Towards a more reliable historical reanalysis: Improver Twentieth Century Reanalysis system

Quarterly Journal of the Royal Meteorological Society 145, 2876-2908 DOI: 10.1002/qj.3598

Citation Report

#	Article	IF	CITATIONS
1	Geo-locate project: a novel approach to resolving meteorological station location issues with the assistance of undergraduate students. Geoscience Communication, 2019, 2, 157-171.	0.5	1
2	Hourly weather observations from the Scottish Highlands (1883–1904) rescued by volunteer citizen scientists. Geoscience Data Journal, 2019, 6, 160-173.	1.8	34
3	The Spatio—Temporal Variation of Pacific Blocking Frequency within Winter Months and Its Relationship with Surface Air Temperature. Atmosphere, 2020, 11, 960.	1.0	1
4	Formation, structure and climatic significance of blue rings and frost rings in high elevation bristlecone pine (Pinus longaeva D.K. Bailey). Quaternary Science Reviews, 2020, 244, 106516.	1.4	10
5	Modes of climate variability: Synthesis and review of proxy-based reconstructions through the Holocene. Earth-Science Reviews, 2020, 209, 103286.	4.0	41
6	Four-dimensional structure and sub-seasonal regulation of the Indian summer monsoon multi-decadal mode. Climate Dynamics, 2020, 55, 2645-2666.	1.7	20
7	Poleward Excursions by the Himalayan Subtropical Jet Over the Past Four Centuries. Geophysical Research Letters, 2020, 47, e2020GL089631.	1.5	7
8	The Climatological Context of Trends in the Onset of Northern Hemisphere Seasonal Snow Cover, 1972–2017. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032367.	1.2	2
9	Refining projected multidecadal hydroclimate uncertainty in East-Central Europe using CMIP5 and single-model large ensemble simulations. Theoretical and Applied Climatology, 2020, 142, 1147-1167.	1.3	7
10	Exploring the long-term changes in the Madden Julian Oscillation using machine learning. Scientific Reports, 2020, 10, 18567.	1.6	22
11	A Long-Term, 1-km Resolution Daily Meteorological Dataset for Modeling and Mapping Permafrost in Canada. Atmosphere, 2020, 11, 1363.	1.0	2
12	On the curious case of the recent decade, mid-spring precipitation deficit in central Europe. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	51
13	Tide gauge data archaeology provides natural subsidence rates along the coasts of the Po Plain and of the Veneto-Friuli Plain, Italy. Geophysical Journal International, 2020, , .	1.0	1
14	I2-RED: A Massive Update and Quality Control of the Italian Annual Extreme Rainfall Dataset. Water (Switzerland), 2020, 12, 3308.	1.2	8
15	Progress towards a holistic land and marine surface meteorological database and a call for additional contributions. Geoscience Data Journal, 2021, 8, 103-120.	1.8	12
16	Distinguishing Variability Regimes of Hawaiian Summer Rainfall: Quasiâ€Biennial and Interdecadal Oscillations. Geophysical Research Letters, 2020, 47, e2020GL091260.	1.5	4
17	Key problems in early wine-spirit thermometers and the "true Réaumur―thermometer. Climatic Change, 2020, 163, 1083-1102.	1.7	5
18	Dissimilar characteristics associated with the 1976/1977 and 1998/1999 climate regime shifts in the North Pacific. Theoretical and Applied Climatology, 2020, 142, 1463-1470.	1.3	2

#	Article	IF	CITATIONS
19	Facility for Weather and Climate Assessments (FACTS): A Community Resource for Assessing Weather and Climate Variability. Bulletin of the American Meteorological Society, 2020, 101, E1214-E1224.	1.7	24
20	Digitizing observations from the Met Office Daily Weather Reports for 1900–1910 using citizen scientist volunteers. Geoscience Data Journal, 2020, 7, 116-134.	1.8	16
21	A historical perspective on Australian temperature extremes. Climate Dynamics, 2020, 55, 843-868.	1.7	11
22	Regional differentiation in climate change induced drought trends in the Netherlands. Environmental Research Letters, 2020, 15, 094081.	2.2	37
23	Human influence on joint changes in temperature, rainfall and continental aridity. Nature Climate Change, 2020, 10, 726-731.	8.1	75
24	The forgotten drought of 1765–1768: Reconstructing and reâ€evaluating historical droughts in the British and Irish Isles. International Journal of Climatology, 2020, 40, 5329-5351.	1.5	19
25	Magnitudes and Spatial Patterns of Interdecadal Temperature Variability in CMIP6. Geophysical Research Letters, 2020, 47, e2019GL086588.	1.5	42
26	Simulated and reconstructed atmospheric variability and their relation with large Pre-industrial summer floods in the Hasli-Aare catchment (Swiss Alps) since 1300 CE. Global and Planetary Change, 2020, 190, 103191.	1.6	6
27	Enriching the historical meteorological information using Romanian language newspaper reports: A database from 1880 to 1900. International Journal of Climatology, 2021, 41, E548.	1.5	6
28	Interannual to millennialâ€scale variability of River Ammer floods and its relationship with solar forcing. International Journal of Climatology, 2021, 41, E644.	1.5	3
29	Dynamics of meteorological time series on the base of ground measurements and retrospective data from MERRA $\hat{a} \in 2$ for Poland. International Journal of Climatology, 2021, 41, E1531.	1.5	2
30	An assessment of early 20th century Antarctic pressure reconstructions using historical observations. International Journal of Climatology, 2021, 41, E672.	1.5	2
31	Vegetation-heatwave correlations and contrasting energy exchange responses of different vegetation types to summer heatwaves in the Northern Hemisphere during the 1982–2011 period. Agricultural and Forest Meteorology, 2021, 296, 108208.	1.9	16
32	Large Sensitivity of Simulated Indian Summer Monsoon Rainfall (ISMR) to Global Warming: Implications of ISMR Projections. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	9
33	The role of blocking circulation and emerging open water feedbacks on Greenland coldâ€season air temperature variability over the last century. International Journal of Climatology, 2021, 41, E2778.	1.5	5
34	Mean temperature evolution on the Spanish mainland 1916-2015. Climate Research, 2021, 82, 177-189.	0.4	6
35	Sea Level Pressure Trends: Model-Based Assessment of Detection, Attribution, and Consistency with CMIP5 Historical Simulations. Journal of Climate, 2021, 34, 327-346.	1.2	3
36	Why Indian summer monsoon circulation indices? Fidelity in representing rainfall variability and teleconnections. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 1300-1316.	1.0	3

