapy, 2024, 24, 17-28.	0.9	3

ARTICLE IF CITATIONS # Precise genomic editing of pathogenic mutations in <i>RBM20</i> rescues dilated cardiomyopathy. 5.8 37 1776 Science Translational Medicine, 2022, 14, . CRISPR-Based Tools for Fighting Rare Diseases. Life, 2022, 12, 1968. 1777 1.1 Genome Editing and Fatty Liver. Advances in Experimental Medicine and Biology, 2023, , 191-206. 1778 0.8 0 CRISPR screens for functional interrogation of immunity. Nature Reviews Immunology, 2023, 23, 1779 363-380. Genome Editing in Therapy of Genodermatoses. Molecular Biology, 2022, 56, 921-941. 1780 0.4 0 Genome editing in plants. Gene and Genome Editing, 2022, 3-4, 100020. 1.3 Recent advances and challenges in potato improvement using CRISPR/Cas genome editing. Planta, 2023, 1782 1.6 9 257,. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Molecular Cell, 2023, 83, 139-155.e9. 4.5 21 Alkaline Phosphatase-Controllable and Red Light-Activated RNA Modification Approach for Precise 1784 20 6.6 Tumor Suppression. Journal of the American Chemical Society, 2022, 144, 23061-23072. METTL4-mediated nuclear N6-deoxyadenosine methylation promotes metastasis through activating 1786 3.8 multiple metastasis-inducing targets. Genome Biology, 2022, 23, . Plant Genome Editing. , 2022, , 205-216. 1787 0 Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes, 2022, 13, 2348. 1788 Genome Editing of <i>Pik3cd</i>Impedes Abnormal Retinal Angiogenesis. Human Gene Therapy, 2023, 34, 1789 1.4 2 30-41. Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective. 1790 0.8 Advances in Experimental Medicine and Biology, 2023, , 315-339. Optimized prime editing efficiently generates heritable mutations in maize. Journal of Integrative Plant 1791 4.1 13 Biology, 2023, 65, 900-906. Efficient modification and preparation of circular DNA for expression in cell culture. 1792 2.0 Communications Biology, 2022, 5, . Massively Parallel CRISPRâ€Based Genetic Perturbation Screening at Singleâ€Cell Resolution. Advanced 1793 5.6 6 Science, 2023, 10, . CRISPRâ€Suppressor Scanning for Systematic Discovery of Drugâ€Resistance Mutations. Current 1796 1.3 Protocols, 2022, 2, .

#	Article	IF	CITATIONS
1797	Induced Pluripotent Stem Cells and Genome-Editing Tools in Determining Gene Function and Therapy for Inherited Retinal Disorders. International Journal of Molecular Sciences, 2022, 23, 15276.	1.8	1
1798	Prime editing: A potential treatment option for βâ€ŧhalassemia. Cell Biology International, 2023, 47, 699-713.	1.4	3
1799	Biochemical characterization of the two novel mgCas12a proteins from the human gut metagenome. Scientific Reports, 2022, 12, .	1.6	0
1800	Nanoparticles-mediated CRISPR-Cas9 gene therapy in inherited retinal diseases: applications, challenges, and emerging opportunities. Journal of Nanobiotechnology, 2022, 20, .	4.2	10
1802	An Overview of Genome Editing in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, 2023, , 3-16.	0.8	1
1804	Efficient and error-free correction of sickle mutation in human erythroid cells using prime editor-2. Frontiers in Genome Editing, 0, 4, .	2.7	0
1805	A Review on Advanced CRISPR-Based Genome-Editing Tools: Base Editing and Prime Editing. Molecular Biotechnology, 2023, 65, 849-860.	1.3	12
1806	RNA in Therapeutics: CRISPR in the Clinic. Molecules and Cells, 2023, 46, 4-9.	1.0	1
1807	PEAC-seq adopts Prime Editor to detect CRISPR off-target and DNA translocation. Nature Communications, 2022, 13, .	5.8	7
1808	<i>Agrobacterium</i> -Mediated Transformation of Wheat. Han'guk Yukchong Hakhoe Chi, 2022, 54, 358-368.	0.2	0
1809	Cytosine base editing in cyanobacteria by repressing archaic Type <scp>IV uracilâ€DNA</scp> glycosylase. Plant Journal, 0, , .	2.8	5
1810	Plant base editing and prime editing: The current status and future perspectives. Journal of Integrative Plant Biology, 2023, 65, 444-467.	4.1	23
1811	CRISPR-mediated generation and characterization of a Gaa homozygous c.1935C>A (p.D645E) Pompe disease knock-in mouse model recapitulating human infantile onset-Pompe disease. Scientific Reports, 2022, 12, .	1.6	3
1812	Homology-based identification of candidate genes for male sterility editing in upland cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 0, 13, .	1.7	2
1813	Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
1814	Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opinion on Biological Therapy, 2023, 23, 49-59.	1.4	5
1815	Prime Editing for the Installation and Correction of Mutations Causing Inherited Retinal Disease: A Brief Methodology. Methods in Molecular Biology, 2023, , 313-331.	0.4	3
1816	Genetic-Based Treatment Strategies for Muscular Dystrophy and Congenital Myopathies. CONTINUUM Lifelong Learning in Neurology, 2022, 28, 1800-1816.	0.4	1

