Advances in the use of CO₂ as a renewable polymers

Chemical Society Reviews 48, 4466-4514 DOI: 10.1039/c9cs00047j

Citation Report

#	Article	IF	CITATIONS
1	Nonmetal Schiff-Base Complex-Anchored Cellulose as a Novel and Reusable Catalyst for the Solvent-Free Ring-Opening Addition of CO ₂ with Epoxides. Industrial & Engineering Chemistry Research, 2019, 58, 17255-17265.	1.8	23
2	Highly elastic and degradable thermoset elastomers from CO ₂ -based polycarbonates and bioderived polyesters. Polymer Chemistry, 2019, 10, 5265-5270.	1.9	8

 $_{3}$ Mechanism investigation of thermal degradation of CO2-based poly(cyclohexene carbonate) Tj ETQq0 0 0 rgBT /Overlock 10 $_{4}^{Tf}$ 50 662 $_{2.7}^{Tr}$

4	Highly regio- and stereoselective synthesis of cyclic carbonates from biomass-derived polyols <i>via</i> organocatalytic cascade reaction. Green Chemistry, 2019, 21, 6335-6341.	4.6	42
5	Synthesis of well-defined yttrium-based Lewis acids by capturing a reaction intermediate and catalytic application for cycloaddition of CO ₂ to epoxides under atmospheric pressure. Catalysis Science and Technology, 2019, 9, 6152-6165.	2.1	51
6	Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: A highly efficient catalyst for CO2 conversion. Applied Surface Science, 2020, 508, 145220.	3.1	15
7	Heterodinuclear complexes featuring Zn(<scp>ii</scp>) and M = Al(<scp>iii</scp>), Ga(<scp>iii</scp>) or In(<scp>iii</scp>) for cyclohexene oxide and CO ₂ copolymerisation. Dalton Transactions, 2020, 49, 223-231.	1.6	41
8	Ether-functionalization of monoethanolamine (MEA) for reversible CO ₂ capture under solvent-free conditions with high-capacity and low-viscosity. Sustainable Energy and Fuels, 2020, 4, 1276-1284.	2.5	6
9	Access to 1,3-oxazine-2,4-diones/1,3-thiazine-2,4-diones <i>via</i> organocatalytic CO ₂ /COS incorporation into allenamides. Organic and Biomolecular Chemistry, 2020, 18, 905-911.	1.5	9
10	Catalytic Systems for the Synthesis of Biscarbonates and Their Impact on the Sequential Preparation of Non-Isocyanate Polyurethanes. ACS Sustainable Chemistry and Engineering, 2020, 8, 1651-1658.	3.2	27
11	Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental, 2020, 265, 118524.	10.8	46
12	Atmospheric CO2 mitigation technologies: carbon capture utilization and storage. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 34-43.	3.2	170
13	Changes in Phase Behavior from the Substitution of Ethylene Oxide with Carbon Dioxide in the Head Group of Nonionic Surfactants. ChemSusChem, 2020, 13, 601-607.	3.6	8
14	Efficient Production of Poly(Cyclohexene Carbonate) via ROCOP of Cyclohexene Oxide and CO2 Mediated by NNO-Scorpionate Zinc Complexes. Polymers, 2020, 12, 2148.	2.0	8
15	Integration of metalloporphyrin into cationic covalent triazine frameworks for the synergistically enhanced chemical fixation of CO ₂ . Catalysis Science and Technology, 2020, 10, 8026-8033.	2.1	34
16	Facile one-pot synthesis of ZnBr2 immobilized ion exchange resin for the coupling reaction of CO2 with propylene oxide. Journal of CO2 Utilization, 2020, 42, 101324.	3.3	8
17	Unlocking the Potential of Substrateâ€Directed CO ₂ Activation and Conversion: Pushing the Boundaries of Catalytic Cyclic Carbonate and Carbamate Formation. ChemSusChem, 2020, 13, 6056-6065.	3.6	31
18	Highly effective capture and subsequent catalytic transformation of low-concentration CO ₂ by superbasic guanidines. Green Chemistry, 2020, 22, 7832-7838.	4.6	10

#	Article	IF	CITATIONS
19	Visibleâ€Light Photoredoxâ€Catalyzed Ringâ€Opening Carboxylation of Cyclic Oxime Esters with CO ₂ . ChemSusChem, 2020, 13, 6312-6317.	3.6	28
20	Kinetic Study and Nonlinear Phenomenon during the Copolymerization of CO 2 with meso â€Epoxides Catalyzed by Various Bimetallic Co III Complexes. Macromolecular Chemistry and Physics, 2020, 221, 2000247.	1.1	7
21	Chromium Diamino-bis(phenolate) Complexes as Catalysts for the Ring-Opening Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Inorganic Chemistry, 2020, 59, 15375-15383.	1.9	11
22	Photocarboxylation with CO ₂ : an appealing and sustainable strategy for CO ₂ fixation. Green Chemistry, 2020, 22, 7301-7320.	4.6	115
23	The Effect of Oxygen to Salen-Co Complexes for the Copolymerization of PO/CO2. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1124-1130.	2.0	15
24	A graft copolymer composed of continuously linked carbon dioxide units and poly(vinyl alcohol). Materials Letters, 2020, 277, 128345.	1.3	2
25	Synthesis of CO ₂ -based polycarbonate- <i>g</i> -polystyrene copolymers <i>via</i> NMRP. Chemical Communications, 2020, 56, 9493-9496.	2.2	7
26	Conceptual design, environmental, and economic evaluation of direct copolymerization process of carbon dioxide and 1,4-butanediol. Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, 36-42.	2.7	9
27	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie, 2020, 132, 21307-21314.	1.6	21
28	Iridium-Catalyzed Homogeneous Hydrogenation and Hydrosilylation of Carbon Dioxide. Topics in Organometallic Chemistry, 2020, , 303-324.	0.7	1
29	Hybrid polyhydroxyurethanes: How to overcome limitations and reach cutting edge properties?. European Polymer Journal, 2020, 137, 109915.	2.6	60
30	Visibleâ€Light Photoredoxâ€Catalyzed Remote Difunctionalizing Carboxylation of Unactivated Alkenes with CO ₂ . Angewandte Chemie - International Edition, 2020, 59, 21121-21128.	7.2	102
31	Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromolecular Rapid Communications, 2020, 41, e2000266.	2.0	33
32	Evaluating the direct CO2 to diethyl carbonate (DEC) process: Rigorous simulation, techno-economical and environmental evaluation. Journal of CO2 Utilization, 2020, 41, 101254.	3.3	27
33	Advancing the Synthesis of Isocyanate-Free Poly(oxazolidones)s: Scope and Limitations. Macromolecules, 2020, 53, 6396-6408.	2.2	20
34	Exploring the Sequence of Comonomer Insertion into Growing Poly(ether carbonate) Chains with Monte Carlo Methods. Macromolecules, 2020, 53, 6861-6865.	2.2	6
35	New Kind of Thermoplastic Polyurea Elastomers Synthesized from CO ₂ and with Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 12677-12685.	3.2	18
36	Recent advances in asymmetric synthesis with CO2. Science China Chemistry, 2020, 63, 1336-1351.	4.2	74