#	Article	IF	CITATIONS
37	Pre-1906 Extension of Precipitation Data for Chichi-Jima in the Ogasawara (Bonin) Islands Based on the Analysis of Historical Documents. Scientific Online Letters on the Atmosphere, 2021, 17, 170-176.	0.6	0
38	Seasonal temperature trends on the Spanish mainland: A secular study (1916–2015). International Journal of Climatology, 2021, 41, 3071-3084.	1.5	11
39	Quantifying Human-Induced Dynamic and Thermodynamic Contributions to Severe Cold Outbreaks Like November 2019 in the Eastern United States. Bulletin of the American Meteorological Society, 2021, 102, S17-S23.	1.7	7
40	ENSO–Indian summer monsoon teleconnections. , 2021, , 51-68.		3
41	Drought Relief and Reversal over North America from 1500 to 2016. Earth Interactions, 2021, 25, 94-107.	0.7	2
42	Tidal Stream vs. Wind Energy: The Value of Cyclic Power When Combined with Short-Term Storage in Hybrid Systems. Energies, 2021, 14, 1106.	1.6	22
43	Modulation of the Occurrence of Heatwaves over the Euro-Mediterranean Region by the Intensity of the Atlantic Multidecadal Variability. Journal of Climate, 2021, 34, 1099-1114.	1.2	15
44	A New Approach to Homogenize Global Subdaily Radiosonde Temperature Data from 1958 to 2018. Journal of Climate, 2021, 34, 1163-1183.	1.2	18
45	Solar Activity of the Past 100ÂYears Inferred From ¹⁰ Be in Ice Cores—Implications for Longâ€Term Solar Activity Reconstructions. Geophysical Research Letters, 2021, 48, e2020GL090896.	1.5	5
46	Implementing Full Spatial Coverage in NOAA's Global Temperature Analysis. Geophysical Research Letters, 2021, 48, e2020GL090873.	1.5	18
47	Accelerated decline of summer Arctic sea ice during 1850–2017 and the amplified Arctic warming during the recent decades. Environmental Research Letters, 2021, 16, 034015.	2.2	34
48	The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034161.	1.2	10
49	An Evaluation of the Performance of the Twentieth Century Reanalysis Version 3. Journal of Climate, 2021, 34, 1417-1438.	1.2	83
50	Tropical cyclones over the western north Pacific since the mid-nineteenth century. Climatic Change, 2021, 164, 1.	1.7	10
52	A Later Onset of the Rainy Season in California. Geophysical Research Letters, 2021, 48, e2020GL090350.	1.5	32
53	A historical climate dataset for southwestern Australia, 1830–1875. International Journal of Climatology, 2021, 41, 4898-4919.	1.5	8
54	Global Near-Surface Wind Speed Changes over the Last Decades Revealed by Reanalyses and CMIP6 Model Simulations. Journal of Climate, 2021, 34, 2219-2234.	1.2	32
55	Metrics for evaluating tropical cyclones in climate data. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	20

#	Article	IF	CITATIONS
56	The Record-Breaking 1933 Atlantic Hurricane Season. Bulletin of the American Meteorological Society, 2021, 102, E446-E463.	1.7	2
57	Changes in summer precipitation variability in central Brazil over the past eight decades. International Journal of Climatology, 2021, 41, 4171-4186.	1.5	10
58	On the Development and Demise of the Fall 2019 Southeast U.S. Flash Drought: Links to an Extreme Positive IOD. Journal of Climate, 2021, 34, 1701-1723.	1.2	16
59	Teleconnections Governing the Interannual Variability of Great Plains Low-Level Jets in May. Journal of Climate, 2021, 34, 4785-4802.	1.2	6
60	Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nature Communications, 2021, 12, 1495.	5.8	24
61	Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics. Ocean Science Journal, 2021, 56, 18-45.	0.6	28
62	Role of the eastern Pacific-Caribbean Sea SST gradient in the Choco low-level jet variations from 1900-2015. Climate Research, 2021, 83, 61-74.	0.4	9
63	Changes in mean sea level around Great Britain over the past 200†years. Progress in Oceanography, 2021, 192, 102521.	1.5	9
64	Past megadroughts in central Europe were longer, more severe and less warm than modern droughts. Communications Earth & Environment, 2021, 2, .	2.6	44
65	Do Multiâ€Model Ensembles Improve Reconstruction Skill in Paleoclimate Data Assimilation?. Earth and Space Science, 2021, 8, e2020EA001467.	1.1	13
66	Early-onset of Atlantic Meridional Overturning Circulation weakening in response to atmospheric CO2 concentration. Npj Climate and Atmospheric Science, 2021, 4, .	2.6	12
67	The influence of the Atlantic multidecadal oscillation on the interdecadal variability of winter precipitation in the Greater Mekong Subregion. International Journal of Climatology, 2021, 41, 5072-5083.	1.5	7
68	Over-projected Pacific warming and extreme El Niño frequency due to CMIP5 common biases. National Science Review, 2021, 8, nwab056.	4.6	20
69	Recent climate variability around the Kerguelen Islands (Southern Ocean) seen through weather regimes. Journal of Applied Meteorology and Climatology, 2021, , .	0.6	5
70	The Observed Relationship between Pacific SST Variability and Hadley Cell Extent Trends in Reanalyses. Journal of Climate, 2021, 34, 2511-2527.	1.2	12
71	Quantifying the Role of Ocean Dynamics in Ocean Mixed Layer Temperature Variability. Journal of Climate, 2021, 34, 2567-2589.	1.2	6
72	Central Pacific El Niño as a Precursor to Summer Droughtâ€Breaking Rainfall Over Southeastern Australia. Geophysical Research Letters, 2021, 48, e2020GL091131.	1.5	20
73	Comparisons Between CMIP5 and CMIP6 Models: Simulations of Climate Indices Influencing Food Security, Infrastructure Resilience, and Human Health in Canada. Earth's Future, 2021, 9, e2021EF001995.	2.4	25

