CFTR-PTEN–dependent mitochondrial metabolic dys aeruginosa</i> airway infection

Science Translational Medicine

11,

DOI: 10.1126/scitranslmed.aav4634

Citation Report

#	Article	IF	CITATIONS
1	Succinate links mitochondria to deadly bacteria in cystic fibrosis. Annals of Translational Medicine, 2019, 7, S263-S263.	0.7	2
2	Mitochondrial dysfunction in lung ageing and disease. European Respiratory Review, 2020, 29, 200165.	3.0	56
3	Targeting the Heme Oxygenase 1/Carbon Monoxide Pathway to Resolve Lung Hyper-Inflammation and Restore a Regulated Immune Response in Cystic Fibrosis. Frontiers in Pharmacology, 2020, 11, 1059.	1.6	22
4	Defective immunometabolism pathways in cystic fibrosis macrophages. Journal of Cystic Fibrosis, 2021, 20, 664-672.	0.3	5
5	Airway immunometabolites fuel Pseudomonas aeruginosa infection. Respiratory Research, 2020, 21, 326.	1.4	13
6	Novel Antioxidant Therapy with the Immediate Precursor to Glutathione, Î ³ -Glutamylcysteine (GGC), Ameliorates LPS-Induced Cellular Stress in In Vitro 3D-Differentiated Airway Model from Primary Cystic Fibrosis Human Bronchial Cells. Antioxidants, 2020, 9, 1204.	2.2	11
7	Comparative genomics in infectious disease. Current Opinion in Microbiology, 2020, 53, 61-70.	2.3	11
8	Pseudomonas Persists by Feeding off Itaconate. Cell Metabolism, 2020, 31, 1045-1047.	7.2	2
9	Single-Cell Transcriptional Archetypes of Airway Inflammation in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1419-1429.	2.5	56
10	Altered iron metabolism in cystic fibrosis macrophages: the impact of CFTR modulators and implications for Pseudomonas aeruginosa survival. Scientific Reports, 2020, 10, 10935.	1.6	25
11	Virulence attenuating combination therapy: a potential multi-target synergy approach to treat <i>Pseudomonas aeruginosa</i> infections in cystic fibrosis patients. RSC Medicinal Chemistry, 2020, 11, 358-369.	1.7	19
12	Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Frontiers in Immunology, 2020, 11, 385.	2.2	32
13	Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in <i>Pseudomonas aeruginosa</i> . Molecular Biology and Evolution, 2021, 38, 663-675.	3.5	18
14	Metabolic Modeling to Interrogate Microbial Disease: A Tale for Experimentalists. Frontiers in Molecular Biosciences, 2021, 8, 634479.	1.6	7
15	Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. International Journal of Molecular Sciences, 2021, 22, 3128.	1.8	230
16	Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nature Communications, 2021, 12, 1399.	5.8	72
17	Lack of CFTR alters the ferret pancreatic ductal epithelial secretome and cellular proteome: Implications for exocrine/endocrine signaling. Journal of Cystic Fibrosis, 2022, 21, 172-180.	0.3	6
18	Pseudomonas aeruginosa Consumption of Airway Metabolites Promotes Lung Infection. Pathogens, 2021, 10, 957.	1.2	6

CITATION REPORT

#	Article	IF	CITATIONS
19	The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. European Respiratory Review, 2021, 30, 210055.	3.0	28
20	Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation. Cell Metabolism, 2020, 31, 1091-1106.e6.	7.2	109
22	Recent advances in primary immunodeficiency: from molecular diagnosis to treatment. F1000Research, 2020, 9, 194.	0.8	21
23	Control of host mitochondria by bacterial pathogens. Trends in Microbiology, 2022, 30, 452-465.	3.5	25
25	Immunometabolites Drive Bacterial Adaptation to the Airway. Frontiers in Immunology, 2021, 12, 790574.	2.2	11
26	Macrophages from gut-corrected CF mice express human CFTR and lack a pro-inflammatory phenotype. Journal of Cystic Fibrosis, 2021, , .	0.3	1
27	The role of itaconate in host defense and inflammation. Journal of Clinical Investigation, 2022, 132, .	3.9	135
28	Mitochondrial ACOD1/IRG1 in infection and sterile inflammation. Journal of Intensive Medicine, 2022, 2, 78-88.	0.8	16
29	Immunometabolic crosstalk during bacterial infection. Nature Microbiology, 2022, 7, 497-507.	5.9	45
30	CFTR Modulator Therapies: Potential Impact on Airway Infections in Cystic Fibrosis. Cells, 2022, 11, 1243.	1.8	14
31	Blood-brain barrier–penetrating single CRISPR-Cas9 nanocapsules for effective and safe glioblastoma gene therapy. Science Advances, 2022, 8, eabm8011.	4.7	71
32	Overview of CF lung pathophysiology. Current Opinion in Pharmacology, 2022, 64, 102214.	1.7	10
33	Anti-Inflammatory Metabolites in the Pathogenesis of Bacterial Infection. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	8
34	Mesenchymal stem cells in fibrotic diseases—the two sides of the same coin. Acta Pharmacologica Sinica, 2023, 44, 268-287.	2.8	19
35	Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes. Mucosal Immunology, 2022, 15, 1071-1084.	2.7	9
36	Pulmonary neuroendocrine cells sense succinate to stimulate myoepithelial cell contraction. Developmental Cell, 2022, 57, 2221-2236.e5.	3.1	4
37	Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Research, 0, 11, 1007.	0.8	2
38	Pseudomonas aeruginosa in the Cystic Fibrosis Lung. Advances in Experimental Medicine and Biology, 2022, , 347-369.	0.8	6

#	Article	IF	CITATIONS
39	Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice. European Respiratory Journal, 2023, 61, 2200840.	3.1	15
40	The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clinics in Chest Medicine, 2022, 43, 647-665.	0.8	13
41	Pseudomonas aeruginosa. , 2023, , 884-889.e2.		1
42	Two for the price of one: itaconateÂand its derivativesÂas an anti-infective and anti-inflammatory immunometabolite. Current Opinion in Immunology, 2023, 80, 102268.	2.4	7
43	Development of liquid culture media mimicking the conditions of sinuses and lungs in cystic fibrosis and health. F1000Research, 0, 11, 1007.	0.8	6
44	PmiR senses 2-methylisocitrate levels to regulate bacterial virulence in <i>Pseudomonas aeruginosa</i> . Science Advances, 2022, 8, .	4.7	1
45	Metabolite interactions between host and microbiota during health and disease: Which feeds the other?. Biomedicine and Pharmacotherapy, 2023, 160, 114295.	2.5	19
46	Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Reports, 2023, 42, 112064.	2.9	23
47	Diagnosis and Management of Cystic Fibrosis Exacerbations. Seminars in Respiratory and Critical Care Medicine, 2023, 44, 225-241.	0.8	2
48	Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. International Journal of Molecular Sciences, 2023, 24, 5010.	1.8	5
50	How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. International Journal of Molecular Sciences, 2023, 24, 6609.	1.8	2
51	Control of mitochondrial functions by Pseudomonas aeruginosa in cystic fibrosis. International Review of Cell and Molecular Biology, 2023, , .	1.6	1

CITATION REPORT