		CITATION RE	EPORT	
#	Article		lF	Citations
37	From terpenes to sustainable and functional polymers. Polymer Chemistry, 2020, 11, 510)9-5127.	1.9	117
38	Lewis Base Catalysis Enables the Activation of Alcohols by means of Chloroformates as Pl Substitutes. ChemCatChem, 2020, 12, 5637-5643.	nosgene	1.8	5
39	Transition Metalâ€Free Synthesis of Carbamates Using CO ₂ as the Carbon S ChemSusChem, 2020, 13, 6246-6258.	Source.	3.6	46
40	Cu(II)-Catalyzed Phosphonocarboxylative Cyclization Reaction of Propargylic Amines and Oxide with CO ₂ . Journal of Organic Chemistry, 2020, 85, 14109-14120.	Phosphine	1.7	25
41	B-Doped and NH ₂ -functionalized SBA-15 with hydrogen bond donor groups catalysis of CO ₂ cycloaddition to epoxides. Inorganic Chemistry Frontiers, 2 3636-3645.	for effective 020, 7,	3.0	23
42	Organocatalytic Trapping of Elusive Carbon Dioxide Based Heterocycles by a Kinetically C Cascade Process. Angewandte Chemie, 2020, 132, 18604-18609.	ontrolled	1.6	7
43	Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments ar Perspectives. ACS Catalysis, 2020, 10, 11318-11345.	ıd	5.5	215
44	Cyclic oligourea synthesized from CO2: Purification, characterization and properties. Gre and Environment, 2022, 7, 477-484.	en Energy	4.7	3
45	Synthesis of Polyurea Thermoplastics through a Nonisocyanate Route Using CO2 and Ali Diamines. ACS Sustainable Chemistry and Engineering, 2020, 8, 18626-18635.	chatic	3.2	14
46	Calcium carbide as a dehydrating agent for the synthesis of carbamates, glycerol carbona cyclic carbonates from carbon dioxide. Green Chemistry, 2020, 22, 4231-4239.	te, and	4.6	47
47	Alternating Copolymerization of CO ₂ and Cyclohexene Oxide Catalyzed by Cobalt–Lanthanide Mixed Multinuclear Complexes. Inorganic Chemistry, 2020, 59, 792	28-7933.	1.9	45
48	Chemo―and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Prep Selfâ€Blowing Nonâ€lsocyanate Polyurethane Foams. Angewandte Chemie, 2020, 132, 1	aration of .7181-17189.	1.6	20
49	A Catalytic Domino Approach toward Oxo-Alkyl Carbonates and Polycarbonates from CO ₂ , Propargylic Alcohols, and (Mono- and Di-)Alcohols. ACS Sustainable Cl Engineering, 2020, 8, 9698-9710.	nemistry and	3.2	21
50	Chemo―and Regioselective Additions of Nucleophiles to Cyclic Carbonates for the Prep Selfâ€Blowing Nonâ€lsocyanate Polyurethane Foams. Angewandte Chemie - Internationa 17033-17041.		7.2	60
51	Synthesis of Bioâ€Based Cyclic Carbonates Using a Bioâ€Based Hydrogen Bond Donor: A Ascorbic Acid to the Cycloaddition of CO ₂ to Oleochemicals. Asian Journal o Chemistry, 2020, 9, 801-810.		1.3	35
52	Monocomponent Non-isocyanate Polyurethane Adhesives Based on a Sol–Gel Process. Polymer Materials, 2020, 2, 1839-1847.	ACS Applied	2.0	35
53	Terminal Hydrophilicity-Induced Dispersion of Cationic Waterborne Polyurethane from CO ₂ -Based Polyol. Macromolecules, 2020, 53, 6322-6330.		2.2	30
54	Light Runs Across Iron Catalysts in Organic Transformations. Chemistry - A European Jour 26, 15052-15064.	nal, 2020,	1.7	47

#	ARTICLE Cross-Linked Networks in Poly(propylene carbonate) by Incorporating (Maleic) Tj ETQq0 0 0 rgBT /Overlock 10 T	IF f 50 752 1	CITATIONS Id (Anhydride)
55	Oxide Copolymerization: Improving and Tailoring Thermal, Mechanical, and Dimensional Properties. ACS Omega, 2020, 5, 17808-17817.	1.6	13
56	Organocatalytic Trapping of Elusive Carbon Dioxide Based Heterocycles by a Kinetically Controlled Cascade Process. Angewandte Chemie - International Edition, 2020, 59, 18446-18451.	7.2	26
57	Synthesis and polymerisation of α-alkylidene cyclic carbonates from carbon dioxide, epoxides and the primary propargylic alcohol 1,4-butynediol. Green Chemistry, 2020, 22, 1553-1558.	4.6	32
58	Carboxylative cyclization of propargylic alcohols with carbon dioxide: A facile and Green route to α-methylene cyclic carbonates. Journal of CO2 Utilization, 2020, 38, 220-231.	3.3	52
59	Oxidative carboxylation of olefins with CO ₂ : environmentally benign access to five-membered cyclic carbonates. RSC Advances, 2020, 10, 9103-9115.	1.7	27
60	Catalytic transformation of CO ₂ into C1 chemicals using hydrosilanes as a reducing agent. Green Chemistry, 2020, 22, 1800-1820.	4.6	111
61	A Thermomorphic Polyethyleneâ€6upported Imidazolium Salt for the Fixation of CO ₂ into Cyclic Carbonates. Advanced Synthesis and Catalysis, 2020, 362, 1696-1705.	2.1	15
62	The coupling of CO2 with diols promoted by organic dual systems: Towards products divergence via benchmarking of the performance metrics. Journal of CO2 Utilization, 2020, 38, 88-98.	3.3	15
63	Influence of the Cyclic versus Linear Carbonate Segments in the Properties and Performance of CO ₂ -Sourced Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2020, 2, 922-931.	2.0	36
64	Effect of an Al(III) Complex on the Regio- and Stereoisomeric Formation of Bicyclic Organic Carbonates. Organometallics, 2020, 39, 1642-1651.	1.1	25
65	Fully bio-derived CO ₂ polymers for non-isocyanate based polyurethane synthesis. Green Chemistry, 2020, 22, 969-978.	4.6	41
66	Electrochemical Reactors for CO2 Conversion. Catalysts, 2020, 10, 473.	1.6	72
67	Construction of 3D lanthanide based MOFs with pores decorated with basic imidazole groups for selective capture and chemical fixation of CO ₂ . New Journal of Chemistry, 2020, 44, 9090-9096.	1.4	15
68	Asymmetric Alternating Copolymerization of CO ₂ with <i>meso</i> -Epoxides: Ring Size Effects of Epoxides on Reactivity, Enantioselectivity, Crystallization, and Degradation. Macromolecules, 2020, 53, 2912-2918.	2.2	23
69	Advancing halide-free catalytic synthesis of CO2-based heterocycles. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 72-81.	3.2	28
70	C3-symmetric zinc complexes as sustainable catalysts for transforming carbon dioxide into mono- and multi-cyclic carbonates. Applied Catalysis B: Environmental, 2021, 280, 119395.	10.8	39
71	Catalytic conversions of CO2 to help mitigate climate change: Recent process developments. Chemical Engineering Research and Design, 2021, 145, 172-194.	2.7	57
72	Copolymerization of propylene oxide and 13CO2 to afford completely alternating regioregular 13C-labeled Poly(propylene carbonate). Polymer Journal, 2021, 53, 215-218.	1.3	3

CITATION REPORT ARTICLE IF CITATIONS Waterâ€Borne Isocyanateâ€Free Polyurethane Hydrogels with Adaptable Functionality and Behavior. 2.0 17 Macromolecular Rapid Communications, 2021, 42, e2000482. A self-healing and recyclable polyurethane-urea Diels–Alder adduct synthesized from carbon dioxide 4.6 and furfuryl amine. Green Chemistry, 2021, 23, 552-560. Sustainable Catalytic Synthesis of Diethyl Carbonate. ChemSusChem, 2021, 14, 842-846. 3.6 20 Synergetic Effect of Dopamine and Alkoxysilanes in Sustainable Nonâ€Isocyanate Polyurethane 2.0 Ádhesives. Macromolecular Rapid Commúnications, 2021, 42, e2000538. Enhancing surface interactions between humic surfactants and cupric ion: DFT computations coupled 2.3 13 with MD simulations study. Journal of Molecular Liquids, 2021, 324, 114781. Understanding the CO2 valorization to propylene carbonate catalyzed by 1-butyl-3-methylimidazolium amino acid ionic liquids. Journal of Molecular Liquids, 2021, 324, 114782. 2.3 Hydroxylaminoâ€Anchored Poly(Ionic Liquid)s for CO₂ Fixation into Cyclic Carbonates at 2.7 40 Mild Conditions. Advanced Sustainable Systems, 2021, 5, . Thermomorphic Polyethyleneâ€Supported Organocatalysts for the Valorization of Vegetable Oils and 2.7 CO₂. Ádvanced Sustainable Systems, 2021, 5, 2000218. Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from 2.6 30 zero-dimensional single-element unit, fullerene. Materials Advances, 2021, 2, 582-597. Copper-catalysed synthesis of α-alkylidene cyclic carbonates from propargylic alcohols and 4.6 CO₂. Green Chemistry, 2021, 23, 889-897. Multicomponent Polymerizations Involving Green Monomers. Macromolecular Rapid 12 2.0 Communications, 2021, 42, e2000547. Cycloaddition of CO₂ to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT 2.3 investigations. Organic Chemistry Frontiers, 2021, 8, 613-627. Catalyst-free fixation of carbon dioxide into value-added chemicals: a review. Environmental 8.3 21 Chemistry Letters, 2021, 19, 911-940. Towards the development of the emerging process of CO₂heterogenous hydrogenation 18.7 161 into high-value unsaturated heavy hydrocarbons. Chemical Society Reviews, 2021, 50, 10764-10805. A mathematical analysis of carbon fixing materials that grow, reinforce, and self-heal from 2 4.6 atmospheric carbon dioxide. Green Chemistry, 2021, 23, 5556-5570. Conversion of carbon dioxide to valuable compounds., 2021, , 307-352. Synthesis of î±-alkylidene cyclic carbonates <i>via</i> CO₂ fixation under ambient