#	Article	IF	CITATIONS
1817	Prime Editing in Mammals: The Next Generation of Precision Genome Editing. CRISPR Journal, 2022, 5, 746-768.	1.4	0
1818	Adenine base editor–mediated correction of the common and severe IVS1-110 (G>A) β-thalassemia mutation. Blood, 2023, 141, 1169-1179.	0.6	11
1819	CRISPR/Cas tools for enhancing the biopreservation ability of lactic acid bacteria in aquatic products. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
1820	NanoTag Nanobody Tools for <i>Drosophila In Vitro</i> and <i>In Vivo</i> Studies. Current Protocols, 2022, 2, .	1.3	3
1822	Genetic Engineering of Immune Evasive Stem Cell-Derived Islets. Transplant International, 0, 35, .	0.8	5
1823	Advances in off-target detection for CRISPR-based genome editing. Human Gene Therapy, 0, , .	1.4	0
1824	Fruit Crop Improvement with Genome Editing, In Vitro and Transgenic Approaches. Horticulturae, 2023, 9, 58.	1.2	3
1825	Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nature Communications, 2023, 14, .	5.8	36
1826	Clinical genome editing to treat sickle cell disease—A brief update. Frontiers in Medicine, 0, 9, .	1.2	5
1827	Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Frontiers in Genome Editing, 0, 4, .	2.7	2
1828	Improved Dual Base Editor Systems (iACBEs) for Simultaneous Conversion of Adenine and Cytosine in the Bacterium Escherichia coli. MBio, 2023, 14, .	1.8	8
1829	Gene Editing Corrects <i>In Vitro</i> a G > A <i>GLB1</i> Transition from a GM1 Gangliosidosis Patient. CRISPR Journal, 2023, 6, 17-31.	1.4	1
1830	Gene editing for dyslipidemias: New tools to "cut―lipids. Atherosclerosis, 2023, 368, 14-24.	0.4	5
1831	Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Communications Biology, 2023, 6, .	2.0	5
1832	Engineering CRISPR/Cas-based nanosystems for therapeutics, diagnosis and bioimaging. Chinese Chemical Letters, 2023, 34, 108134.	4.8	2
1833	Applying multiâ€omics toward tumor microbiome research. , 2023, 2, .		11
1834	A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Frontiers in Genetics, 0, 13, .	1.1	10
1835	CRISPR/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy, 2023, 25, 277-285.	0.3	4

ARTICLE IF CITATIONS # NFκB-Mediated Expression of Phosphoinositide 3-Kinase l´ Is Critical for Mesenchymal Transition in 1836 1.8 1 Retinal Pigment Epithelial Cells. Cells, 2023, 12, 207. Making headway toward enduring changes: perspectives on breeding tree crops through genome 0.6 editing. Tree Genetics and Genomes, 2023, 19, . Engineered PROTAC-CID Systems for Mammalian Inducible Gene Regulation. Journal of the American 1838 6.6 3 Chemical Society, 0, , . Gene therapy for liver diseases $\hat{a} \in \mathbb{C}$ progress and challenges. Nature Reviews Gastroenterology and 1839 Hepatology, 2023, 20, 288-305. Molecular and therapeutic effect of CRISPR in treating cancer., 2023, 40, . 2 1840 Smart Plant Breeding for Potato in the Post-genomics Era., 2023, , 337-356. CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, . 1842 7.1 73 Predicting prime editing efficiency and product purity by deep learning. Nature Biotechnology, 2023, 41, 1151-1159. 1843 9.4 Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome 1844 3.8 18 Biology, 2023, 24, . Future Directions for Adrenal Insufficiency: Cellular Transplantation and Genetic Therapies. Journal 1845 1.8 of Clinical Endocrinology and Metabolism, 2023, 108, 1273-1289. Enhancement of a prime editing system via optimal recruitment of the pioneer transcription factor 1847 5.8 9 P65. Nature Communications, 2023, 14, . qSanger: Quantification of Genetic Variants in Bacterial Cultures by Sanger Sequencing. Biodesign 1848 0.8 Research, 2023, 5, . Guide RNA library-based CRISPR screens in plants: opportunities and challenges. Current Opinion in 1849 3.3 7 Biotechnology, 2023, 79, 102883. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein and hairy roots: a perfect match for gene functional analysis and crop improvement. Current Opinion in Biotechnology, 2023, 79, 102876. 3.3 Accelerating wood domestication in forest trees through genome editing: Advances and prospects. 1851 3.58 Current Opinion in Plant Biology, 2023, 71, 102329. GEM: Genome Editing Meta-database, a dataset of genome editing related metadata systematically extracted from PubMed literatures. Gene and Genome Editing, 2023, 5, 100024. Plant genome editing: CRISPR, base editing, prime editing, and beyond., 0, , . 1853 4 1854 One Health: Animal Models of Heritable Human Bleeding Diseases. Animals, 2023, 13, 87.