#	Article	IF	CITATIONS
74	Network of Tensor Time Series. , 2021, , .		15
75	Observational analysis of decadal and long-term hydroclimate drivers in the Mediterranean region: role of the ocean–atmosphere system and anthropogenic forcing. Climate Dynamics, 0, , 1.	1.7	3
76	Eritrean centralâ€highland precipitation and associations with seaâ€surface temperature and atmospheric circulation. International Journal of Climatology, 2021, 41, 5502.	1.5	0
77	North Atlantic Winter Storm Activity in Modern Reanalyses and Pressure-Based Observations. Journal of Climate, 2021, 34, 2411-2428.	1.2	8
78	Both Cycloneâ€induced and Convective Storms Drive Disturbance Patterns in European Primary Beech Forests. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033929.	1.2	12
79	Mitigating a century of European renewable variability with transmission and informed siting. Environmental Research Letters, 2021, 16, 064026.	2.2	7
80	Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. Innovation(China), 2021, 2, 100102.	5.2	58
81	Causes of the long-term variability of southwestern South America precipitation in the IPSL-CM6A-LR model. Climate Dynamics, 2021, 57, 2391-2414.	1.7	3
82	Extratropical Southern Hemisphere Synchronous Pressure Variability in the Early Twentieth Century. Journal of Climate, 2021, 34, 5795-5811.	1.2	2
83	Recent weakening in the winter ENSO teleconnection over the North Atlantic-European region. Climate Dynamics, 2021, 57, 1953-1972.	1.7	8
84	Combined Effects of the British–Baikal Corridor Pattern and the Silk Road Pattern on Eurasian Surface Air Temperatures in Summer. Journal of Climate, 2021, 34, 3707-3720.	1.2	11
85	Large Differences in Diffuse Solar Radiation Among Current-Generation Reanalysis and Satellite-Derived Products. Journal of Climate, 2021, , 1-52.	1.2	6
86	Meteorological drought and its large-scale climate patterns in each season in Central Asia from 1901 to 2015. Climatic Change, 2021, 166, 1.	1.7	5
87	A Multivariate Approach to Generate Synthetic Shortâ€Toâ€Medium Range Hydroâ€Meteorological Forecasts Across Locations, Variables, and Lead Times. Water Resources Research, 2021, 57, e2020WR029453.	1.7	3
88	Intercomparisons, error assessments, and technical information on historical upper-air measurements. Earth System Science Data, 2021, 13, 2471-2485.	3.7	1
89	Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland. Atmosphere, 2021, 12, 836.	1.0	0
90	Detecting Climate Signals Using Explainable AI With Singleâ€Forcing Large Ensembles. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002464.	1.3	19
91	Extreme rainfall synchronization network between Southwest China and Asia–Pacific region. Climate Dynamics, 2021, 57, 3207-3221.	1.7	6

#	Article	IF	CITATIONS
92	Historical and future carbon stocks in forests of northern Ontario, Canada. Carbon Balance and Management, 2021, 16, 21.	1.4	1
93	Twentieth century global glacier mass change: an ensemble-based model reconstruction. Cryosphere, 2021, 15, 3135-3157.	1.5	8
94	A mean-sea-level pressure time series for Trieste, Italy (1841–2018). Earth System Science Data, 2021, 13, 3363-3377.	3.7	1
96	Systematic investigation of skill opportunities in decadal prediction of air temperature over Europe. Climate Dynamics, 2021, 57, 3245-3263.	1.7	2
97	Sources of Uncertainty in Multimodel Large Ensemble Projections of the Winter North Atlantic Oscillation. Geophysical Research Letters, 2021, 48, e2021GL093258.	1.5	10
98	Southeast Indian Subantarctic Mode Water in the CMIP6 Coupled Models. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016872.	1.0	2
99	Extratropical Southern Hemisphere Synchronous Pressure Variability in the Early Twentieth Century. Journal of Climate, 2021, 34, 5795-5811.	1.2	2
100	Reconciling Human and Natural Drivers of the Tripole Pattern of Multidecadal Summer Temperature Variations Over Eurasia. Geophysical Research Letters, 2021, 48, e2021GL093971.	1.5	10
101	The joint impacts of Atlantic and Pacific multidecadal variability on South American precipitation and temperature. Journal of Climate, 2021, , 1-55.	1.2	7
102	Tree-ring-based hydroclimatic reconstruction for the northwest Argentine Patagonia since 1055 CE and its teleconnection to large-scale atmospheric circulation. Global and Planetary Change, 2021, 202, 103496.	1.6	9
103	Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nature Communications, 2021, 12, 3944.	5.8	74
104	Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6 GCMs. Environmental Research Letters, 2021, 16, 084039.	2.2	21
105	North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Science Advances, 2021, 7, .	4.7	8
106	The U.K.–China Climate Science to Service Partnership. Bulletin of the American Meteorological Society, 2021, 102, E1563-E1578.	1.7	2
107	Multidecadal Sea Level Variability in the Baltic Sea and Its Impact on Acceleration Estimations. Frontiers in Marine Science, 2021, 8, .	1.2	7
108	The development of long temperature and precipitation series for Ascension Island. International Journal of Climatology, 0, , .	1.5	0
109	The Representation of the Southern Annular Mode Signal in the Brazilian Earth System Model. Atmosphere, 2021, 12, 1045.	1.0	2
110	Atmospheric Rivers Impacting Northern California Exhibit a Quasiâ€Decadal Frequency. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034196.	1.2	3

#	Article	IF	CITATIONS
111	Reanalysis in Earth System Science: Toward Terrestrial Ecosystem Reanalysis. Reviews of Geophysics, 2021, 59, e2020RG000715.	9.0	24
112	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	12.2	197
113	Footprint of greenhouse forcing in daily temperature variability. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
114	"Beyond Weather Regimes†Descriptors Monitoring Atmospheric Centers of Action. A case study for Aotearoa New Zealand. Journal of Climate, 2021, , 1-50.	1.2	4
115	Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere, 2021, 12, 1120.	1.0	7
116	Weakened Antarctic Dipole Under Global Warming in CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL094863.	1.5	6
117	The Three-Cornered Hat Method for Estimating Error Variances of Three or More Atmospheric Data Sets – Part II: Evaluating Radio Occultation and Radiosonde Observations, Global Model Forecasts, and Reanalyses. Journal of Atmospheric and Oceanic Technology, 2021, , .	0.5	4
118	Sea-level rise in Venice: historic and future trends (review article). Natural Hazards and Earth System Sciences, 2021, 21, 2643-2678.	1.5	61
119	The influence of pacific winds on ENSO diversity. Scientific Reports, 2021, 11, 18672.	1.6	17
120	Interannual and decadal variability of Arctic summer sea ice associated with atmospheric teleconnection patterns during 1850-2017. Journal of Climate, 2021, , 1-89.	1.2	3
121	Identifying drivers of streamflow extremes in West Africa to inform a nonstationary prediction model. Weather and Climate Extremes, 2021, 33, 100346.	1.6	3
122	Preconditions for extreme wet winters over the contiguous United States. Weather and Climate Extremes, 2021, 33, 100333.	1.6	4
123	Historical Forest Management Practices Influence Tree-Ring Based Climate Reconstructions. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
124	Drivers of exceptional coastal warming in the northeastern United States. Nature Climate Change, 2021, 11, 854-860.	8.1	23
125	Variability of maximum and minimum monthly mean air temperatures over mainland Spain and their relationship with lowâ€variability atmospheric patterns for period 1916–2015. International Journal of Climatology, 2022, 42, 1723-1741.	1.5	4
126	The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4186-4227.	1.0	189
127	Is There Interdecadal Variation in the South Asian High?. Journal of Climate, 2021, 34, 8089-8103.	1.2	17
128	Interdecadal Change in the Relationship Between the Bay of Bengal Summer Monsoon and South China Sea Summer Monsoon Onset. Frontiers in Earth Science, 2021, 8, .	0.8	11