	4340-4346.		
90	Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO ₂ to Cyclic Carbonates. Inorganic Chemistry, 2021, 60, 2056-2067.	1.9	105

1.4

15

conditions promoted by an easily available silver carbamate. New Journal of Chemistry, 2021, 45,

#

73

74

75

77

79

81

83

84

85

87

#	Article	IF	CITATIONS
91	Coâ€polymerization of propylene oxide and CO 2 using early transition metal (groups IV and V) metallocalix[n]arenes (n = 4, 6, 8). Journal of Applied Polymer Science, 2021, 138, 50513.	1.3	4
92	Introduction to the Organometallic Chemistry of Carbon Dioxide. , 2021, , .		Ο
93	Efficient chemical fixation of CO ₂ from direct air under environment-friendly co-catalyst and solvent-free ambient conditions. Journal of Materials Chemistry A, 2021, 9, 23127-23139.	5.2	51
94	Hybridization of MOFs and ionic POFs: a new strategy for the construction of bifunctional catalysts for CO ₂ cycloaddition. Green Chemistry, 2021, 23, 1766-1771.	4.6	26
95	Spiers Memorial Lecture: CO2 utilization: why, why now, and how?. Faraday Discussions, 2021, 230, 9-29.	1.6	10
96	Porous organic polymers as metal free heterogeneous organocatalysts. Green Chemistry, 2021, 23, 7361-7434.	4.6	54
97	Renewable carbon feedstock for polymers: environmental benefits from synergistic use of biomass and CO ₂ . Faraday Discussions, 2021, 230, 227-246.	1.6	25
98	Formation of β-cyano-ketones through cyanide-promoted ring-opening of cyclic organic carbonates. Organic Chemistry Frontiers, 2021, 8, 4520-4526.	2.3	5
99	Access to Biorenewable and CO ₂ -Based Polycarbonates from Exovinylene Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 1714-1728.	3.2	22
100	Mg(<scp>ii</scp>) heterodinuclear catalysts delivering carbon dioxide derived multi-block polymers. Chemical Science, 2021, 12, 12315-12325.	3.7	27
101	Pinwheel-Shaped Tetranuclear Organoboron Catalysts for Perfectly Alternating Copolymerization of CO ₂ and Epichlorohydrin. Journal of the American Chemical Society, 2021, 143, 3455-3465.	6.6	105
102	Functional Polyethylenes by Organometallic-Mediated Radical Polymerization of Biobased Carbonates. ACS Macro Letters, 2021, 10, 313-320.	2.3	14
103	New Polymers Made from Carbon Dioxide and Alkenes. Bulletin of the Chemical Society of Japan, 2021, 94, 984-988.	2.0	18
104	Organocatalytic and Halide-Free Synthesis of Glycerol Carbonate under Continuous Flow. ACS Sustainable Chemistry and Engineering, 2021, 9, 4391-4397.	3.2	29
105	Efficient Synthesis of Cyclic Carbonates from Unsaturated Acids and Carbon Dioxide and their Application in the Synthesis of Biobased Polyurethanes. ChemPlusChem, 2021, 86, 460-468.	1.3	11
106	Carbon dioxide copolymers: Emerging sustainable materials for versatile applications. SusMat, 2021, 1, 88-104.	7.8	44
107	CO ₂ -Involved and Isocyanide-Based Three-Component Polymerization toward Functional Heterocyclic Polymers with Self-Assembly and Sensing Properties. Macromolecules, 2021, 54, 4112-4119.	2.2	9
108	A Bespoke Computational Procedure to Incorporate CO ₂ as a Renewable Feedstock into Polycarbonates. ACS Applied Polymer Materials, 2021, 3, 2722-2731.	2.0	4

#	Article	IF	CITATIONS
109	Heterotrimetallic Carbon Dioxide Copolymerization and Switchable Catalysts: Sodium is the Key to High Activity and Unusual Selectivity. Angewandte Chemie, 2021, 133, 13484-13491.	1.6	9
110	Expanded Ring NHC Silver Carboxylate Complexes as Efficient and Reusable Catalysts for the Carboxylative Cyclization of Unsubstituted Propargylic Derivatives. ChemSusChem, 2021, 14, 2367-2374.	3.6	19
111	Nickelâ€Catalyzed Asymmetric Reductive Carboâ€Carboxylation of Alkenes with CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 14068-14075.	7.2	77
112	Heterotrimetallic Carbon Dioxide Copolymerization and Switchable Catalysts: Sodium is the Key to High Activity and Unusual Selectivity. Angewandte Chemie - International Edition, 2021, 60, 13372-13379.	7.2	49
113	Synthesis of <scp>CO₂</scp> â€based functional poly(carbonateâ€coâ€lactide). Journal of Polymer Science, 2021, 59, 1528-1539.	2.0	1
114	Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO ₂ and Cyclohexene Oxide. Organometallics, 2021, 40, 1503-1514.	1.1	11
115	Nickel atalyzed Asymmetric Reductive Carbo arboxylation of Alkenes with CO ₂ . Angewandte Chemie, 2021, 133, 14187-14194.	1.6	11
116	Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2. Science China Chemistry, 2021, 64, 1164-1169.	4.2	20
117	Chemoselective Polymerizations. Progress in Polymer Science, 2021, 117, 101397.	11.8	16
118	Visible-light photoredox-catalyzed umpolung carboxylation of carbonyl compounds with CO2. Nature Communications, 2021, 12, 3306.	5.8	37
119	Chemical Synthesis of CO ₂ -Based Polymers with Enhanced Thermal Stability and Unexpected Recyclability from Biosourced Monomers. ACS Catalysis, 2021, 11, 8349-8357.	5.5	50
120	Net Zero and Catalysis: How Neutrons Can Help. Physchem, 2021, 1, 95-120.	0.5	3
121	Bibliographic mapping of post-consumer plastic waste based on hierarchical circular principles across the system perspective. Heliyon, 2021, 7, e07154.	1.4	9
122	Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. Journal of the American Chemical Society, 2021, 143, 10021-10040.	6.6	124
123	Improving the thermal stability of poly(cyclohexylene carbonate) by in situ end-capping. Polymer Bulletin, 2022, 79, 6073-6086.	1.7	3
124	Organocatalytic Cascade Synthesis of Peroxy‣ubstituted Cyclic Carbonates from CO ₂ ‣ourced <i>α</i> â€Alkylidene Cyclic Carbonates and Hydroperoxides. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
125	All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO ₂ with Epoxides. Macromolecules, 2021, 54, 6144-6152.	2.2	21
126	Alternating copolymerization of CO2 and cyclohexene oxide initiated by rare-earth metal complexes stabilized by o-phenylenediamine-bridged tris(phenolate) ligand. Journal of Rare Earths, 2021, , .	2.5	8