#	Article	IF	CITATIONS
1855	Genome editing for vegetatively propagated crops improvement: a new horizon of possibilities. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 718-729.	0.9	2
1856	A Toolkit for Effective and Successive Genome Engineering of Escherichia coli. Fermentation, 2023, 9, 14.	1.4	2
1857	TAPE-seq is a cell-based method for predicting genome-wide off-target effects of prime editor. Nature Communications, 2022, 13, .	5.8	9
1858	Genome Editing Using Cas9 Ribonucleoprotein Is Effective for Introducing PDGFRA Variant in Cultured Human Glioblastoma Cell Lines. International Journal of Molecular Sciences, 2023, 24, 500.	1.8	0
1859	Advances in CRISPR-Cas9 for the Baculovirus Vector System: A Systematic Review. Viruses, 2023, 15, 54.	1.5	1
1860	CRISPR engineering in organoids for gene repair and disease modelling. , 2023, 1, 32-45.		11
1861	SNPD-CRISPR: Single Nucleotide Polymorphism-Distinguishable Repression or Enhancement of a Target Gene Expression by CRISPR System. Methods in Molecular Biology, 2023, , 49-62.	0.4	0
1862	Updates and Applications of CRISPR/Cas Technology in Plants. Journal of Plant Biology, 0, , .	0.9	3
1863	A strategy for uncovering germline variants altering anti-tumor CD8 T cell response. Journal of Genetics and Genomics, 2023, 50, 353-361.	1.7	2
1864	The genome editing revolution. Trends in Biotechnology, 2023, 41, 396-409.	4.9	22
1864 1865	The genome editing revolution. Trends in Biotechnology, 2023, 41, 396-409. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300.	4.9 23.3	22 88
	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic		
1865	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300.		88
1865 1866	 Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300. Principles of genome editing and its applications in fisheries. , 2023, , 147-154. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals, 	23.3	88 2
1865 1866 1867	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300. Principles of genome editing and its applications in fisheries. , 2023, , 147-154. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals, 2023, 16, 147. CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International	23.3	88 2 4
1865 1866 1867 1868	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300. Principles of genome editing and its applications in fisheries. , 2023, , 147-154. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals, 2023, 16, 147. CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62, . Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines, 2023, 11,	23.3 1.7 7.2	88 2 4 24
1865 1866 1867 1868 1869	Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews Materials, 2023, 8, 282-300. Principles of genome editing and its applications in fisheries. , 2023, , 147-154. KIF1A-Associated Neurological Disorder: An Overview of a Rare Mutational Disease. Pharmaceuticals, 2023, 16, 147. CRISPRâ€Cas Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie - International Edition, 2023, 62, . Clinical and Therapeutic Evaluation of the Ten Most Prevalent CRB1 Mutations. Biomedicines, 2023, 11, 385. Development of a versatile nuclease prime editor with upgraded precision. Nature Communications,	23.3 1.7 7.2 1.4	88 2 4 24 3

#	Article	lF	CITATIONS
1873	Base editing screens map mutations affecting interferon-Î ³ signaling in cancer. Cancer Cell, 2023, 41, 288-303.e6.	7.7	14
1874	CRISPR as Biochemistry and CRISPRâ€Based Molecular Diagnostics. Angewandte Chemie, 0, , .	1.6	0
1875	Advances in CRISPR/Cas technologies and their application in plants. , 2023, 2, 1-10.		1
1876	Future Perspectives of Prime Editing for the Treatment of Inherited Retinal Diseases. Cells, 2023, 12, 440.	1.8	4
1877	Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding. Current Issues in Molecular Biology, 2023, 45, 918-935.	1.0	7
1878	Gene Modulation with CRISPR-based Tools in Human iPSC-Cardiomyocytes. Stem Cell Reviews and Reports, 0, , .	1.7	3
1879	Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. Molecular Horticulture, 2023, 3, .	2.3	5
1880	Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. Journal of Microbiology, 2023, 61, 13-36.	1.3	4
1881	Prenatal Interventions for the Treatment of Congenital Disorders. , 2023, , 259-268.		0
1882	Genome Editing Using CRISPR. , 2023, , 1-26.		0
1884	Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Molecular Cell, 2023, 83, 442-451.	4.5	5
1885	Application of CRISPR Cas systems in DNA recorders and writers. BioSystems, 2023, 225, 104870.	0.9	0
1886	Rapid and Reliable Quantification of Prime Editing Targeting Within the Porcine <i>ABCA4</i> Gene Using a BRET-Based Sensor. Nucleic Acid Therapeutics, 2023, 33, 226-232.	2.0	3
1887	CRISPR-detector: fast and accurate detection, visualization, and annotation of genome-wide mutations induced by genome editing events. Journal of Genetics and Genomics, 2023, 50, 563-572.	1.7	0
1888	Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes and Diseases, 2024, 11, 268-282.	1.5	5
1889	Microbeâ€Mediated Biosynthesis of Multidimensional Carbonâ€Based Materials for Energy Storage Applications. Advanced Energy Materials, 2023, 13, .	10.2	13
1891	Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Molecular Biomedicine, 2023, 4, .	1.7	3
1892	Trimming the genomic fat: minimising and re-functionalising genomes using synthetic biology. Nature Communications, 2023, 14, .	5.8	10

#	Article	IF	CITATIONS
1893	Gene Therapy for Paediatric Homozygous Familial Hypercholesterolaemia. Heart Lung and Circulation, 2023, 32, 769-779.	0.2	1
1894	An OMA1 redox site controls mitochondrial homeostasis, sarcoma growth, and immunogenicity. Life Science Alliance, 2023, 6, e202201767.	1.3	1
1895	Accelerating crop domestication through genome editing for sustainable agriculture. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 688-704.	0.9	3
1896	Resistance strategies for defense against Albugo candida causing white rust disease. Microbiological Research, 2023, 270, 127317.	2.5	2
1897	Improving recombinant protein production in CHO cells using the CRISPR-Cas system. Biotechnology Advances, 2023, 64, 108115.	6.0	3
1898	New advancements in CRISPR based gene therapy of Duchenne muscular dystrophy. Gene, 2023, 867, 147358.	1.0	4
1899	PASTE: a high-throughput method for large DNA insertions. Trends in Plant Science, 2023, 28, 509-511.	4.3	0
1900	The use of CRISPR-Cas-based systems in bacterial cell factories. Biochemical Engineering Journal, 2023, 194, 108880.	1.8	3
1901	Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants. Nucleic Acids Research, 2023, 51, 3465-3484.	6.5	5
1903	Applications of Genome Editing Techniques for the Improvement of Medicinal Plants. , 2022, , 545-569.		0
1904	Regulatory Aspects of the Seed Business in Relation to Plant Breeding. , 2022, , 323-387.		2
1905	Explorations of CRISPR/Cas9 for improving the long-term efficacy of universal CAR-T cells in tumor immunotherapy. Life Sciences, 2023, 316, 121409.	2.0	7
1906	CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379, .	6.0	233
1907	Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. Cell Reports, 2023, 42, 112019.	2.9	11
1908	Exploring genetic influences on adverse outcome pathways using heuristic simulation and graph data science. Computational Toxicology, 2023, 25, 100261.	1.8	1
1909	Challenges of Gene Editing Therapies for Genodermatoses. International Journal of Molecular Sciences, 2023, 24, 2298.	1.8	6
1910	The Novel Role of the B-Cell Lymphoma/Leukemia 11A (BCL11A) Gene in β-Thalassaemia Treatment. Cardiovascular & Hematological Disorders Drug Targets, 2022, 22, 226-236.	0.2	1
1911	The Emerging Role of Super-enhancers as Therapeutic Targets in The Digestive System Tumors. International Journal of Biological Sciences, 2023, 19, 1036-1048.	2.6	2

