Understanding Food Loss and Wasteâ€"Why Are We Lo

Foods 8, 297 DOI: 10.3390/foods8080297

Citation Report

#	Article	IF	CITATIONS
1	What Is Missing in Food Loss and Waste Analyses? A Close Look at Fruit and Vegetable Wholesale Markets. Sustainability, 2019, 11, 7146.	1.6	3
2	A Worldwide Hotspot Analysis on Food Loss and Waste, Associated Greenhouse Gas Emissions, and Protein Losses. Sustainability, 2020, 12, 7488.	1.6	23
3	Risk Assessment and Monitoring of Green Logistics for Fresh Produce Based on a Support Vector Machine. Sustainability, 2020, 12, 7569.	1.6	11
4	Engineered food supplement excipients from bitter cassava for minimisation of cassava processing waste in environment. Future Foods, 2020, 1-2, 100003.	2.4	4
5	Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods, 2020, 9, 1438.	1.9	179
6	Gut homeostasis and microbiota under attack: impact of the different types of food contaminants on gut health. Critical Reviews in Food Science and Nutrition, 2022, 62, 738-763.	5.4	31
7	Food-Loss Control at the Macronutrient Level: Protein Inventory for the Norwegian Farmed Salmon Production System. Foods, 2020, 9, 1095.	1.9	2
8	<p>Patient Satisfaction and Food Waste in Obstetrics And Gynaecology Wards</p> . Patient Preference and Adherence, 2020, Volume 14, 1381-1388.	0.8	3
9	Tackling Food Waste: Impact of German Consumer Behaviour on Food in Chilled Storage. Foods, 2020, 9, 1462.	1.9	4
10	Segmentation of Polish Households Taking into Account Food Waste. Foods, 2020, 9, 379.	1.9	13
11	Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan. Resources, 2020, 9, 53.	1.6	25
12	Bio-Mediated Synthesis of Reduced Graphene Oxide Nanoparticles from Chenopodium album: Their Antimicrobial and Anticancer Activities. Nanomaterials, 2020, 10, 1096.	1.9	18
13	Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 2020, 154, 112621.	2.5	59
14	Global Vegetable Intake and Supply Compared to Recommendations: A Systematic Review. Nutrients, 2020, 12, 1558.	1.7	85
15	Insect Farming for Feed and Food Production from a Circular Business Model Perspective. Sustainability, 2020, 12, 5418.	1.6	75
16	Utilization of text mining as a big data analysis tool for food science and nutrition. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 875-894.	5.9	108
17	Losses in the Grain Supply Chain: Causes and Solutions. Sustainability, 2020, 12, 2342.	1.6	124
18	Biodegradable Plastics: Standards, Policies, and Impacts. ChemSusChem, 2021, 14, 56-72.	3.6	186