#	Article	IF	CITATIONS
127	Poly(hydroxyurethane) Adhesives and Coatings: State-of-the-Art and Future Directions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9541-9562.	3.2	60
128	Self-foaming polymers: Opportunities for the next generation of personal protective equipment. Materials Science and Engineering Reports, 2021, 145, 100628.	14.8	42
129	Photocatalytic Synthesis of Substituted Cyclic Carbonate Monomers for Ringâ€Opening Polymerization. Advanced Synthesis and Catalysis, 2021, 363, 4033-4040.	2.1	9
130	Theoretical investigation on conversion of CO2 with epoxides to cyclic carbonates by bifunctional metal-salen complexes bearing ionic liquid substsituents. Molecular Catalysis, 2021, 511, 111733.	1.0	5
131	Nickel Nanoparticles Encapsulated in SSZ-13 Cage for Highly Efficient CO ₂ Hydrogenation. Energy & Fuels, 2021, 35, 13240-13248.	2.5	19
132	Terpolymerization of CO2 with Epoxides and Cyclic Organic Anhydrides or Cyclic Esters. Catalysts, 2021, 11, 961.	1.6	12
133	Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate. Nano Research, 2023, 16, 4515-4523.	5.8	8
134	Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. Journal of Industrial and Engineering Chemistry, 2021, 104, 43-60.	2.9	25
135	Organocatalytic Synthesis of Substituted Vinylene Carbonates. Advanced Synthesis and Catalysis, 2021, 363, 5129-5137.	2.1	5
136	Bioinspired synthesis and green ecological applications of reduced graphene oxide based ternary nanocomposites. Sustainable Materials and Technologies, 2021, 29, e00315.	1.7	5
137	Construction of Selfâ€Reporting Biodegradable CO 2 â€Based Polycarbonates for the Visualization of Thermoresponsive Behavior with Aggregationâ€Induced Emission Technology â€. Chinese Journal of Chemistry, 2021, 39, 3037.	2.6	4
138	The Food–Materials Nexus: Next Generation Bioplastics and Advanced Materials from Agriâ€Food Residues. Advanced Materials, 2021, 33, e2102520.	11.1	50
139	CO ₂ Ionized Poly(vinyl alcohol) Electrolyte for CO ₂ â€Tolerant Znâ€Air Batteries. Advanced Energy Materials, 2021, 11, 2102047.	10.2	32
140	The transformation of plastics production from net positive greenhouse gas emissions to net negative: An environmental sustainability assessment of CO2-based polypropylene. Journal of CO2 Utilization, 2021, 52, 101672.	3.3	11
141	Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates. Chemical Engineering Journal, 2021, 422, 129930.	6.6	51
142	Al(III) phthalocyanine catalysts for CO2 addition to epoxides: Fine-tunable selectivity for cyclic carbonates versus polycarbonates. Journal of Organometallic Chemistry, 2021, 950, 121979.	0.8	4
143	Screening of CO2 utilization routes from process simulation: Design, optimization, environmental and techno-economic analysis. Journal of CO2 Utilization, 2021, 53, 101722.	3.3	22
144	Ionic liquid [DBUH][BO2]: an excellent catalyst for chemical fixation of CO ₂ under mild conditions. New Journal of Chemistry, 2021, 45, 4611-4616.	1.4	6

#	Article	IF	CITATIONS
145	Catalytic Technologies for the Conversion and Reuse of CO2. , 2021, , 1-50.		0
146	Carbon dioxide-promoted palladium-catalyzed dehydration of primary allylic alcohols: access to substituted 1,3-dienes. Organic Chemistry Frontiers, 2021, 8, 941-946.	2.3	11
147	Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates. Green Chemistry, 2021, 23, 1077-1113.	4.6	150
148	Propylene Oxide Cycloaddition with Carbon Dioxide and Homopolymerization: Application of Commercial Beta Zeolites. Industrial & Engineering Chemistry Research, 2021, 60, 1210-1218.	1.8	13
149	Direct synthesis of polycarbonate diols from atmospheric flow CO ₂ and diols without using dehydrating agents. Green Chemistry, 2021, 23, 5786-5796.	4.6	21
150	A Lewis Pair as Organocatalyst for One-Pot Synthesis of Block Copolymers from a Mixture of Epoxide, Anhydride, and CO ₂ . Macromolecules, 2021, 54, 763-772.	2.2	61
151	A Strained Ion Pair Permits Carbon Dioxide Fixation at Atmospheric Pressure by C–H H-Bonding Organocatalysis. Journal of Organic Chemistry, 2021, 86, 3422-3432.	1.7	22
152	Nanoparticles of aromatic biopolymers catalyze CO ₂ cycloaddition to epoxides under atmospheric conditions. Sustainable Energy and Fuels, 2021, 5, 5431-5444.	2.5	19
153	A Novel [OSSO]â€ T ype Chromium(III) Complex as a Versatile Catalyst for Copolymerization of Carbon Dioxide with Epoxides. Chemistry - A European Journal, 2020, 26, 5347-5353.	1.7	16
154	A non-metal Acen-H catalyst for the chemical fixation of CO2 into cyclic carbonates under solvent- and halide-free mild reaction conditions. Applied Catalysis A: General, 2020, 601, 117646.	2.2	26
155	Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorganic Chemistry, 2020, 59, 8412-8423.	1.9	21
156	Ti(IV)–Tris(phenolate) Catalyst Systems for the Ring-Opening Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Organometallics, 2020, 39, 1619-1627.	1.1	19
157	Numerical study on the reaction mechanism of CO2 hydrogenation in atmospheric-pressure dielectric barrier discharge. Journal of Applied Physics, 2020, 128, .	1.1	6
158	Emerging Ionic Polymers for CO. Australian Journal of Chemistry, 2021, 74, 767-777.	0.5	11
159	One-Pot, Room-Temperature Conversion of CO ₂ into Porous Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 16750-16757.	6.6	14
160	Degradable Polymer Structures from Carbon Dioxide and Butadiene. ACS Macro Letters, 2021, 10, 1254-1259.	2.3	20
161	Plasma assisted CO2 splitting to carbon and oxygen: A concept review analysis. Journal of CO2 Utilization, 2021, 54, 101775.	3.3	13
162	An unusual amphiphilic brush polymer containing oligo(carbon dioxide) side chains. Materials Today Communications, 2021, 29, 102867.	0.9	0

#	Article	IF	CITATIONS
163	Plastics and Sustainability. , 2021, , 489-504.		1
164	Accessing Divergent Main-Chain-Functionalized Polyethylenes via Copolymerization of Ethylene with a CO ₂ /Butadiene-Derived Lactone. Journal of the American Chemical Society, 2021, 143, 17953-17957.	6.6	23
165	Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO2 and Epoxides: From High Pressure and Temperature to Ambient Conditions. Angewandte Chemie, 0, , .	1.6	6
166	Synthesis of Diverse Polycarbonates by Organocatalytic Copolymerization of CO ₂ and Epoxides: From High Pressure and Temperature to Ambient Conditions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
167	Light-induced synthesis of unsymmetrical organic carbonates from alcohols, methanol and CO2 under ambient conditions. Chemical Communications, 2021, 57, 12800-12803.	2.2	1
168	Properties of poly(methacrylate)s bearing hydroxyurethane structures synthesized by various amines with poly(methacrylate)s containing five-membered cyclic carbonates obtained from poly(glycidyl) Tj ETQq1 1 0.	.78 £3 14 rg	gBħ/Overlo <mark>ck</mark>
169	State-Of-The-Art Overview of CO2 Conversions. Advances in Science, Technology and Innovation, 2022, , 335-353.	0.2	1
170	Facile Access to Functionalized Poly(thioether)s via Anionic Ring-Opening Decarboxylative Polymerization of COS-Sourced α-Alkylidene Cyclic Thiocarbonates. Macromolecules, 2021, 54, 10395-10404.	2.2	5
171	Facile synthesis, structure and properties of CO ₂ -sourced poly(thioether- <i>co</i> -carbonate)s containing acetyl pendants <i>via</i> thio-ene click polymerization. Polymer Chemistry, 2022, 13, 201-208.	1.9	4
172	Syntheses, properties, and applications of CO2-based functional polymers. Cell Reports Physical Science, 2022, 3, 100719.	2.8	39
173	Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules, 2022, 55, 608-614.	2.2	28
174	A self-healing and recyclable poly(urea-imine) thermoset synthesized from CO ₂ . Green Chemistry, 2022, 24, 1561-1569.	4.6	21
175	Anionic ringâ€opening polymerization behavior of <i>trans</i> â€cyclohexene carbonate using metal <scp><i>tert</i>â€butoxides: Construction</scp> of living anionic ringâ€opening polymerization by lithium <i>tert</i> â€butoxide. Journal of Polymer Science, 2022, 60, 1416-1421.	2.0	4
176	Enhancing the Catalytic Performance of Group I, II Metal Halides in the Cycloaddition of CO ₂ to Epoxides under Atmospheric Conditions by Cooperation with Homogeneous and Heterogeneous Highly Nucleophilic Aminopyridines: Experimental and Theoretical Study. Journal of Organic Chemistry, 2022, 87, 2873-2886.	1.7	25
177	Polyamine-functionalized imidazolyl poly(ionic liquid)s for the efficient conversion of CO ₂ into cyclic carbonates. Catalysis Science and Technology, 2022, 12, 273-281.	2.1	17
178	A Zn(<scp>ii</scp>)-functionalized COF as a recyclable catalyst for the sustainable synthesis of cyclic carbonates and cyclic carbamates from atmospheric CO ₂ . Organic and Biomolecular Chemistry, 2022, 20, 1707-1722.	1.5	18
179	Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7, 117-137.	23.3	550
181	Spontaneous self-healing ionogels for efficient and reliable carbon dioxide separation. Journal of Materials Chemistry A, 2022, 10, 4695-4702.	5.2	12