#	Article	IF	CITATIONS
1912	Chemical and Biological Approaches to Interrogate off-Target Effects of Genome Editing Tools. ACS Chemical Biology, 2023, 18, 205-217.	1.6	4
1913	Human-specific genetics: new tools to explore the molecular and cellular basis of human evolution. Nature Reviews Genetics, 2023, 24, 687-711.	7.7	21
1914	VLDL receptor gene therapy for reducing atherogenic lipoproteins. Molecular Metabolism, 2023, 69, 101685.	3.0	5
1915	Genome engineering via gene editing technologies in microalgae. Bioresource Technology, 2023, 373, 128701.	4.8	15
1916	Dual-AAV split prime editor corrects the mutation and phenotype in mice with inherited retinal degeneration. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	14
1918	CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. Frontiers in Plant Science, 0, 14, .	1.7	10
1919	Advances in gene therapy hold promise for treating hereditary hearing loss. Molecular Therapy, 2023, 31, 934-950.	3.7	25
1920	Prime Editing for Human Gene Therapy: Where Are We Now?. Cells, 2023, 12, 536.	1.8	11
1922	Enabling technology and core theory of synthetic biology. Science China Life Sciences, 2023, 66, 1742-1785.	2.3	10
1924	Rare immune diseases paving the road for genome editing-based precision medicine. Frontiers in Genome Editing, 0, 5, .	2.7	5
1925	Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria. Nature Communications, 2023, 14, .	5.8	7
1926	Vision rescue via unconstrained in vivo prime editing in degenerating neural retinas. Journal of Experimental Medicine, 2023, 220, .	4.2	24
1927	Activity-based CRISPR scanning uncovers allostery in DNA methylation maintenance machinery. ELife, 0, 12, .	2.8	6
1928	Lipid nanoparticle-based ribonucleoprotein delivery for in vivo genome editing. Journal of Controlled Release, 2023, 355, 406-416.	4.8	5
1929	<scp>CRISPRi</scp> in <i>Xanthomonas</i> demonstrates functional convergence of transcription activatorâ€like effectors in two divergent pathogens. New Phytologist, 2023, 238, 1593-1604.	3.5	0
1930	Intracellular Delivery of mRNA for Cellâ€Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles. ChemBioChem, 2023, 24, .	1.3	4
1931	Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 2023, 24, 477-494.	16.1	17
1932	Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Molecular Psychiatry, 2023, 28, 1430-1439.	4.1	5

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
1933	CRISPR/Cas genome editing system and its application in potato. Frontiers in Genetics,	0, 14, .	1.1	6
1934	Creation of Mitochondrial Disease Models Using Mitochondrial DNA Editing. Biomedici 532.	nes, 2023, 11,	1.4	6
1935	Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas de therapeutic genetic manipulation. Journal of Materials Chemistry B, 2023, 11, 5251-52		2.9	5
1936	Biofortification of Maize (Zea mays). , 2023, , 209-233.			0
1937	Therapeutic gene correction for Lesch-Nyhan syndrome using CRISPR-mediated base ar Molecular Therapy - Nucleic Acids, 2023, 31, 586-595.	nd prime editing.	2.3	3
1938	Eye on genome editing. Journal of Experimental Medicine, 2023, 220, .		4.2	1
1939	CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RN Reports, 2023, 13, .	ase HII. Scientific	1.6	4
1940	Progress in and Prospects of Genome Editing Tools for Human Disease Model Developr Therapeutic Applications. Genes, 2023, 14, 483.	nent and	1.0	3
1941	Prediction of prime editing insertion efficiencies using sequence features and DNA repa determinants. Nature Biotechnology, 2023, 41, 1446-1456.	ir	9.4	21
1942	The Technologist's Dilemma. , 2023, 2, 21-22.			0
1943	Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nature 29, 412-421.	Medicine, 2023,	15.2	52
1944	Current advancement in the application of prime editing. Frontiers in Bioengineering ar Biotechnology, 0, 11, .	nd	2.0	12
1945	Cas9â€orthologueâ€mediated cytosine and adenine base editors recognizing NNAAAA Biotechnology Journal, 2023, 18, .	PAM sequences.	1.8	0
1946	Counteracting the Common Shwachman–Diamond Syndrome-Causing SBDS c.258+ RNA Therapeutics and Base/Prime Editing. International Journal of Molecular Sciences, 2		1.8	1
1947	CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recal transgene-free plants for future crop breeding. Plant Physiology and Biochemistry, 202		2.8	4
1948	Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. 28, 1982.	Molecules, 2023,	1.7	2
1949	Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. Frontiers Science, 0, 14, .	in Plant	1.7	3
1950	Editorial: Genetic engineering in farm animals. Frontiers in Genetics, 0, 14, .		1.1	0