#	Article	IF	CITATIONS
129	Large-scale changes of the semidiurnal tide along North Atlantic coasts from 1846 to 2018. Ocean Science, 2021, 17, 17-34.	1.3	8
130	Atmospheric blocking events in the North Atlantic: trends and links to climate anomalies and teleconnections. Climate Dynamics, 2021, 56, 2199-2221.	1.7	12
131	Meridional oscillation of tropical cyclone activity in the western North Pacific during the past 110Âyears. Climatic Change, 2021, 164, 1.	1.7	10
133	European multidecadal solar variability badly captured in all centennial reanalyses except CERA20C. Environmental Research Letters, 2020, 15, 104021.	2.2	9
134	ClimAlign: Unsupervised statistical downscaling of climate variables via normalizing flows. , 2020, , .		10
135	A 450-Year Perspective on California Precipitation "Flips― Journal of Climate, 2020, 33, 10221-10237.	1.2	9
136	Uncertainties in Ocean Latent Heat Flux Variations over Recent Decades in Satellite-Based Estimates and Reduced Observation Reanalyses. Journal of Climate, 2020, 33, 8415-8437.	1.2	16
137	Validation of reanalysis Southern Ocean atmosphere trends using sea ice data. Atmospheric Chemistry and Physics, 2020, 20, 14757-14768.	1.9	7
138	The importance of input data quality and quantity in climate field reconstructions – results from the assimilation of various tree-ring collections. Climate of the Past, 2020, 16, 1061-1074.	1.3	14
139	Assimilating monthly precipitation data in a paleoclimate data assimilation framework. Climate of the Past, 2020, 16, 1309-1323.	1.3	8
140	An investigation of weighting schemes suitable for incorporating large ensembles into multi-model ensembles. Earth System Dynamics, 2020, 11, 807-834.	2.7	39
141	Early instrumental meteorological observations in Switzerland: 1708–1873. Earth System Science Data, 2020, 12, 1179-1190.	3.7	19
142	Rescue and quality control of sub-daily meteorological data collected at Montevergine Observatory (Southern Apennines), 1884–1963. Earth System Science Data, 2020, 12, 1467-1487.	3.7	10
143	Rivers in the sky, flooding on the ground: the role of atmospheric rivers in inland flooding in central Europe. Hydrology and Earth System Sciences, 2020, 24, 5125-5147.	1.9	16
144	Comprehensive evaluation of surface air temperature reanalysis over China against urbanization-bias-adjusted observations. Advances in Climate Change Research, 2021, 12, 783-794.	2.1	12
145	Blasts from the Past: Reimagining Historical Storms with Model Simulations to Modernize Dam Safety and Flood Risk Assessment. Bulletin of the American Meteorological Society, 2022, 103, E266-E280.	1.7	2
146	The West Pacific Gradient tracks ENSO and zonal Pacific sea surface temperature gradient during the last Millennium. Scientific Reports, 2021, 11, 20395.	1.6	2
147	ENSO diversity shows robust decadal variations that must be captured for accurate future projections. Communications Earth & Environment, 2021, 2, .	2.6	19

#	Article	IF	CITATIONS
148	Change in the variability in the Western Pacific pattern during boreal winter: roles of tropical Pacific sea surface temperature anomalies and North Pacific storm track activity. Climate Dynamics, 2022, 58, 2451-2468.	1.7	9
149	An ensemble reconstruction of global monthly sea surface temperature and sea ice concentration 1000–1849. Scientific Data, 2021, 8, 261.	2.4	7
150	Tree-ring cellulose δ180 records similar large-scale climate influences as precipitation δ180 in the Northwest Territories of Canada. Climate Dynamics, 2022, 58, 759-776.	1.7	10
151	A twiceâ€daily barometric pressure record from Durham Observatory in northâ€east England, 1843–1960. Geoscience Data Journal, 2023, 10, 3-17.	1.8	3
152	A dynamical adjustment perspective on extreme event attribution. Weather and Climate Dynamics, 2021, 2, 971-989.	1.2	13
153	On the Development of GFDL's Decadal Prediction System: Initialization Approaches and Retrospective Forecast Assessment. Journal of Advances in Modeling Earth Systems, 2021, 13, .	1.3	14
154	Robust detection of forced warming in the presence of potentially large climate variability. Science Advances, 2021, 7, eabh4429.	4.7	11
155	Characteristics and Predictability of Midwestern United States Drought. Journal of Hydrometeorology, 2021, , .	0.7	0
157	The Long Winter of 1880/81. Bulletin of the American Meteorological Society, 2020, 101, E797-E813.	1.7	1
158	Historical reconstruction and statistical survey on long-term temporal changes in temperatures above 50Ű C in West Asia. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	7
159	Using deep learning to predict the East Asian summer monsoon. Environmental Research Letters, 2021, 16, 124006.	2.2	15
160	Twentieth century temperature and snow cover changes in the French Alps. Regional Environmental Change, 2021, 21, 1.	1.4	9
161	El Niño–Global Atmospheric Oscillation as the Main Mode of Interannual Climate Variability. Atmosphere, 2021, 12, 1443.	1.0	2
162	Uncertainty in aerosol radiative forcing impacts the simulated global monsoon in the 20thÂcentury. Atmospheric Chemistry and Physics, 2020, 20, 14903-14915.	1.9	7
164	High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs. Renewable Energy, 2022, 182, 659-684.	4.3	82
165	Modelling of Vegetation Dynamics from Satellite Time Series to Determine Proglacial Primary Succession in the Course of Global Warming—A Case Study in the Upper Martell Valley (Eastern Italian) Tj ETQq	11180.784	3 1⊕ rgBT /○
166	The Influence of Interannual and Decadal Indo-Pacific Sea Surface Temperature Variability on Australian Monsoon Rainfall. Journal of Climate, 2022, 35, 425-444.	1.2	12
167	Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO. Journal of Climate, 2022, 35, 975-995.	1.2	4