#	Article	IF	CITATIONS
19	Envisioning IoT applications in a smart city to underpin an effective municipal strategy: The smartbin project. SHS Web of Conferences, 2021, 102, 04020.	0.1	0
20	Key traits for ruminant livestock across diverse production systems in the context of climate change: perspectives from a global platform of research farms. Reproduction, Fertility and Development, 2021, 33, 1.	0.1	15
21	Traditional and New Sustainable Production Methods in Food Industry. , 2021, , 1-12.		0
22	Toward sustainable desalination using food waste: capacitive desalination with bread-derived electrodes. RSC Advances, 2021, 11, 9628-9637.	1.7	6
23	EU Municipal Organic Wastes Management and Its Implementation Prospects in Ukraine. Environmental and Climate Technologies, 2021, 25, 205-221.	0.5	2
24	Plant compounds for the potential reduction of food waste – a focus on antimicrobial peptides. Critical Reviews in Food Science and Nutrition, 2022, 62, 4242-4265.	5.4	5
25	Food Banking in Reducing Food Loss and Waste. IBAD Sosyal Bilimler Dergisi, 2021, , 291-310.	0.3	2
26	Fruit Quality Monitoring with Smart Packaging. Sensors, 2021, 21, 1509.	2.1	62
27	Evaluation of Food Waste at a Portuguese Geriatric Institution. Sustainability, 2021, 13, 2452.	1.6	3
28	Food Waste and Social Practices in Australian Households. Sustainability, 2021, 13, 3377.	1.6	19
29	Solid-state anaerobic co-digestion of food waste and cardboard in a pilot-scale auto-fed continuous stirred tank reactor system. Journal of Cleaner Production, 2021, 289, 125775.	4.6	15
30	Novel extraction methods and potential applications of polyphenols in fruit waste: a review. Journal of Food Measurement and Characterization, 2021, 15, 3250-3261.	1.6	18
31	Sustainable Use of Bioactive Compounds from Solanum Tuberosum and Brassicaceae Wastes and by-Products for Crop Protection—A Review. Molecules, 2021, 26, 2174.	1.7	17
32	Analysis of Promotion Policies for the Valorization of Food Waste from Industrial Sources in Taiwan. Fermentation, 2021, 7, 51.	1.4	8
33	Microbiota of Chicken Breast and Thigh Fillets Stored under Different Refrigeration Temperatures Assessed by Next-Generation Sequencing. Foods, 2021, 10, 765.	1.9	17
34	Technology adoption to reduce the harvesting losses and wastes in agriculture. Clean Technologies and Environmental Policy, 2021, 23, 1947-1963.	2.1	8
35	Social Innovation for Food Security and Tourism Poverty Alleviation: Some Examples From China. Frontiers in Psychology, 2021, 12, 614469.	1.1	7
36	The Influence of Extruded Sugar Beet Pulp on Cookies' Nutritional, Physical and Sensory Characteristics. Sustainability, 2021, 13, 5317.	1.6	4

	CHATION	REPORT	
#	Article	IF	CITATIONS
37	Food Loss and Waste Prevention Strategies from Farm to Fork. Sustainability, 2021, 13, 5443.	1.6	61
38	The Implications of Post-Harvest Storage Time and Temperature on the Phytochemical Composition and Quality of Japanese-Styled Green Tea Grown in Australia: A Food Loss and Waste Recovery Opportunity. Beverages, 2021, 7, 25.	1.3	5
39	Application of antimicrobial plates in food packaging as an alternative way for food waste minimisation. International Journal of Sustainable Engineering, 2021, 14, 600-608.	1.9	3
40	Food Wastes Management: Practice of Composting Process at the IIUM Kuantan Campus. , 2021, , 207-226.		2
41	Metabolomics as a Tool to Study Underused Soy Parts: In Search of Bioactive Compounds. Foods, 2021, 10, 1308.	1.9	16
42	Food Systems and Land Use. , 2021, , 310-359.		0
43	Effective Management Tools for Solving the Problem of Poverty in Relation to Food Waste in Context of Integrated Management of Energy. Energies, 2021, 14, 4245.	1.6	5
44	Food waste management: an example from university refectory. British Food Journal, 2021, ahead-of-print, .	1.6	3
45	Technologies for disinfection of food grains: Advances and way forward. Food Research International, 2021, 145, 110396.	2.9	25
46	A modern cloud based recycling system for smart cities. , 2021, , .		1
47	Recommendation of Good Practice in the Food-Processing Industry for Preventing and Handling Food Loss and Waste. Sustainability, 2021, 13, 9569.	1.6	4
48	Effect of phenolic acids on the properties of films from Poly (vinyl alcohol) of different molecular characteristics. Food Packaging and Shelf Life, 2021, 29, 100711.	3.3	14
49	Transitional Pathways towards Achieving a Circular Economy in the Water, Energy, and Food Sectors. Sustainability, 2021, 13, 9978.	1.6	12
50	Maize storage losses and its main determinants in China. China Agricultural Economic Review, 2021, ahead-of-print, .	1.8	3
51	Food, energy or biomaterials? Policy coherence across agro-food and bioeconomy policy domains in the EU. Environmental Science and Policy, 2021, 123, 21-30.	2.4	30
52	Blockchain in food supply chains: a literature review and synthesis analysis of platforms, benefits and challenges. International Journal of Production Research, 2023, 61, 3527-3546.	4.9	75
53	Promotion Strategy of Policy against Food Waste (PAFW): The Perspective on Evolutionary Game between Local Government and Large Supermarkets. Complexity, 2021, 2021, 1-14.	0.9	5
54	Managing soils of environmental significance: A critical review. Journal of Hazardous Materials, 2021, 417, 125990.	6.5	17