#	Article	IF	CITATIONS
1951	Delivery challenges for CRISPR—Cas9 genome editing for Duchenne muscular dystrophy. Biophysics Reviews, 2023, 4, .	1.0	2
1952	High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells. Molecular Therapy - Nucleic Acids, 2023, 31, 746-762.	2.3	2
1953	Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis. Nature Biotechnology, 2023, 41, 1567-1581.	9.4	32
1954	Hacking hematopoiesis – emerging tools for examining variant effects. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	0
1955	Transition Substitution of Desired Bases in Human Pluripotent Stem Cells with Base Editors: A Step-by-Step Guide. International Journal of Stem Cells, 2023, 16, 234-243.	0.8	1
1956	Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Frontiers in Genome Editing, 0, 5, .	2.7	3
1957	New advances in CRISPR/Cas-mediated precise gene-editing techniques. DMM Disease Models and Mechanisms, 2023, 16, .	1.2	6
1958	Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Seminars in Immunology, 2023, 66, 101731.	2.7	2
1959	Epigenetics in LMNA-Related Cardiomyopathy. Cells, 2023, 12, 783.	1.8	6
1960	CRISPR/Cas-mediated <i>in planta</i> gene targeting: current advances and challenges. Journal of Experimental Botany, 2023, 74, 3806-3820.	2.4	2
1961	Geneâ€ŧargeted therapies: Overview and implications. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2023, 193, 13-18.	0.7	1
1962	Genome editing in rice: New paths for an old crop. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2023, 2023, .	0.6	0
1963	HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	5
1964	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Cardiovascular Disease: A Comprehensive Clinical Review on Dilated Cardiomyopathy. Cureus, 2023, , .	0.2	0
1965	When is the best time to screen and evaluate for treatable genetic disorders?: A lifespan perspective. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2023, 193, 44-55.	0.7	5
1966	The history, use, and challenges of therapeutic somatic cell and germline gene editing. Fertility and Sterility, 2023, 120, 528-538.	0.5	0
1967	Synthetic biology tools for engineering Corynebacterium glutamicum. Computational and Structural Biotechnology Journal, 2023, 21, 1955-1965.	1.9	5
1968	A chemically controlled Cas9 switch enables temporal modulation of diverse effectors. Nature Chemical Biology, 2023, 19, 981-991.	3.9	5

#	Article	IF	CITATIONS
1969	Genome editing in maize: Toward improving complex traits in a global crop. Genetics and Molecular Biology, 2023, 46, .	0.6	1
1970	Prime editing-mediated precise knockin of protein tag sequences in the rice genome. Plant Communications, 2023, 4, 100572.	3.6	10
1971	Epitranscriptional Regulation: From the Perspectives of Cardiovascular Bioengineering. Annual Review of Biomedical Engineering, 2023, 25, .	5.7	0
1972	A Novel Fluorescence-Based Screen of Gene Editing Molecules for Junctional Epidermolysis Bullosa. International Journal of Molecular Sciences, 2023, 24, 5197.	1.8	0
1973	β-Thalassemia: all about that base, no cutting. Blood, 2023, 141, 1098-1099.	0.6	0
1974	Genome Editing Technology: A New Frontier for the Treatment and Prevention of Cardiovascular Diseases. Current Problems in Cardiology, 2023, 48, 101692.	1.1	8
1975	Functional restoration of a CFTR splicing mutation through RNA delivery of CRISPR adenine base editor. Molecular Therapy, 2023, 31, 1647-1660.	3.7	7
1976	Nucleases in gene-editing technologies: past and prologue. , 2023, , .		1
1977	Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research. Military Medical Research, 2023, 10, .	1.9	5
1978	The potential of gene editing for Huntington's disease. Trends in Neurosciences, 2023, 46, 365-376.	4.2	2
1979	Prime editing in hematopoietic stem cells—From ex vivo to in vivo CRISPR-based treatment of blood disorders. Frontiers in Genome Editing, 0, 5, .	2.7	2
1980	Genome-engineering technologies for modeling and treatment of cystic fibrosis. Advances in Medical Sciences, 2023, 68, 111-120.	0.9	0
1981	Molecular scalpels: the future of pediatric craniofacial surgery?. Plastic and Reconstructive Surgery, O, Publish Ahead of Print, .	0.7	0
1982	New CRISPR Technology for Creating Cell Models of Lipoprotein Assembly and Secretion. Current Atherosclerosis Reports, 0, , .	2.0	0
1985	Plant breeding advancements with "CRISPR-Cas―genome editing technologies will assist future food security. Frontiers in Plant Science, 0, 14, .	1.7	17
1986	Enhancing the quality of staple food crops through CRISPR/Cas-mediated site-directed mutagenesis. Planta, 2023, 257, .	1.6	3
1987	Split-tracrRNA as an efficient tracrRNA system with an improved potential of scalability. Biomaterials Science, 0, , .	2.6	0
1988	<i>Ex vivo</i> gene therapy for lysosomal storage disorders: future perspectives. Expert Opinion on Biological Therapy, 2023, 23, 353-364.	1.4	1