#	Article	IF	CITATIONS
168	Synthetic weather diaries: concept and application to Swiss weather in 1816. Climate of the Past, 2020, 16, 1937-1952.	1.3	4
169	Climatically Driven Minimum of Energy Demand for Heating in Cities at the Center of the European Part of Russia. Izvestiya - Atmospheric and Oceanic Physics, 2020, 56, 613-617.	0.2	1
170	Climate Observing During Canada's Empires, 1742–1871: People, Places and Motivations. London Journal of Canadian Studies, 2020, 35, .	0.1	0
171	Total column ozone in New Zealand and in the UK in the 1950s. Atmospheric Chemistry and Physics, 2020, 20, 14333-14346.	1.9	1
172	Mean sea level and tidal change in Ireland since 1842: a case study of Cork. Ocean Science, 2021, 17, 1623-1637.	1.3	3
173	Temporal evolution of relationships between temperature and circulation modes in five reanalyses. International Journal of Climatology, 2022, 42, 4391-4404.	1.5	0
174	The Reanalysis for the Global Ensemble Forecast System, Version 12. Monthly Weather Review, 2022, 150, 59-79.	0.5	20
175	Strengthening Southern Hemisphere Westerlies and Amundsen Sea Low Deepening Over the 20th Century Revealed by Proxyâ€Data Assimilation. Geophysical Research Letters, 2021, 48, e2021GL095999.	1.5	12
176	Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years. Nature Communications, 2021, 12, 7027.	5.8	39
177	Analogue methods and <scp>ERA5</scp> : Benefits and pitfalls. International Journal of Climatology, 2022, 42, 4078-4096.	1.5	7
178	The consecutive disparity of precipitation in conterminous Spain. Theoretical and Applied Climatology, 2022, 147, 1151-1161.	1.3	4
179	Synoptic circulation changes over Central Europe from 1900 to 2100 – Reanalyses and CMIP6. International Journal of Climatology, 0, , .	1.5	6
180	Comparison of Early Twentieth Century Arctic Warming and Contemporary Arctic Warming in the light of daily and sub-daily data. Journal of Climate, 2022, , 1-59.	1.2	4
181	Nonstationarity and potential multi-decadal variability in Indian Summer Monsoon Rainfall and Southern Annular Mode teleconnection. Climate Dynamics, 2022, 59, 671-683.	1.7	3
182	Prequel to the Stories of Warm Conveyor Belts and Atmospheric Rivers: The Moist Tongues Identified by Rossby and His Collaborators in the 1930s. Bulletin of the American Meteorological Society, 2022, 103, E1019-E1040.	1.7	3
183	Stratosphereâ€Troposphere Coupling Leading to Extended Seasonal Predictability of Summer North Atlantic Oscillation and Boreal Climate. Geophysical Research Letters, 2022, 49, .	1.5	6
184	Low-Frequency Atmospheric Variability Patterns and Synoptic Types Linked to Large Floods in the Lower Ebro River Basin. Journal of Climate, 2022, 35, 2351-2371.	1.2	2
185	Orbital Forcing Strongly Influences the Poleward Shift of the Spring Himalayan Jet During the Past Millennium. Geophysical Research Letters, 2022, 49, .	1.5	2

#	Article	IF	CITATIONS
186	Meteorological Data Rescue – Citizen Science Lessons Learned From Southern Weather Discovery. SSRN Electronic Journal, 0, , .	0.4	0
187	Global-scale interdecadal variability a skillful predictor at decadal-to-multidecadal timescales for Sahelian and Indian Monsoon Rainfall. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	7
188	Synchronous Variation Patterns of Monthly Sea Ice Anomalies at the Arctic and Antarctic. Journal of Climate, 2022, 35, 2823-2847.	1.2	3
189	The Ensemble Oceanic Niño Index. International Journal of Climatology, 2022, 42, 5321-5341.	1.5	8
190	A comparison of global surface temperature variability, extremes and warming trend using reanalysis datasets and <scp>CMSTâ€Interim</scp> . International Journal of Climatology, 2022, 42, 5609-5628.	1.5	11
191	On the effect of reference periods on trends in percentile-based extreme temperature indices. Environmental Research Letters, 2022, 17, 034026.	2.2	5
192	Dynamical and moist thermodynamical processes associated with Western Ghats rainfall decadal variability. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	9
193	Monthly North Atlantic Sea Level Pressure reconstruction back to 1750 CE using Artificial Intelligence optimization. Journal of Climate, 2022, , 1-56.	1.2	0
194	Impacts of the Lagrangian Data Assimilation of Surface Drifters on Estimating Ocean Circulation during the Gulf of Mexico Grand Lagrangian Deployment. Monthly Weather Review, 2022, 150, 949-965.	0.5	2
195	Enlisting Students to Transcribe Historical Climate and Weather Data For Research: Building Knowledge Translation Via Classroom-Based Citizen Science. Journal of Community Engagement and Scholarship, 2021, 13, .	0.1	0
196	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	0.7	10
197	Analysis of early Japanese meteorological data and historical weather documents to reconstruct the winter climate between the 1840s and the early 1850s. Climate of the Past, 2022, 18, 327-339.	1.3	3
198	Asymmetrical synchronization of extreme rainfall events in southwest China. International Journal of Climatology, 2022, 42, 5935-5948.	1.5	4
199	Diagnosing Hawaii's Recent Drought. Journal of Climate, 2022, 35, 3997-4012.	1.2	3
200	Atlantic Multidecadal Oscillation Modulates the Relation of ENSO With the Precipitation in the Central-Western Indian Ocean. Frontiers in Earth Science, 2022, 10, .	0.8	0
201	Drivers of 20th century seaâ€level change in southern New Zealand determined from proxy and instrumental records. Journal of Quaternary Science, 2022, 37, 1025-1043.	1.1	6
202	A comparison of nonlinear extensions to the ensemble Kalman filter. Computational Geosciences, 2022, , 1-18.	1.2	2
203	Extended North Atlantic Oscillation and Greenland Blocking Indices 1800–2020 from New Meteorological Reanalysis. Atmosphere, 2022, 13, 436.	1.0	4