		CITATION REPORT		
#	Article	IF	CITATIONS	
182	Valuing CO ₂ in the development of polymer materials. , 2022, 77, 1.		4	
183	Trends in dark biohydrogen production strategy and linkages with transition towards low carbon economy: An outlook, cost-effectiveness, bottlenecks and future scope. International Journal of Hydrogen Energy, 2022, 47, 15309-15332.	3.8	26	
184	Divergent Aminolysis Approach for Constructing Recyclable Self-Blown Nonisocyanate Polyurethane Foams. ACS Macro Letters, 2022, 11, 236-242.	2.3	33	
185	Oneâ€Pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24	
186	Oneâ€Pot Precision Synthesis of AB, ABA and ABC Block Copolymers via Switchable Catalysis. Angewandte Chemie, 0, , .	1.6	2	
187	Electrochemical Ring-Opening Dicarboxylation of Strained Carbon–Carbon Single Bonds with CO ₂ : Facile Synthesis of Diacids and Derivatization into Polyesters. Journal of the American Chemical Society, 2022, 144, 2062-2068.	6.6	75	
188	Hybrid Nonisocyanate Polyurethanes (Hâ€NIPUs): A Pathway towards a Broad Range of Novel Materials. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	17	
189	Recent Advances in Aluminum Compounds for Catalysis. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	24	
190	2D NMR study on chemical structure of the co-oligomers from carbon dioxide/propylene oxide/diol synthesized by a metal-free catalyst. Polymer Testing, 2022, 107, 107485.	2.3	5	
191	Cu(II)/Triazine-Based Dendrimer as an Efficacious Recoverable Nano-catalyst for CO2 Fixation Under Solvent-Free Conditions. Catalysis Letters, 2022, 152, 3679-3690.	1.4	7	
192	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie, 2022, 134, .	1.6	11	
193	Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angewandte Chemie - International Edition, 2022, 61, .	7.2	146	
194	Surface science approach to the heterogeneous cycloaddition of CO2 to epoxides catalyzed by site-isolated metal complexes and single atoms: a review. Green Chemical Engineering, 2022, 3, 210-227.	3.3	26	
195	CO2-sourced anti-freezing hydrogel electrolyte for sustainable Zn-ion batteries. Chemical Engineering Journal, 2022, 435, 135051.	6.6	30	
196	Facile Aluminum Porphyrin Complexes Enable Flexible Terminal Epoxides to Boost Properties of CO ₂ â€Polycarbonate. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	6	
197	Development of Heterometallic Neodymium-Zinc Complexes for Copolymerization of CO ₂ and Cyclohexene Oxide (CHO): A Structure-Activity Relationship Study. SSRN Electronic Journal, 0, , .	0.4	0	
198	Explorations into the sustainable synthesis of cyclic and polymeric carbonates and thiocarbonates from eugenol-derived monomers and their reactions with CO ₂ , COS, or CS ₂ . Green Chemistry, 2022, 24, 2535-2541.	4.6	11	
199	Aldehyde end-capped CO ₂ -based polycarbonates: a green synthetic platform for site-specific functionalization. Polymer Chemistry, 2022, 13, 1731-1738.	1.9	8	

#	Article	IF	CITATIONS
200	Different Types of Pre-Treatments for Renewable Bioresources. Green Energy and Technology, 2022, , 45-78.	0.4	0
201	Porous organic polymer (POP) nanosheets: an efficient photo-catalyst for visible-light assisted CO ₂ reduction. Materials Advances, 2022, 3, 3165-3173.	2.6	17
202	Cascade Transformation of Carbon Dioxide and Alkyne-1, <i>n</i> -diols into Densely Substituted Cyclic Carbonates. ACS Catalysis, 2022, 12, 2854-2860.	5.5	7
203	Simple and Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using Carbon Dioxide. ACS Macro Letters, 2022, 11, 368-375.	2.3	12
204	Biomass-Based Polyureas Derived from Rigid Furfurylamine and Isomannide. ACS Applied Polymer Materials, 2022, 4, 2197-2204.	2.0	5
205	CO2—A Crisis or Novel Functionalization Opportunity?. Energies, 2022, 15, 1617.	1.6	6
206	Halide-free pyridinium saccharinate binary organocatalyst for the cycloaddition of CO2 into epoxides. Chemical Engineering Journal, 2022, 444, 135478.	6.6	22
207	Carbon dioxide fixation into cyclic carbonates at room temperature catalyzed by heteroscorpionate aluminum complexes. Green Chemical Engineering, 2022, 3, 280-287.	3.3	4
208	Direct Synthesis of Vinylene Carbonates from Aromatic Aldehydes**. European Journal of Organic Chemistry, 2022, 2022, .	1.2	3
209	Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catalysis Today, 2023, 410, 19-35.	2.2	7
210	Exovinylene Cyclic Carbonates: Multifaceted CO ₂ â€Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
211	Supported PdZn nanoparticles for selective CO2 conversion, through the grafting of a heterobimetallic complex on CeZrOx. Applied Catalysis A: General, 2022, 635, 118568.	2.2	4
212	Bimetallic zeolitic imidazolate framework derived magnetic catalyst for high-efficiency CO2 chemical fixation. Chemical Engineering Science, 2022, 252, 117530.	1.9	12
213	Exovinylene Cyclic Carbonates: Multifaceted CO ₂ â€Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie, 2022, 134, .	1.6	4
214	Mechanism and Design Principles for Controlling Stereoselectivity in the Copolymerization of CO ₂ /Cyclohexene Oxide by Indium(III) Phosphasalen Catalysts. ACS Catalysis, 2021, 11, 15244-15251.	5.5	7
215	Environmentally benign metal catalyst for the ring-opening copolymerization of epoxide and CO2: state-of-the-art, opportunities, and challenges. Green Chemical Engineering, 2022, 3, 111-124.	3.3	14
216	Anthracene-triazole-dicarboxylate-Based Zn(II) 2D Metal Organic Frameworks for Efficient Catalytic Carbon Dioxide Fixation into Cyclic Carbonates under Solvent-Free Condition and Theoretical Study for the Reaction Mechanism. Industrial & Engineering Chemistry Research, 2022, 61, 175-186.	1.8	18
217	Indium-Catalyzed CO ₂ /Epoxide Copolymerization: Enhancing Reactivity with a Hemilabile Phosphine Donor. Inorganic Chemistry, 2021, 60, 19304-19314.	1.9	9