#	Article	IF	Citations
1989	Seedlessness Trait and Genome Editing—A Review. International Journal of Molecular Sciences, 2023, 24, 5660.	1.8	3
1991	Addition of the T5 exonuclease increases the prime editing efficiency in plants. Journal of Genetics and Genomics, 2023, 50, 582-588.	1.7	9
1993	Tailoring crops with superior product quality through genome editing: an update. Planta, 2023, 257, .	1.6	4
1994	CRISPR-Cas-mediated transcriptional modulation: The therapeutic promises of CRISPRa and CRISPRi. Molecular Therapy, 2023, 31, 1920-1937.	3.7	15
1995	<scp>Charcot–Marie–Tooth</scp> neuropathies: Current gene therapy advances and the route toward translation. Journal of the Peripheral Nervous System, 2023, 28, 150-168.	1.4	7
1996	Advances in CRISPR/Cas gene therapy for inborn errors of immunity. Frontiers in Immunology, 0, 14, .	2.2	5
1999	Cell and gene therapy for kidney disease. Nature Reviews Nephrology, 2023, 19, 451-462.	4.1	7
2000	Functional characterization of human genomic variation linked to polygenic diseases. Trends in Genetics, 2023, 39, 462-490.	2.9	5
2001	A regulatory variant at 19p13.3 is associated with primary biliary cholangitis risk and ARID3A expression. Nature Communications, 2023, 14, .	5.8	6
2002	Hunting out the repeat expansion in Huntingtonâ \in Ms pigs. Protein and Cell, 0, , .	4.8	0
2003	<i>In Vivo</i> RNA Delivery to Hematopoietic Stem and Progenitor Cells <i>via</i> Targeted Lipid Nanoparticles. Nano Letters, 2023, 23, 2938-2944.	4.5	32
2004	Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nature Biotechnology, 2024, 42, 87-98.	9.4	27
2005	Recent Advances in Engineering of In Vivo Haploid Induction Systems. Methods in Molecular Biology, 2023, , 365-383.	0.4	4
2006	Use of Fluorescent Protein Reporters for Assessing and Detecting Genome Editing Reagents and Transgene Expression in Plants. Methods in Molecular Biology, 2023, , 115-127.	0.4	2
2007	Prime editing with genuine Cas9 nickases minimizes unwanted indels. Nature Communications, 2023, 14,	5.8	14
2008	Genotyping Genome-Edited Founders and Subsequent Generation. Methods in Molecular Biology, 2023, , 103-134.	0.4	0
2009	Transgenesis and Genome Engineering: A Historical Review. Methods in Molecular Biology, 2023, , 1-32.	0.4	2
2010	Cytosine base editors induce off-target mutations and adverse phenotypic effects in transgenic mice. Nature Communications, 2023, 14, .	5.8	10

#	Article	IF	CITATIONS
2011	Advances in research to restore vision. Journal of Animal Reproduciton and Biotechnology, 2014, 38, 2-9.	0.3	0
2012	Rhodopsin-associated retinal dystrophy: Disease mechanisms and therapeutic strategies. Frontiers in Neuroscience, 0, 17, .	1.4	3
2013	Outlook on the Security and Potential Improvements of CRISPR–Cas9. Molecular Biotechnology, 2023, 65, 1729-1736.	1.3	3
2015	Plant Mutagenesis Tools for Precision Breeding: Conventional CRISPR/Cas9 Tools and Beyond. , 2023, , 269-291.		0
2016	DNA rehybridization drives product release from Cas9 ribonucleoprotein to enable multiple-turnover cleavage. Nucleic Acids Research, 0, , .	6.5	1
2017	Genome engineering in bacteria: Current and prospective applications. Methods in Microbiology, 2023, , 35-76.	0.4	1
2018	An overview of genome engineering in plants, including its scope, technologies, progress and grand challenges. Functional and Integrative Genomics, 2023, 23, .	1.4	14
2019	Widespread RNA hypoediting in schizophrenia and its relevance to mitochondrial function. Science Advances, 2023, 9, .	4.7	5
2020	Genetic and Genomic Resources for Harnessing the Health-Related Genes in Finger Millet. , 2023, , 1-16.		0
2022	CRISPR-Cas System: The Current and Emerging Translational Landscape. Cells, 2023, 12, 1103.	1.8	7
2023	RIP-PEN-seq identifies a class of kink-turn RNAs as splicing regulators. Nature Biotechnology, 2024, 42, 119-131.	9.4	5
2024	Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
2025	Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs. Nature Biomedical Engineering, 2023, 7, 672-691.	11.6	8
2026	Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nature Communications, 2023, 14, .	5.8	17
2027	A Review of CRISPR-Based Advances in Dermatological Diseases. Molecular Diagnosis and Therapy, 2023, 27, 445-456.	1.6	1
2028	CRISPR screening in cardiovascular research. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	0
2029	In the business of base editors: Evolution from bench to bedside. PLoS Biology, 2023, 21, e3002071.	2.6	10
2031	Oxygen modulates iron homeostasis by switching iron sensing of NCOA4. Journal of Biological Chemistry, 2023, 299, 104701.	1.6	5

ARTICLE IF CITATIONS Strategies for the Generation of Gene Modified Avian Models: Advancement in Avian Germline 2033 1.0 1 Transmission, Genome Editing, and Applications. Genes, 2023, 14, 899. CRISPR-Editing Therapy for Duchenne Muscular Dystrophy. Human Gene Therapy, 2023, 34, 379-387. 2034 1.4 Ex vivo prime editing of patient haematopoietic stem cells rescues sickle-cell disease phenotypes after 2035 11.6 31 engraftment in mice. Nature Biomedical Engineering, 2023, 7, 616-628. Overcoming the Limitations of CRISPR-Cas9 Systems in Saccharomyces cerevisiae: Off-Target Effects, 2036 1.6 Epigenome, and Mitochondrial Editing. Microorganisms, 2023, 11, 1040. Unclasping potentials of genomics and gene editing in chickpea to fight climate change and global 2038 1.1 4 hunger threat. Frontiers in Genetics, 0, 14, . Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Frontiers in Plant Science, 0, 14, . 2039 1.7 A dual gene-specific mutator system installs all transition mutations at similar frequencies <i>in 2040 6.5 5 vivo</i>
. Nucleic Acids Research, 2023, 51, e59-e59. Strategies for precise gene edits in mammalian cells. Molecular Therapy - Nucleic Acids, 2023, 32, 2041 2.3 536-552. PAM-flexible Cas9-mediated base editing of a hemophilia B mutation in induced pluripotent stem cells. 2042 1.9 5 Communications Medicine, 2023, 3, . 2043 Anzalone Prime: An Interview with Prime Editing Developer Andrew Anzalone. , 2023, 2, 81-86. PASTE, Don't Cut: Genome Editing Tool Looks Beyond CRISPR and Prime. , 2023, 2, 76-80. 2044 1 Creation of a watermelon haploid inducer line via <i>CIDMP3</i>-mediated single fertilization of the 2046 central cell. Horticulture Research, 2023, 10, . Leveraging neural crest pluripotency to extend retinal and craniofacial niches for building 2048 0 neurovascular organoids $\hat{s} \in$ a theranostic and drug development perspective. , 2023, 55-118. A Review of CRISPR Tools for Treating Usher Syndrome: Applicability, Safety, Efficiency, and In Vivo 2049 1.8 Delivery. International Journal of Molecular Sciences, 2023, 24, 7603. Role of stem cell engineering and or gene-editing technologies in eye diseases degeneration, and 2050 0 therapy., 2023, , 119-138. Clinical gene therapy development for the central nervous system: Candidates and challenges for 4.8 AAVs. Journal of Controlled Release, 2023, 357, 511-530. Methodologies for the development of cereals and pseudocereals for improved quality and 2052 0 nutritional value. , 2023, , 205-231. Gene and base editing tools to accelerate cereal improvement., 2023, , 315-336.