#	Article		CITATIONS
55	Magnitude, Causes and Scope for Reducing Food Losses in the Baking and Confectionery Industry—A Multi-Method Approach. Agriculture (Switzerland), 2021, 11, 936.	1.4	20
56	Investigating logistics-related food loss drivers: A study on fresh fruit and vegetable supply chain. Journal of Cleaner Production, 2021, 318, 128561.	4.6	42
57	Recent advances in thermoplastic starches for food packaging: A review. Food Packaging and Shelf Life, 2021, 30, 100743.	3.3	84
58	Healthy food innovation in sustainable food system 4.0: integration of entrepreneurship, research, and education. Current Opinion in Food Science, 2021, 42, 215-223.	4.1	11
59	Food Loss and Waste. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 90-108.	0.3	5
60	REDUCING FOOD WASTE THROUGH LEAN AND SUSTAINABLE OPERATIONS: A CASE STUDY FROM THE POULTRY INDUSTRY. RAE Revista De Administracao De Empresas, 2021, 61, .	0.1	4
61	How might broad adoption of blockchainâ€based traceability impact the <scp>U.S.</scp> fresh produce supply chain?. Applied Economic Perspectives and Policy, 2022, 44, 219-236.	3.1	36
62	Lactic acid production from food waste using the lactogenic <i>Escherichia coli</i> strain <scp>JU15</scp> : optimization of reducing sugar recovery. Journal of Chemical Technology and Biotechnology, 2022, 97, 668-675.	1.6	3
63	A Systematic Review of Factors Affecting Food Loss and Waste and Sustainable Mitigation Strategies: A Logistics Service Providers' Perspective. Sustainability, 2021, 13, 11374.	1.6	8
64	Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies. Nature Food, 2021, 2, 862-872.	6.2	10
65	Gleaner-Farmer Relationships: A Study of Recruitment and Relationship Development. Journal of Agriculture, Food Systems, and Community Development, 0, , 1-14.	2.4	2
66	PRELIMINARY STUDY ON POTENTIAL EDIBLE COATINGS DERIVED FROM CARBOXYL METHYLCELLULOSE AND FUNGI CULTURED METABOLITES ON THE SHELF-LIFE EXTENSION OF SWEET-ORANGE (CITRUS SINENSIS). Journal of Experimental Biology and Agricultural Sciences, 2021, 9, 663-671.	0.1	0
67	Supply chain analysis of import fresh fruit business in Thailand using the supply chain operations reference (scor) model. E3S Web of Conferences, 2021, 316, 02014.	0.2	2
68	Antifungal properties of hybrid films containing the essential oil of Schinus molle: Protective effect against postharvest rot of tomato. Food Control, 2022, 134, 108766.	2.8	17
70	The Impact of Torrefaction Temperature on the Physical-Chemical Properties of Residual Exotic Fruit (Avocado, Mango, Lychee) Seeds. Energies, 2022, 15, 612.	1.6	4
71	Mycoprotein: A futuristic portrayal. , 2022, , 287-303.		2
72	Biological Approaches for Extraction of Bioactive Compounds From Agro-industrial By-products: A Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 802543.	2.0	39
73	Expectations for household food security in the coming decades: A global scenario. , 2022, , 107-131.		4