#	Article	IF	CITATIONS
218	Self-Healable and Recyclable Biomass-Derived Polyurethane Networks through Carbon Dioxide Immobilization. Polymers, 2021, 13, 4381.	2.0	4
219	Design of Bifunctional Zinc(II)–Organic Framework for Efficient Coupling of CO ₂ with Terminal/Internal Epoxides under Mild Conditions. Crystal Growth and Design, 2022, 22, 598-607.	1.4	28
220	A Novel Catalytic Route to Polymerizable Bicyclic Cyclic Carbonate Monomers from Carbon Dioxide. Angewandte Chemie, 2022, 134, .	1.6	2
221	A Novel Catalytic Route to Polymerizable Bicyclic Cyclic Carbonate Monomers from Carbon Dioxide. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
222	Incorporation of CO ₂ -Derived Bicyclic Lactone into Conventional Vinyl Polymers. Macromolecules, 2022, 55, 3311-3316.	2.2	13
223	Facile construction of functional poly(monothiocarbonate) copolymers under mild operating conditions. Polymer Chemistry, 2022, 13, 3076-3090.	1.9	7
224	CO ₂ fixation into cyclic carbonates catalyzed by single-site aprotic organocatalysts. Reaction Chemistry and Engineering, 2022, 7, 1807-1817.	1.9	7
225	Chemical recycling to monomers: Industrial <scp>Bisphenolâ€Aâ€Polycarbonates</scp> to novel aliphatic polycarbonate materials. Journal of Polymer Science, 2022, 60, 3256-3268.	2.0	24
226	Efficient cycloaddition of CO2 and epoxides to cyclic carbonates using salen-based covalent organic framework as a heterogeneous catalyst. Journal of Porous Materials, 2022, 29, 1253-1263.	1.3	7
227	Dynamic Metal–Iodide Bonds in a Tetracoordinated Cadmium-Based Metal–Organic Framework Boosting Efficient CO ₂ Cycloaddition under Solvent- and Cocatalyst-Free Conditions. Inorganic Chemistry, 2022, 61, 7484-7496.	1.9	11
228	Pyridinylidenaminophosphines as Versatile Organocatalysts for CO2 Transformations into Valueâ€Added Chemicals. Asian Journal of Organic Chemistry, 0, , .	1.3	0
229	Water as a monomer: synthesis of an aliphatic polyethersulfone from divinyl sulfone and water. Chemical Science, 2022, 13, 6920-6928.	3.7	8
230	Next steps for solvent-based CO ₂ capture; integration of capture, conversion, and mineralisation. Chemical Science, 2022, 13, 6445-6456.	3.7	27
231	Advances in the Synthesis of Copolymers from Carbon Dioxide, Dienes, and Olefins. Accounts of Chemical Research, 2022, 55, 1524-1532.	7.6	23
232	Controllable synthesis of <scp> CO ₂ </scp> â€based poly(carbonateâ€ether)diols catalyzed by <scp>Salen–cobalt</scp> complex. Journal of Polymer Science, 0, , .	2.0	1
233	Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. Chinese Journal of Catalysis, 2022, 43, 1598-1617.	6.9	35
234	The Terpenes Limonene, Pinene(s), and Related Compounds: Advances in Their Utilization for Sustainable Polymers and Materials. Advances in Polymer Science, 2022, , 35-64.	0.4	2
235	Catalytic Technologies for the Conversion and Reuse of CO2. , 2022, , 1803-1852.		1

#	Article	IF	Citations
236	Closing the Carbon Loop in the Circular Plastics Economy. Macromolecular Rapid Communications, 2022, 43, .	2.0	21
237	Construction of Hierarchical Porous Polycyanurate Networks with Cobaltoporphyrin for CO ₂ Adsorption and Efficient Conversion to Cyclic Di- and Tri-Carbonates. Macromolecules, 2022, 55, 4832-4840.	2.2	5
238	Unifying Step-Growth Polymerization and On-Demand Cascade Ring-Closure Depolymerization via Polymer Skeletal Editing. Macromolecules, 2022, 55, 4637-4646.	2.2	4
239	MOF-Based Chemical Fixation of Carbon Dioxide into Value-Added Fine Chemicals. ACS Symposium Series, 0, , 239-267.	0.5	0
240	Thioanhydride/isothiocyanate/epoxide ring-opening terpolymerisation: sequence selective enchainment of monomer mixtures and switchable catalysis. Polymer Chemistry, 2022, 13, 3981-3985.	1.9	8
241	Sustainable polymers. Nature Reviews Methods Primers, 2022, 2, .	11.8	78
242	Simple Halogenâ€Free, Biobased Organic Salts Convert Glycidol to Glycerol Carbonate under Atmospheric CO ₂ Pressure. ChemSusChem, 2022, 15, .	3.6	12
243	Metalâ€free terpolymerization of propylene oxide, carbon dioxide, and carbonyl sulfide: A facile route to sulfurâ€containing polycarbonates with gradient sequences. Journal of Polymer Science, 2022, 60, 3414-3419.	2.0	5
244	Drug delivery systems based on renewable polymers: A conceptual short review. Polymers From Renewable Resources, 2022, 13, 44-54.	0.8	5
245	Materials from waste plastics for CO ₂ capture and utilisation. Green Chemistry, 2022, 24, 6086-6099.	4.6	27
246	Electronic structure analysis of electrochemical CO ₂ reduction by iron-porphyrins reveals basic requirements for design of catalysts bearing non-innocent ligands. Chemical Science, 2022, 13, 10029-10047.	3.7	15
247	Photocatalytic carboxylation with CO2. Advances in Catalysis, 2022, , .	0.1	0
248	Syntheses of Heterometallic Neodymium–Zinc Complexes and Their Performance in the Copolymerization of CO ₂ and Cyclohexene Oxide. Inorganic Chemistry, 2022, 61, 10373-10382.	1.9	7
249	Tunable and recyclable polyesters from CO2 and butadiene. Nature Chemistry, 2022, 14, 877-883.	6.6	38
250	Synthesis of Bifunctional Phosphonium Salts Bearing Perfluorinated Side Chains and Their Application in the Synthesis of Cyclic Carbonates from Epoxides and CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	1.3	3
251	A Stereoselective Route to R-(+)-Limonene-Based Non-isocyanate Poly(hydroxyurethanes). Journal of Polymers and the Environment, 2022, 30, 4452-4462.	2.4	3
252	Strategic Design of Mg-Centered Porphyrin Metal–Organic Framework for Efficient Visible Light-Promoted Fixation of CO ₂ under Ambient Conditions: Combined Experimental and Theoretical Investigation. ACS Applied Materials & Interfaces, 2022, 14, 33285-33296.	4.0	39
253	Exceptional energy absorption characteristics and compressive resilience of functional carbon foams scalably and sustainably derived from additively manufactured kraft paper. Additive Manufacturing, 2022, 58, 102992.	1.7	1

#	Article	IF	Citations
254	Nitrogen-doped mesoporous carbon single crystal-based Ag nanoparticles for boosting mild CO2 conversion with terminal alkynes. Journal of Colloid and Interface Science, 2022, 627, 81-89.	5.0	2
255	Microscopic principles of chemical engineering after fossil fuels. , 2022, 1, 222-229.		1
256	The Divergent Reactivity of Lactones Derived from Butadiene and Carbon Dioxide in Macromolecular Synthesis. Macromolecular Rapid Communications, 2023, 44, .	2.0	6
257	Direct and Selective Electrocarboxylation of Styrene Oxides with CO ₂ for Accessing <i>β</i> â€Hydroxy Acids. Angewandte Chemie, 2022, 134, .	1.6	4
258	New Dinuclear Chromium Complexes Supported by Thioether-Triphenolate Ligands as Active Catalysts for the Cycloaddition of Co2 to Epoxides. SSRN Electronic Journal, 0, , .	0.4	0
259	Organic base-mediated fixation of CO2 into value-added chemicals. , 2022, , 93-127.		0
260	3-Ethyl-6-vinyltetrahydro-2 <i>H</i> -pyran-2-one (EVP): a versatile CO ₂ -derived lactone platform for polymer synthesis. Chemical Communications, 2022, 58, 9586-9593.	2.2	7
261	A practical concept for catalytic carbonylations using carbon dioxide. Nature Communications, 2022, 13, .	5.8	24
262	Direct and Selective Electrocarboxylation of Styrene Oxides with CO ₂ for Accessing <i>β</i> â€Hydroxy Acids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	32
263	Toward Sustainable Photoâ€/Electrocatalytic Carboxylation of Organic Substrates with CO ₂ . Asian Journal of Organic Chemistry, 2022, 11, .	1.3	12
264	A Review on CO ₂ â€Based Polyureas and Polyurea Hybrids. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	4
265	Sequence-Controlled Polyhydroxyurethanes with Tunable Regioregularity Obtained from Sugar-Based Vicinal Bis-cyclic Carbonates. Macromolecules, 2022, 55, 7249-7264.	2.2	8
266	CO2 capture and conversion to di-functional cyclic carbonates in metalloporphyrin-based porous polyaminals with large surface area. Microporous and Mesoporous Materials, 2022, 343, 112119.	2.2	4
267	Bis-benzimidazolium salts as bifunctional organocatalysts for the cycloaddition of CO2 with epoxides. Molecular Catalysis, 2022, 530, 112632.	1.0	7
268	Direct CO ₂ Transformation to Aliphatic Polycarbonates. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	13
269	The tandem reaction of propargylamine/propargyl alcohol with CO2: Reaction mechanism, catalyst activity and product diversity. Journal of CO2 Utilization, 2022, 65, 102192.	3.3	4
270	Understanding the effect of the divalent cations (Ni, Cu, and Zn) exchanged FAU zeolite on the kinetic of CO2 cycloaddition with ethylene oxide: A DFT study. Journal of Molecular Graphics and Modelling, 2022, 117, 108321.	1.3	4
271	Untangling the effect of solids content on thermal-alkali pre-treatment and anaerobic digestion of sludge. Science of the Total Environment, 2023, 855, 158720.	3.9	6