		CITATION REPORT		
#	ARTICLE	2022 852 886	IF	CITATIONS
2054	Application of new technologies in embryos: From gene editing to synthetic embryos. ,	2023, , 853-886.		0
2057	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering To Biochemistry, 2023, 62, 3465-3487.	polbox.	1.2	13
2064	Gene correction for sickle cell disease hits its prime. Nature Biomedical Engineering, 20	23, 7, 605-606.	11.6	1
2068	Nucleic Acid Therapeutics. , 2022, , 350-402.			0
2080	CRISPR in toxicology research. , 2024, , 317-323.			0
2103	Expanding the RNA and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 1-3	5.		0
2108	Biotechnology approaches and new plant breeding techniques (NPBT) to alleviate the oby potentially toxic elements and improve gasotransmitter activity and function. , 2023			0
2123	Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common Di BioDrugs, 2023, 37, 453-462.	iseases.	2.2	3
2124	Bioethical Decision-Making About Somatic Cell Genome Editing: Sickle-Cell Disease as a 2023, , 49-77.	a Case Study. ,		0
2134	Introduction to Synthetic Biology. , 2023, , 1-22.			0
2145	Definitive Treatments for Chronic Granulomatous Disease with a Focus on Gene Therap 557-572.	уу. , 2023, ,		0
2154	Nucleic Acid Editing. , 2023, , 365-416.			0
2182	A review on CRISPR/Cas: a versatile tool for cancer screening, diagnosis, and clinic treat Functional and Integrative Genomics, 2023, 23, .	tment.	1.4	10
2186	Gene Editing Technology Patents or Monopolization of Scientific Knowledge and Healt Studies on Intellectual Property and Competition Law, 2023, , 593-618.	h Care?. MPI	0.7	0
2198	Genetic resources and precise gene editing for targeted improvement of barley abiotic tolerance. Journal of Zhejiang University: Science B, 0, , .	stress	1.3	0
2206	Application of CRISPR/Cas system in optimizing nutrients and anti-nutrients content in 0, , .	fruits. Vegetos,	0.8	1
2207	Recent advances in precise plant genome editing technology. , 2023, , 45-54.			0
2208	Practical protocol for design and construction of a transformation vector for prime edit 2023, , 55-67.	ting in rice. ,		0

#	Article	IF	Citations
2223	Prime Editing Strategy to Install the PRPH2 c.828+1G>A Mutation. Advances in Experimental Medicine and Biology, 2023, , 97-102.	0.8	1
2228	Generation of an Avian Myeloblastosis Virus (AMV) Reverse Transcriptase Prime Editor. Advances in Experimental Medicine and Biology, 2023, , 109-114.	0.8	1
2239	The CRISPR/Cas System in Human Cancer. Advances in Experimental Medicine and Biology, 2023, , 59-71.	0.8	0
2240	Genome Editing Tools for Lysosomal Storage Disorders. Advances in Experimental Medicine and Biology, 2023, , 127-155.	0.8	0
2251	Genome Editing Using CRISPR. , 2023, , 2511-2536.		0
2252	Expanding the RNA- and RNP-Based Regulatory World in Mammalian Cells. , 2023, , 2361-2395.		0
2263	Improvement of floricultural traits in ornamental crops using genome editing tools. Journal of Plant Biochemistry and Biotechnology, 0, , .	0.9	1
2290	Therapeutic approaches for Duchenne muscular dystrophy. Nature Reviews Drug Discovery, 2023, 22, 917-934.	21.5	8
2295	Drug delivery systems for CRISPR-based genome editors. Nature Reviews Drug Discovery, 2023, 22, 875-894.	21.5	9
2303	Genome editing in the treatment of ocular diseases. Experimental and Molecular Medicine, 2023, 55, 1678-1690.	3.2	3
2319	CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Annals of Hematology, 0, , .	0.8	1
2329	Base editing of organellar DNA with programmable deaminases. Nature Reviews Molecular Cell Biology, 2024, 25, 34-45.	16.1	3
2330	Genome Editing: Mechanism and Utilization in Plant Breeding. , 2023, , 457-488.		0
2335	Bringing enzymes to the proximity party. RSC Chemical Biology, 0, , .	2.0	1
2342	CRISPR/CAS: The Beginning of a New Era in Crop Improvement. , 2023, , 489-505.		1
2354	CRISPR/Cas-mediated genome editing and its application on pig-to-human xenotransplantation. , 2023, , .		0
2359	Targeted genome editing with a DNA-dependent DNA polymerase and exogenous DNA-containing templates. Nature Biotechnology, 0, , .	9.4	7
2363	Blueprint for non-transgenic edited plants. Nature Plants, 2023, 9, 1579-1580.	4.7	0