#	Article	IF	CITATIONS
74	Cu-based nanoparticles as pesticides: Applications and mechanism of management of insect pests. , 2022, , 203-218.		1
75	Meat alternatives. , 2022, , 351-373.		2
76	An Artificial Intelligence Approach Toward Food Spoilage Detection and Analysis. Frontiers in Public Health, 2021, 9, 816226.	1.3	19
77	Economic Impact of Temperature Control during Food Transportation—A COVID-19 Perspective. Foods, 2022, 11, 467.	1.9	20
78	Utilization of Sake lees as Broiler Feedstuff and its Effects on Growth Performance and Intestinal Immunity. Journal of Poultry Science, 2022, 59, 247-259.	0.7	2
79	Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.). Resources, 2022, 11, 21.	1.6	8
80	Methods used for extraction of plant volatiles have potential to preserve truffle aroma: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1677-1701.	5.9	10
81	Future foods: Alternative proteins, food architecture, sustainable packaging, and precision nutrition. Critical Reviews in Food Science and Nutrition, 2023, 63, 6423-6444.	5.4	13
82	Sustainable Use of Apple Pomace (AP) in Different Industrial Sectors. Materials, 2022, 15, 1788.	1.3	39
83	A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes, 2022, 10, 381.	1.3	8
84	Integrated sustainable waste management in densely populated cities: The case of Hong Kong. , 2022, 2, 100014.		13
85	Preparation and application of an olfactory visualization freshness sensor array based on microfluid paperâ€based chip. Journal of Food Processing and Preservation, 2022, 46, .	0.9	4
86	Plate Waste in School Catering in Rezekne, Latvia. Sustainability, 2022, 14, 4046.	1.6	2
87	The dark side of convenience: how to reduce food waste induced by food delivery apps. British Food Journal, 2023, 125, 205-225.	1.6	21
88	Food fermentation – Significance to public health and sustainability challenges of modern diet and food systems. International Journal of Food Microbiology, 2022, 371, 109666.	2.1	17
89	Physicochemical properties and combustion kinetics of food waste derived hydrochars. Journal of King Saud University - Science, 2022, 34, 101941.	1.6	12
90	Exploring the green waste management problem in food supply chains: A circular economy context. Journal of Cleaner Production, 2022, 351, 131355.	4.6	33
91	Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 198-226.	5.9	58

		REPORT	
#	Article	IF	CITATIONS
92	High-Pressure Processing for Sustainable Food Supply. Sustainability, 2021, 13, 13908.	1.6	37
93	A Proposed Architecture: Detecting Freshness of Vegetables using Internet of Things (IoT) & Deep Learning Prediction Algorithm. , 2021, , .		6
94	Agri-Food Waste Reduction and Utilization: A Sustainability Perspective. , 2022, 65, 471-479.		4
95	The Clean Your Plate Campaign: Resisting Table Food Waste in an Unstable World. Sustainability, 2022, 14, 4699.	1.6	12
96	Chemiresistive NH ₃ detection at sub-zero temperatures by polypyrrole- loaded Sn _{1â^'<i>x</i>} Sb _{<i>x</i>} O ₂ nanocubes. Materials Horizons, 2022, 9, 1750-1762.	6.4	12
97	Phosphorus Fertilizers from Sewage Sludge Ash and Animal Blood as an Example of Biobased Environment-Friendly Agrochemicals: Findings from Field Experiments. Molecules, 2022, 27, 2769.	1.7	1
98	Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2022, 2, 100122.	1.4	70
99	Trends and Opportunities of Bivalve Shells' Waste Valorization in a Prospect of Circular Blue Bioeconomy. Resources, 2022, 11, 48.	1.6	21
101	An Integrated Framework for Regional Assessment of Water, Energy, and Nutrients from Food Loss of Selected Crops in the Lower Fraser Valley, Canada. Agricultural Sciences, 2022, 13, 633-657.	0.2	1
102	An Extensive Analysis of Understanding Consumer Intention towards Reduction of Food Waste. International Journal of Management, Technology, and Social Science, 0, , 400-416.	0.0	4
103	Development of Bioplastic and Biodegradable Plastics. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 2022, , 249-283.	0.1	0
104	Energy Recovery of Expired Pistachios From Pyrolysis and CO2-Assisted Gasification. Journal of Energy Resources Technology, Transactions of the ASME, 2023, 145, .	1.4	5
105	Nanocomposites using clove (Syzygium aromaticum) chemical constituents. , 2022, , 203-208.		0
106	Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Frontiers in Microbiology, 0, 13, .	1.5	10
107	The role of collaboration in tackling food loss and waste: Salient stakeholder perspective. Journal of Cleaner Production, 2022, 367, 133126.	4.6	6
108	How the COVID-19 Pandemic Has Impacted Food Loss and Waste: Lessons Learned and Future Challenges. , 0, , .		0
109	Lactic acid from mixed food waste fermentation using an adapted inoculum: Influence of pH and temperature regulation on yield and product spectrum. Journal of Cleaner Production, 2022, 373, 133716.	4.6	14
110	Combining the Water–Energy–Food and Food Waste–Food Loss–Food Security Nexuses to Reduce Resource Waste. Energies, 2022, 15, 5866.	1.6	8