#	Article	IF	CITATIONS
272	Plant oil-based non-isocyanate waterborne poly(hydroxyl urethane)s. Chemical Engineering Journal, 2023, 452, 138965.	6.6	13
273	Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts. Results in Chemistry, 2022, 4, 100542.	0.9	4
274	Recent Advances in Monomer Design for Recyclable Polymers. Acta Chimica Sinica, 2022, 80, 1165.	0.5	10
275	Intramolecular Ternary Active Sites of Imidazole Ionic-Liquid Polymer Immobilized on Magnetic Nanoparticles for Synergistic Catalysis of Co2 Cycloaddition. SSRN Electronic Journal, 0, , .	0.4	0
276	Catalytic synthesis of bio-sourced organic carbonates and sustainable hybrid materials from CO2. Advances in Catalysis, 2022, , 189-236.	0.1	0
277	Perfluoroaryl Zinc Catalysts Active in Cyclohexene Oxide Homopolymerization and Alternating Copolymerization with Carbon Dioxide. Catalysts, 2022, 12, 970.	1.6	2
278	Plastics from Carbon Dioxide: Synthesis, Properties, and End-of-Life Considerations for Epoxide Copolymers. ACS Symposium Series, 0, , 469-506.	0.5	0
279	A Topologyâ€Ðefined Polyester Elastomer from CO2 and 1,3â€Butadiene: A Oneâ€Potâ€Oneâ€Step "Scrambli Polymerizations―Strategy. Angewandte Chemie, 0, , .	ng 1.6	1
280	A Topologyâ€Defined Polyester Elastomer from CO ₂ and 1,3â€Butadiene: A Oneâ€Potâ€Oneâ€Step "Scrambling Polymerizations―Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
281	Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2. Nature Catalysis, 2022, 5, 832-838.	16.1	71
282	Highly Selective Preparation and Depolymerization of Chemically Recyclable Poly(cyclopentene) Tj ETQq0 0 0 rgBT	/Overlock 1.6	₹ <u>1</u> 0 Tf 50 3
283	Thermal and UV Curable Formulations of Poly(propylene glycol)–Poly(hydroxyurethane) Elastomers toward Nozzle-Based 3D Photoprinting. Biomacromolecules, 2023, 24, 4375-4384.	2.6	5
284	Highly Selective Preparation and Depolymerization of Chemically Recyclable Poly(cyclopentene) Tj ETQq0 0 0 rgBT	· [Overlock 7.2	10 Tf 50 2
285	Surface activated zinc-glutarate for the copolymerization of CO ₂ and epoxides. Dalton Transactions, 2022, 51, 16620-16627.	1.6	5
286	Challenges and recent advancements in the transformation of CO ₂ into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews, 2022, 51, 9371-9423.	18.7	38
287	A sustainability strategy: Convert methanol into valuable chemicals via multi-enzyme cascades. Chem Catalysis, 2022, 2, 2411-2413.	2.9	1
288	Selective CO ₂ /CH ₄ Separation by Fixed-Bed Technology Using Encapsulated Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2022, 10, 13917-13926.	3.2	5
289	Chain Transfer Approach for Terminal Functionalization of Alternating Copolymerization of CO ₂ and Epoxide by Using Active Methylene Compounds as Chain Transfer Agents. Macromolecules, 2022, 55, 9066-9073.	2.2	3

#	Article	IF	CITATIONS
290	Waterâ€Induced Selfâ€Blown Nonâ€Isocyanate Polyurethane Foams. Angewandte Chemie - International Edition, 2022, 61, .	7.2	28
291	Waterâ€Induced Selfâ€Blown Nonâ€Isocyanate Polyurethane Foams. Angewandte Chemie, 2022, 134, .	1.6	2
292	New dinuclear chromium complexes supported by thioether-triphenolate ligands as active catalysts for the cycloaddition of CO2 to epoxides. Journal of CO2 Utilization, 2022, 66, 102276.	3.3	4
293	Functional regioregular (poly)urethanes from soft nucleophiles and cyclic iminocarbonates. Polymer Chemistry, 2022, 13, 6599-6605.	1.9	1
294	Triazole Appended Metal–Organic Framework for CO2 Fixation as Cyclic Carbonates Under Solvent-Free Ambient Conditions. Catalysis Letters, 2023, 153, 2883-2891.	1.4	2
295	Advancements and Challenges in Reductive Conversion of Carbon Dioxide via Thermo-/Photocatalysis. Journal of Organic Chemistry, 2023, 88, 4942-4964.	1.7	16
296	Rational design of AIE-active biodegradable polycarbonates for high-performance WLED and selective detection of nitroaromatic explosives. Chinese Chemical Letters, 2023, 34, 108008.	4.8	1
297	Photoredox-catalyzed coupling of aryl sulfonium salts with CO ₂ and amines to access <i>O</i> -aryl carbamates. Chemical Communications, 2023, 59, 764-767.	2.2	6
298	Mononuclear Zn(<scp>ii</scp>) compounds supported by iminophenolate proligands binding in the bidentate (N, O) and tridentate (N, O, S) coordination mode: synthesis, characterization and polymerization studies. New Journal of Chemistry, 2023, 47, 635-652.	1.4	2
299	Homogeneous CO2 Copolymerization and Coupling. RSC Green Chemistry, 2022, , 128-149.	0.0	0
300	Cooperativity in Shape-Persistent Bis-(Zn-salphen) Catalysts for Efficient Cyclic Carbonate Synthesis under Mild Conditions. Inorganic Chemistry, 2022, 61, 19543-19551.	1.9	2
301	Mechanically Robust and Chemically Recyclable Polyhydroxyurethanes from CO ₂ -Derived Six-Membered Cyclic Carbonates. ACS Applied Materials & Interfaces, 2023, 15, 2246-2255.	4.0	11
302	Mechanism Insights into the Iridium(III)- and B(C ₆ F ₅) ₃ -Catalyzed Reduction of CO ₂ to the Formaldehyde Level with Tertiary Silanes. Inorganic Chemistry, 2022, 61, 20216-20221.	1.9	6
303	Development of CO ₂ â€Philic Blended Membranes Using PIM–PI and PIM–PEG/PPG. Macromolecular Materials and Engineering, 2023, 308, .	1.7	2
304	Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks. Applied Surface Science, 2023, 614, 156250.	3.1	7
305	Synthesis of Heterometallic Rare Earth(<scp>III</scp>)–Cobalt(<scp>II</scp>) Complexes and Their Application in Alternating Copolymerization of Cyclohexene Oxide and Carbon Dioxide. Chinese Journal of Chemistry, 2023, 41, 805-813.	2.6	3
306	Improved Characterization of Polyoxazolidinones by Incorporating Solubilizing Side Chains. Macromolecules, 2022, 55, 11006-11012.	2.2	4
307	Cycloaddition of CO ₂ to Epichlorohydrin over Pyridine, Vinylpyridine, and Poly(vinylpyridine): The Influence of Steric Crowding on the Reaction Mechanism. Journal of Physical Chemistry C, 2023, 127, 1441-1454.	1.5	2