#	ARTICLE	IF	CITATIONS
204	A 247â€year treeâ€ring reconstruction of spring temperature and relation to spring flooding in eastern boreal Canada. International Journal of Climatology, 2022, 42, 6479-6498.	1.5	3
205	Atmospheric Forcing of the Pacific Meridional Mode: Tropical Pacificâ€Driven Versus Internal Variability. Geophysical Research Letters, 2022, 49, .	1.5	10
206	ENSO and Paraná flow variability: Longâ€ŧerm changes in their connectivity. International Journal of Climatology, 2022, 42, 7269-7279.	1.5	3
207	Benchmarking algorithm changes to the Snow CCI+ snow water equivalent product. Remote Sensing of Environment, 2022, 274, 112988.	4.6	13
208	Opposite Atlantic Multidecadal Oscillation effects on dry/wet changes over Central and East Asian drylands. Atmospheric Research, 2022, 271, 106102.	1.8	5
209	Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nature Communications, 2021, 12, 7237.	5.8	12
210	Early-winter North Atlantic low-level jet latitude biases in climate models: implications for simulated regional atmosphere-ocean linkages. Environmental Research Letters, 2022, 17, 014025.	2.2	1
211	The blue suns of 1831: was the eruption of Ferdinandea, near Sicily, one of the largest volcanic climate forcing events of the nineteenth century?. Climate of the Past, 2021, 17, 2607-2632.	1.3	2
212	Surface warming–induced global acceleration of upper ocean currents. Science Advances, 2022, 8, eabj8394.	4.7	36
213	A decade of cold Eurasian winters reconstructed for the early 19th century. Nature Communications, 2022, 13, 2116.	5.8	16
214	Historical Observations for Improving Reanalyses. Frontiers in Climate, 2022, 4, .	1.3	2
215	Assessing the large-scale drivers of precipitation in the northeastern United States via linear orthogonal decomposition. Climate Dynamics, 2022, 59, 3657-3681.	1.7	1
216	Nearâ€surface soil thermal regime and land–air temperature coupling: A case study over Spain. International Journal of Climatology, 2022, 42, 7516-7534.	1.5	2
217	Influence of warming and atmospheric circulation changes on multidecadal European flood variability. Climate of the Past, 2022, 18, 919-933.	1.3	6
218	Can current reanalyses accurately portray changes in Southern Annular Mode structure prior to 1979?. Climate Dynamics, 2022, 59, 3717-3740.	1.7	16
219	Human Influence on Seasonal Precipitation in Europe. Journal of Climate, 2022, 35, 5215-5231.	1.2	13
220	The Kalman Filter as Post-Processor for Analog Data-Model Assimilation in Paleoclimate Reconstruction. Journal of Climate, 2022, , 1-55.	1.2	0
221	Evaluation of AMIP models from CMIP6 in simulating winter surface air temperature trends over Eurasia during 1998–2012 based on dynamical adjustment. Climate Dynamics, 0, , 1.	1.7	1

#	Article	IF	CITATIONS
222	The Character and Changing Frequency of Extreme California Fire Weather. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
223	Intercomparing atmospheric reanalysis products for hydrodynamic and wave modeling of extreme events during the open-water Arctic season. Arctic, Antarctic, and Alpine Research, 2022, 54, 125-146.	0.4	2
224	Trend and variability in the longâ€ŧerm relationship between Eurasian snow cover and Indian summer monsoon rainfall. International Journal of Climatology, 2022, 42, 7751-7765.	1.5	2
225	Synoptic control over winter snowfall variability observed in a remote site of Apennine Mountains (Italy), 1884–2015. Cryosphere, 2022, 16, 1741-1763.	1.5	8
226	Global hydro-climatological indicators and changes in the global hydrological cycle and rainfall patterns. , 2022, 1, e0000029.		10
227	HomogWS-se: a century-long homogenized dataset of near-surface wind speed observations since 1925 rescued in Sweden. Earth System Science Data, 2022, 14, 2167-2177.	3.7	2
228	Interdecadal Variation of the Antarctic Circumpolar Wave Based on the 20CRV3 Dataset. Atmosphere, 2022, 13, 736.	1.0	1
229	Shift of the storm surge season in Europe due to climate variability. Scientific Reports, 2022, 12, 8210.	1.6	3
230	Forecasting large-scale circulation regimes using deformable convolutional neural networks and global spatiotemporal climate data. Scientific Reports, 2022, 12, 8395.	1.6	4
231	The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nature Climate Change, 2022, 12, 553-557.	8.1	21
232	Performance evaluation and comparison of observed and reanalysis gridded precipitation datasets over Pakistan. Theoretical and Applied Climatology, 2022, 149, 1093-1116.	1.3	6
233	A multi-objective paleo-informed reconstruction of western US weather regimes over the past 600 years. Climate Dynamics, 2023, 60, 339-358.	1.7	3
234	Earlyâ€ŧo‣ate Winter 20th Century North Atlantic Multidecadal Atmospheric Variability in Observations, CMIP5 and CMIP6. Geophysical Research Letters, 2022, 49, .	1.5	4
235	Meteorological data rescue: Citizen science lessons learned from Southern Weather Discovery. Patterns, 2022, 3, 100495.	3.1	4
236	Evidence of regional sea-level rise acceleration for the North Sea. Environmental Research Letters, 2022, 17, 074002.	2.2	8
237	From climate to weather reconstructions. , 2022, 1, e0000034.		4
238	A global inventory of quantitative documentary evidence related to climate since the 15th century. Climate of the Past, 2022, 18, 1407-1428.	1.3	5
239	An online ensemble coupled data assimilation capability for the Community Earth System Model: system design and evaluation. Geoscientific Model Development, 2022, 15, 4805-4830. ————————————————————————————————————	1.3	2