	C	ITATION REPORT	
#	Article	IF	Citations
2391	CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Human Genetics, 0, , .	1.8	0
2395	Improving color sources by plant breeding and cultivation. , 2024, , 507-553.		0
2396	Unlocking CRISPR/Cas-Mediated Editing Potential for Designing Climate-Smart Crop Plants. , 2023, , 873-893.		0
2409	RNA-based nanomedicines and their clinical applications. Nano Research, 0, , .	5.8	0
2413	Contribution of Biotechnological Approaches to Micronutrient Improvements in Legumes. , 2023, , 131-176.		0
2433	Improving Plant Molecular Farming via Genome Editing. Concepts and Strategies in Plant Sciences, 2023, , 63-88.	0.6	0
2449	Application of organoids in otolaryngology: head and neck surgery. European Archives of Oto-Rhino-Laryngology, 0, , .	0.8	1
2456	Base Editing and Prime Editing. , 2024, , 17-39.		Ο
2457	Methods and Techniques to Select Efficient Guides for CRISPR-Mediated Genome Editing in Plants. , 2024, , 89-117.		0
2459	Precise Gene Editing of Cereals Using CRISPR/Cas Technology. , 2024, , 141-150.		0
2460	Genetic and Genomic Resources for Harnessing the Health-Related Genes in Finger Millet. , 2023, , 267-282.		0
2465	Approaches to Therapeutic Gene Editing in Alpha-1 Antitrypsin Deficiency. Methods in Molecular Biology, 2024, , 11-17.	0.4	0
2477	Cancer variant modeling in vivo. Nature Biotechnology, 0, , .	9.4	0
2483	Genome-Editing – Gentherapie 2.0 oder nur eine Wunschvorstellung?. , 2023, , 103-120.		0
2486	Regulatory aspects of plants resulting from new genomic techniques in the European Union. , 2024, 251-279.	,	0
2488	Genetically Modified Food: Potentiality for Food and Nutritional Security in Saudi Arabia. , 2024, , 359-392.		0
2495	Engineering native biological complexity from the inside–out and outside–in. , 2024, 1, 2-5.		0
2496	Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nature Reviews Rheumatology, 2024, 20, 81-100.	3.5	2

#	ARTICLE A society-wide conversation is needed about germline genome editing using CRISPR. Nature Medicine,	IF	CITATIONS
2507	2024, 30, 30-32.	15.2	0
2521	Gene Editing in Hematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2023, , 177-199.	0.8	0
2522	Bacterial CRISPR systems and applications. , 2024, , 633-652.		0
2523	CRISPR/Cas systems and techniques. , 2024, , 21-41.		Ο
2526	Regulatory triggers of CRISPR-edited crops. , 2024, , 91-112.		0
2536	Genetic modification of mice using CRISPR-Cas9: Best practices and practical concepts explained. , 2024, , 425-452.		0
2537	Applications and associated challenges of CRISPR-Cas technology in agriculture. , 2024, , 265-280.		0
2538	Genome editing technologies. , 2024, , 397-423.		0
2539	CRISPR technology commercialization and biosafety. , 2024, , 461-514.		0
2540	CRISPR/Cas genome editing and applications in forest tree breeding. , 2024, , 343-366.		0
2550	An optimized toolkit for prime editing. Nature Biotechnology, 2024, 42, 187-189.	9.4	0
2551	Advanced Therapy Medicinal Products: Clinical, Non-clinical, and Quality Considerations. , 2024, , 323-399.		0
2554	Genomics and Genome Editing for Crop Improvement. , 2023, , 297-322.		0
2560	CRISPR/Cas-mediated germplasm improvement and new strategies for crop protection. , 2024, 2, .		0
2567	Efficient prime editing in two-cell mouse embryos using PEmbryo. Nature Biotechnology, 0, , .	9.4	0
2573	DNA as a universal chemical substrate for computing and data storage. Nature Reviews Chemistry, 2024, 8, 179-194.	13.8	0
2576	Genome Editing and Opportunities for Trait Improvement in Pearl Millet. , 2024, , 163-178.		0
2579	Gene Editing Approaches for Haematological Disorders. , 2024, , .		0

#	Article	IF	CITATIONS
2590	How Gene Editing Is Changing Drug Development. , 2024, , 709-717.		0
2591	Gene editing for HD: Therapeutic prospects. , 2024, , 551-570.		0
2627	Genome Editing. , 2023, , 816-855.		0
2628	Commercialization of CRISPR-edited crops: Opportunities and challenges. , 2024, , 471-486.		0
2629	Improvement of ornamental plants through CRISPR-Cas. , 2024, , 291-308.		0
2630	Evolution of genome editing technologies. , 2024, , 21-36.		0
2631	Gene editing for abiotic stress resistance in horticulturalÂcrops. , 2024, , 337-348.		0
2639	Genome Editing Tool CRISPR-Cas: Legal and Ethical Considerations for Life Science. , 2024, , 839-864.		0
2640	Detailed Insight into Various Classes of the CRISPR/Cas System to Develop Future Crops. , 2024, , 227-279.		0
2642	Deciphering the Role of CRISPR/Cas9 in the Amelioration of Abiotic and Biotic Stress Conditions. , 2024, , 193-226.		0
2644	Potato Genome Editing: Recent Challenges and a Practical Procedure. , 2024, , 415-435.		0
2646	Novel Genome-Editing Approaches for Developing Non-GM Crops for Sustainable Improvement and the Mitigation of Climate Changes. , 2024, , 65-87.		0
2649	Plant Breeding Becomes Smarter with Genome Editing. , 2024, , 113-147.		0
2650	CRISPR vegetables: Challenges and opportunities. , 2024, , 247-264.		0
2651	Multiplex genome editing in plants through CRISPR-Cas. , 2024, , 127-142.		0
2653	Global patent landscape in CRISPR-Cas. , 2024, , 487-506.		0
2654	CRISPR-Cas technologies for food and nutritional security. , 2024, , 143-158.		0