#	Article	IF	CITATIONS
308	Recyclable, Fire-Resistant, Superstrong, and Reversible Ionic Polyurea-Based Adhesives. Chemistry of Materials, 2023, 35, 1218-1228.	3.2	15
309	Synthesis and characterization of siloxane functionalized CO2-based polycarbonate. Polymer, 2023, 266, 125623.	1.8	3
310	CO ₂ Fixation by Dimeric Tb(III) Complexes: Synthesis, Structure, and Magnetism. Crystal Growth and Design, 0, , .	1.4	0
311	Advances in the Synthesis of Chemically Recyclable Polymers. Chemistry - an Asian Journal, 2023, 18, .	1.7	8
312	Epoxy-free synthesis of aromatic dicyclocarbonates and the related strong epoxy hybrid non-isocyanate polyurethanes. Materials Today Communications, 2023, 34, 105263.	0.9	4
313	Zr0.1/(Fe Ce) as highly efficient catalyst for direct synthesis of diethyl carbonate from ethanol with fermentation tail gas as CO2 raw material. Fuel Processing Technology, 2023, 242, 107632.	3.7	3
314	Pakistan toward Achieving Net-Zero Emissions: Policy and Roadmap. ACS Sustainable Chemistry and Engineering, 2023, 11, 368-380.	3.2	4
315	Spontaneous Reduction by One Electron on Water Microdroplets Facilitates Direct Carboxylation with CO ₂ . Journal of the American Chemical Society, 2023, 145, 2647-2652.	6.6	28
316	Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO ₂ to Epoxides. Journal of Organic Chemistry, 2023, 88, 4894-4924.	1.7	9
317	<scp>CO₂â€based</scp> amphiphilic block copolymers: Facile <scp>oneâ€step</scp> synthesis and aqueous <scp>selfâ€assembly</scp> . Journal of Polymer Science, 2023, 61, 777-786.	2.0	1
318	Insight into the Varying Reactivity of Different Catalysts for CO2 Cycloaddition into Styrene Oxide: An Experimental and DFT Study. International Journal of Molecular Sciences, 2023, 24, 2123.	1.8	1
319	The promise of N-heterocyclic carbenes to capture and valorize carbon dioxide , 2023, 2, 100018.		1
320	Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO ₂ . Angewandte Chemie - International Edition, 2023, 62, .	7.2	10
321	Carbamoyl manganese complexes for epoxidation of alkenes and cycloaddition of epoxides to carbon dioxide. Journal of Catalysis, 2023, 421, 45-54.	3.1	4
322	Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling. Progress in Materials Science, 2023, 135, 101103.	16.0	5
323	Reducing the carbon footprint of polyurethanes by chemical and biological depolymerization: Fact or fiction?. Current Opinion in Green and Sustainable Chemistry, 2023, 41, 100802.	3.2	8
324	Intramolecular synergistic catalysis of ternary active sites of imidazole lonic-liquid polymers immobilized on nanosized CoFe2O4@polystyrene composites for CO2 cycloaddition. Separation and Purification Technology, 2023, 315, 123758.	3.9	5
325	Ring-opening copolymerization of CO2 with epoxides catalyzed by binary catalysts containing half salen aluminum compounds and quaternary phosphonium salt. Molecular Catalysis, 2023, 540, 113053.	1.0	1

#	ARTICLE	IF	CITATIONS
326	Exploring the potential of nanosized oxides of zinc and tin as recyclable catalytic components for the synthesis of cyclic organic carbonates under atmospheric CO2 pressure. Chemical Engineering Research and Design, 2023, 191, 630-645.	2.7	7
327	I-LDH as a heterogeneous bifunctional catalyst for the conversion of CO2 into cyclic organic carbonates. Molecular Catalysis, 2023, 538, 112994.	1.0	1
328	Visible Lightâ€Induced Synthesis of 2â€Oxazolidinones through Oneâ€Pot Coupling of Benzylamines, Epoxides and CO ₂ . European Journal of Organic Chemistry, 2023, 26, .	1.2	0
329	Synthesis and characterization of original fluorinated bis-cyclic carbonates and xanthates from a fluorinated epoxide. Comptes Rendus Chimie, 2023, 26, 19-28.	0.2	0
330	The advent of recyclable CO ₂ -based polycarbonates. Polymer Chemistry, 2023, 14, 1164-1183.	1.9	6
331	Original Fluorinated Non-Isocyanate Polyhydroxyurethanes. Molecules, 2023, 28, 1795.	1.7	2
332	Construction and arm evolution of trifunctional phenolic initiator-mediated polycarbonate polyols produced by using a double metal cyanide catalyst. Polymer Chemistry, 2023, 14, 1263-1274.	1.9	6
333	One-pot terpolymerization of CHO, CO ₂ and <scp>l</scp> -lactide using chloride indium catalysts. Dalton Transactions, 2023, 52, 3482-3492.	1.6	3
334	[HDBU]Br@P-DD as Porous Organic Polymer-Supported Ionic Liquid Catalysts for Chemical Fixation of CO ₂ into Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2023, 11, 4248-4257.	3.2	9
335	Ionic Fe(<scp>iii</scp>)-porphyrin frameworks for the one-pot synthesis of cyclic carbonates from olefins and CO ₂ . Inorganic Chemistry Frontiers, 2023, 10, 2088-2099.	3.0	9
336	Current Challenges and Perspectives in CO ₂ -Based Polymers. Macromolecules, 2023, 56, 1759-1777.	2.2	15
337	Rational development of a unique family of renewable polymers. Frontiers of Materials Science, 2023, 17, .	1.1	1
338	Functional polymers from CO2 as feedstock. , 2023, , 129-171.		0
339	How to Open the Ring of a Diâ€eneâ€Substitutedâ€Î´â€Valerolactone: From Carbon Dioxide and 1,3â€Butadiene Functional Polyesters. ChemPlusChem, 2023, 88, .	to 1.3	4
340	Polyketones from Carbon Dioxide and Ethylene by Integrating Electrochemical and Organometallic Catalysis. ACS Catalysis, 2023, 13, 4053-4059.	5.5	6
341	Electrospun Environmentâ€Friendly Poly (L‣actic Acid)/CO ₂ â€Based Polyurea Nanofiber Film for Piezoelectric Sensor. Advanced Sustainable Systems, 2023, 7, .	2.7	6
342	Facile Access to CO ₂ â€Sourced Polythiocarbonate Dynamic Networks And Their Potential As Solidâ€State Electrolytes For Lithium Metal Batteries. ChemSusChem, 2023, 16, .	3.6	2
343	Simultaneous Activation of Carbon Dioxide and Epoxides to Produce Cyclic Carbonates by Crossâ€linked Epoxy Resin Organocatalysts. ChemCatChem, 0, , .	1.8	0

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
344	Electroreductive Dicarboxylation of Unactivated Skipped Dienes with CO2. Angewandte Chemie, 0, , .	1.6	0
345	Plastics to fertilizer: guiding principles for functionable and fertilizable fully bio-based polycarbonates. Polymer Chemistry, 2023, 14, 2469-2477.	1.9	3
346	Heteroditopic Chelating NHC Ligand-Supported Co ^{III} Complexes: Catalysts for the Reductive Functionalization of Carbon Dioxide under Ambient Conditions. Organometallics, 2023, 42, 1395-1403.	1.1	3
347	Visible-light-driven thio-carboxylation of alkynes with CO2: facile synthesis of thiochromones. Science China Chemistry, 2023, 66, 1457-1466.	4.2	4
348	Chromium Complexes Supported by Salen-Type Ligands for the Synthesis of Polyesters, Polycarbonates, and Their Copolymers through Chemoselective Catalysis. International Journal of Molecular Sciences, 2023, 24, 7642.	1.8	6
360	Supercritical CO ₂ as an Efficient Medium for Macromolecular Carbonate Synthesis through Ring-Opening Co- and Teroligomerization. ACS Sustainable Chemistry and Engineering, 2023, 11, 8193-8198.	3.2	7
365	Green and Sustainable Natural Derived Polysulfides for a Broad Range of Applications. Green Chemistry, 0, , .	4.6	0
392	Use of renewable feedstocks for chemical synthesis. , 2024, , 219-237.		0
415	One-pot multicomponent polymerization towards heterocyclic polymers: a mini review. RSC Advances, 2024, 14, 1757-1781.	1.7	0
423	Designing a circular carbon and plastics economy for a sustainable future. Nature, 2024, 626, 45-57.	13.7	2
426	Hierarchical surface-modification of nano-Cu toward one pot H-transfer-coupling–cyclization–CO ₂ fixation tandem reactions. Materials Horizons, 0, ,	. 6.4	0