#	Article	IF	CITATIONS
240	Relationship of the Warming of Red Sea Surface Water over 140 Years with External Heat Elements. Journal of Marine Science and Engineering, 2022, 10, 846.	1.2	2
242	A modelling study of the impact of tropical SSTs on the variability and predictable components of seasonal atmospheric circulation in the North Atlantic–European region. Climate Dynamics, 0, , .	1.7	1
243	A review of orbital-scale monsoon variability and dynamics in East Asia during the Quaternary. Quaternary Science Reviews, 2022, 288, 107593.	1.4	13
244	The role of climate datasets in understanding climate extremes. , 2022, , 19-48.		0
245	Local ocean–atmosphere interaction in Indian summer monsoon multi-decadal variability. Climate Dynamics, 0, , .	1.7	0
246	Declining tropical cyclone frequency under global warming. Nature Climate Change, 2022, 12, 655-661.	8.1	64
247	Why has Precipitation Increased in the Last 120ÂYears in Norway?. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
248	Summer temperature changes in Tierra del Fuego since AD 1765: atmospheric drivers and tree-ring reconstruction from the southernmost forests of the world. Climate Dynamics, 0, , .	1.7	0
249	Anthropogenic aerosol impacts on Pacific Coast precipitation in CMIP6 models. , 2022, 1, 015005.		3
250	Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin. Water (Switzerland), 2022, 14, 2178.	1.2	2
251	First dendrochronological studies of Quercus protoroburoides. Dendrochronologia, 2022, , 125984.	1.0	0
252	Temporal Changes in Lethal Temperatures Above 50°C in the Northern Hemisphere. Pure and Applied Geophysics, 2022, 179, 3377-3390.	0.8	4
253	Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming. Nature Communications, 2022, 13, .	5.8	8
255	Predictability of South-Asian monsoon rainfall beyond the legacy of Tropical Ocean Global Atmosphere program (TOGA). Npj Climate and Atmospheric Science, 2022, 5, .	2.6	8
256	Diffuse radiation forcing constraints on gross primary productivity and global terrestrial evapotranspiration. Earth's Future, 0, , .	2.4	6
257	State of the UK Climate 2021. International Journal of Climatology, 2022, 42, 1-80.	1.5	23
258	Role of the Climatological North Pacific High in the North Tropical Atlantic–ENSO Connection. Journal of Climate, 2022, 35, 3215-3226.	1.2	7
259	Centennial Changes in Tropical Cyclone-Induced Precipitation and Wind in Korea. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
260	Decline in Etesian winds after large volcanic eruptions in the last millennium. Weather and Climate Dynamics, 2022, 3, 811-823.	1.2	2
261	Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast. Natural Hazards and Earth System Sciences, 2022, 22, 2419-2432.	1.5	2
262	Northern Hemisphere Extratropical Cyclone Activity in the Twentieth Century Reanalysis Version 3 (20CRv3) and Its Relationship with Continental Extreme Temperatures. Atmosphere, 2022, 13, 1166.	1.0	5
263	Large increases of multi-year droughts in north-western Europe in a warmer climate. Climate Dynamics, 2023, 60, 1781-1800.	1.7	19
264	On the Value of Early Marine Weather Observations: The Malaspina Expedition (1789–94). Bulletin of the American Meteorological Society, 2022, 103, E1684-E1695.	1.7	0
265	Roman Warm Period and Late Antique Little Ice Age in an Earth System Model Large Ensemble. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
266	Sclerochronological records of environmental variability and bivalve growth in the Pacific Arctic. Progress in Oceanography, 2022, 206, 102864.	1.5	2
267	Assessing homogeneity of land surface air temperature observations using sparseâ€input reanalyses. International Journal of Climatology, 2023, 43, 736-760.	1.5	1
268	Forcing for Multidecadal Surface Solar Radiation Trends Over Northern Hemisphere Continents. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
269	Developing ensemble mean models of satellite remote sensing, climate reanalysis, and land surface models. Theoretical and Applied Climatology, 2022, 150, 909-926.	1.3	7
270	Climate change and Arenicola marina: Heat waves and the southern limit of an ecosystem engineer. Estuarine, Coastal and Shelf Science, 2022, 276, 108015.	0.9	5
271	The spatial-temporal patterns of East Asian climate in response to insolation, CO2 and ice sheets during MIS-5. Quaternary Science Reviews, 2022, 293, 107689.	1.4	8
272	A severe weather system accompanied by a stratospheric intrusion during unusual warm winter in 2015 over the South Africa: An initial synoptic analysis. Remote Sensing Applications: Society and Environment, 2022, 28, 100833.	0.8	1
273	A Comparison of Two 20th Century Reanalysis Datasets from the Perspective of Cross-Equatorial Flows. Journal of the Meteorological Society of Japan, 2022, 100, 807-824.	0.7	0
274	Estimating North Atlantic Hurricane Landfall Counts and Intensities in a Non-stationary Climate. Hurricane Risk B, 2022, , 57-86.	0.1	0
275	Drivers of Urban Heat in Hong Kong Over the Past 116 Years. SSRN Electronic Journal, 0, , .	0.4	0
276	Blending TAC and BUFR Marine In Situ Data for ICOADS Near-Real-Time Release 3.0.2. Journal of Atmospheric and Oceanic Technology, 2022, 39, 1943-1959.	0.5	0
278	Coastal Sea Level Observations Record the Twentieth-Century Enhancement of Decadal Climate Variability. Journal of Climate, 2023, 36, 243-260.	1.2	1

#	Article	IF	CITATIONS
280	Comparing extremes indices in recent observational and reanalysis products. Frontiers in Climate, 0, 4, .	1.3	6
281	The Role of the North Atlantic Oscillation for Projections of Winter Mean Precipitation in Europe. Geophysical Research Letters, 2022, 49, .	1.5	6
282	What's the temperature tomorrow? Increasing trends in extreme volatility of daily maximum temperature in Central and Eastern United States (1950–2019). Weather and Climate Extremes, 2022, 38, 100515.	1.6	3
283	Assessment of the oceanic channel dynamics responsible for the IOD-ENSO precursory teleconnection in CMIP5 climate models. Frontiers in Climate, 0, 4, .	1.3	2
284	Interdecadal Changes of the MERRA-2 Incoming Surface Solar Radiation (SSR) and Evaluation against GEBA & BSRN Stations. Applied Sciences (Switzerland), 2022, 12, 10176.	1.3	4
285	Influence of the Atlantic Multidecadal Oscillation on South American Atmosphere Dynamics and Precipitation. Atmosphere, 2022, 13, 1778.	1.0	2
286	Multidecadal Variation in the Seasonal Predictability of Winter PNA and Its Sources. Geophysical Research Letters, 2022, 49, .	1.5	1
287	Impact of Tibetan Plateau vertical heating on the Asian summer monsoon on the interdecadal scale. Atmospheric Science Letters, 2023, 24, .	0.8	2
288	Drivers of urban heat in Hong Kong over the past 116Âyears. Urban Climate, 2022, 46, 101308.	2.4	2
289	ENSO Teleconnections More Uncertain in Regions of Lower Socioeconomic Development. Geophysical Research Letters, 2022, 49, .	1.5	1
290	A ~700 years perspective on the 21st century drying in the eastern part of Europe based on δ18O in tree ring cellulose. Communications Earth & Environment, 2022, 3, .	2.6	11
291	Impact of increased resolution on the representation of the Canary upwelling system in climate models. Geoscientific Model Development, 2022, 15, 8245-8267.	1.3	3
292	Dynamical Properties of Weather Regime Transitions. Mathematics of Planet Earth, 2023, , 223-236.	0.1	1
293	Long-term sea-level variability along the coast of Japan during the 20th century revealed by a 1/10\$\$^{circ }\$\$ OGCM. Journal of Oceanography, 0, , .	0.7	Ο
294	Southern Ocean Solar Reflection Biases in CMIP6 Models Linked to Cloud Phase and Vertical Structure Representations. Geophysical Research Letters, 2022, 49, .	1.5	12
295	Current and future wind energy resources in the North Sea according to CMIP6. Wind Energy Science, 2022, 7, 2373-2391.	1.2	12
296	Climatological changes in East Asian winter monsoon circulation in a warmer future. Atmospheric Research, 2022, , 106593.	1.8	1
297	Reconstruction of Zonal Precipitation From Sparse Historical Observations Using Climate Model Information and Statistical Learning. Geophysical Research Letters, 2022, 49, .	1.5	Ο

#	Article	IF	CITATIONS
298	Statistical reconstruction of daily temperature and sea level pressure in Europe for the severe winter 1788/89. Climate of the Past, 2022, 18, 2545-2565.	1.3	5
299	Declining winter heat loss threatens continuing ocean convection at a Mediterranean dense water formation site. Environmental Research Letters, 2023, 18, 024005.	2.2	4
300	Consolidating historical instrumental observations in southern Australia for assessing pre-industrial weather and climate variability. Climate Dynamics, 2023, 61, 1063-1087.	1.7	1
301	A comparison of East-Asia landfall tropical cyclone in recent reanalysis datasetsbefore and after satellite era. Frontiers in Earth Science, 0, 10, .	0.8	0
302	Orbitalâ€Insolation Controlled <i>Porites</i> Coral δ ¹³ C Seasonality Variations Since the Midâ€Holocene in the Northern South China Sea. Geophysical Research Letters, 2023, 50, .	1.5	2
303	Evaluation of global teleconnections in CMIP6 climate projections using complex networks. Earth System Dynamics, 2023, 14, 17-37.	2.7	4
304	Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Scientific Reports, 2023, 13, .	1.6	15
305	Assessment of ERA5 and ERA-Interim in Reproducing Mean and Extreme Climates over West Africa. Advances in Atmospheric Sciences, 2023, 40, 570-586.	1.9	3
306	Reassessing long-standing meteorological records: an example using the national hottest day in Ireland. Climate of the Past, 2023, 19, 1-22.	1.3	0
307	Centennial analysis in tropical cyclone-induced precipitation in Korea. Weather and Climate Extremes, 2023, 39, 100549.	1.6	3
308	Modern temperatures in central–north Greenland warmest in past millennium. Nature, 2023, 613, 503-507.	13.7	12
309	Multiyear Dry Periods in Southern Africa. International Journal of Climatology, 0, , .	1.5	0
310	Variability and longâ€ŧerm change in Australian monsoon rainfall: A review. Wiley Interdisciplinary Reviews: Climate Change, 2023, 14, .	3.6	8
311	The global historical climate database HCLIM. Scientific Data, 2023, 10, .	2.4	9
312	Challenges with interpreting the impact of Atlantic Multidecadal Variability using SST-restoring experiments. Npj Climate and Atmospheric Science, 2023, 6, .	2.6	5
313	Influence of the Maddenâ€Julian Oscillation on Continental United States Hurricane Landfalls. Geophysical Research Letters, 2023, 50, .	1.5	2
314	Introduction of the BiasAdjustCXX command-line tool for the application of fast and efficient bias corrections in climatic research. SoftwareX, 2023, 22, 101379.	1.2	0
315	Interdecadal variability of the warm Arctic-cold Eurasia pattern linked to the Barents oscillation. Atmospheric Research, 2023, 287, 106712.	1.8	3

	CITATION	KEPORT	
#	Article	IF	CITATIONS
316	Human-induced weakening of the Northern Hemisphere tropical circulation. Nature, 2023, 617, 529-532.	13.7	3
317	HISTORICAL ATMOSPHERIC ANALYSIS BY WEATHER CATEGORY ASSIMILATION USING GAUSSIAN TRANSFORMATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2022, 78, I_691-I_696.	0.0	0
318	Climate impacts on tree-ring stable isotopes across the Northern Hemispheric boreal zone. Science of the Total Environment, 2023, 870, 161644.	3.9	1
319	The first tree-ring reconstrruction of streamflow variability over the last â^1⁄4250Âyears in the Lower Danube. Journal of Hydrology, 2023, 617, 129150.	2.3	1
320	Evolution of total column ozone prior to the era of ozone depletion. Frontiers in Earth Science, 0, 11,	0.8	0
321	Extending ensemble Kalman filter algorithms to assimilate observations with an unknown time offset. Nonlinear Processes in Geophysics, 2023, 30, 37-47.	0.6	0
323	Weakening of the Summer Monsoon Over the Past 150ÂYears Shown by a Treeâ€Ring Record From Shandong, Eastern China, and the Potential Role of North Atlantic Climate. Paleoceanography and Paleoclimatology, 2023, 38, .	1.3	1
324	Reconstruction of daily global solar radiation under allâ€sky and cloudâ€free conditions in Badajoz (Spain) since 1929. International Journal of Climatology, 2023, 43, 3523-3537.	1.5	1
325	Large Ensemble Particle Filter for Spatial Climate Reconstructions Using a Linear Inverse Model. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	1
326	Two Methods for Data Assimilation of Wind Direction. Tellus, Series A: Dynamic Meteorology and Oceanography, 2023, 75, 145-158.	0.8	0
328	Editorial: Recent advances in climate reanalysis. Frontiers in Climate, 0, 5, .	1.3	0
329	A Storyline Approach to the June 2021 Northwestern North American Heatwave. Geophysical Research Letters, 2023, 50, .	1.5	6
330	Water cycle changes in reanalyses: a complementary framework. Scientific Reports, 2023, 13, .	1.6	4
331	Quantitative Long-Term Monitoring (1890–2020) of Morphodynamic and Land-Cover Changes of a LIA Lateral Moraine Section. Geosciences (Switzerland), 2023, 13, 95.	1.0	1
332	Indian Ocean variability changes in the Paleoclimate Modelling Intercomparison Project. Climate of the Past, 2023, 19, 681-701.	1.3	3
333	A 258-year-long data set of temperature and precipitation fields for Switzerland since 1763. Climate of the Past, 2023, 19, 703-729.	1.3	2
334	Seasonal and regional contrasts of future trends in interannual arctic climate variability. Climate Dynamics, 0, , .	1.7	1
335	Volcanic contribution to the 1990s North Pacific climate shift in winter. Scientific Reports, 2023, 13, .	1.6	0

#	Article	IF	CITATIONS
336	Acceleration of U.S. Southeast and Gulf coast sea-level rise amplified by internal climate variability. Nature Communications, 2023, 14, .	5.8	21
337	Skillful Coupled Atmosphereâ€Ocean Forecasts on Interannual to Decadal Timescales Using a Linear Inverse Model. Earth and Space Science, 2023, 10, .	1.1	0
338	Trends and variability in the Southern Annular Mode over the Common Era. Nature Communications, 2023, 14, .	5.8	11
378	Modern synoptic and late Quaternary climate analog approaches in paleoclimatology. , 2023, , .		0
405	Circulation Responses in the Southern Eastern Mediterranean to Large Volcanic Eruptions: The Katmai Eruption. , 0, , .		0
407	Simulating Daily Soil Temperature in Egypt Using a High-Resolution Regional Climate Model: Sensitivity to Soil Moisture and Temperature Initial Conditions. , 0, , .		0