#	Article		CITATIONS
111	Food waste measurement in a chain of industrial restaurants in Brazil. Journal of Cleaner Production, 2022, 369, 133351.	4.6	4
112	Portable food diagnostic devices and methods: A review. Journal of Food Process Engineering, 2022, 45, .	1.5	3
113	Circular economy and food waste in supply chains: a literature review. International Journal of Logistics Research and Applications, 2023, 26, 589-614.	5.6	3
114	Analysis of the Problem of Waste in Relation to Food Consumers. Sustainability, 2022, 14, 11126.	1.6	5
115	Food Security: 3D Dynamic Display and Early Warning Platform Construction and Security Strategy. International Journal of Environmental Research and Public Health, 2022, 19, 11169.	1.2	1
116	Food and agricultural wastes-derived biochars in combination with mineral fertilizer as sustainable soil amendments to enhance soil microbiological activity, nutrient cycling and crop production. Frontiers in Plant Science, 0, 13, .	1.7	6
117	How to improve food waste management in hospitals through focussing on the four most common measures for reducing plate waste. International Journal of Health Planning and Management, 2023, 38, 296-316.	0.7	5
118	Food waste and associated carbon footprint: evidence from Chinese universities. Ecosystem Health and Sustainability, 2022, 8, .	1.5	8
119	<i>Hornification</i> : Lessons learned from the wood industry for attenuating this phenomenon in plantâ€based dietary fibers from food wastes. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 4-45.	5.9	10
120	Sustainable production and consumption of animal products. Current Opinion in Environmental Science and Health, 2022, 30, 100404.	2.1	7
121	Seafood Sustainability Supply Chain Trends and Challenges in Japan: Marine Stewardship Council Fisheries and Chain of Custody Certificates. Sustainability, 2022, 14, 13523.	1.6	3
122	A Perspective on Emerging Inter-Disciplinary Solutions for the Sustainable Management of Food Waste. Applied Sciences (Switzerland), 2022, 12, 11399.	1.3	0
123	Porous Biodegradable Sodium Alginate Composite Fortified with Hibiscus Sabdariffa L. Calyx Extract for the Multifarious Biological Applications and Extension of Climacteric Fruit Shelf-Life. Journal of Polymers and the Environment, 2023, 31, 922-938.	2.4	10
124	Microbial spoilage mechanisms of vacuum-packed lamb meat: A review. International Journal of Food Microbiology, 2023, 387, 110056.	2.1	1
125	Food Waste Causes in Fruit and Vegetables Supply Chains. Transportation Research Procedia, 2022, 67, 118-130.	0.8	1
126	Valorization of Vegetable Waste from Leek, Lettuce, and Artichoke to Produce Highly Concentrated Lignocellulose Micro- and Nanofibril Suspensions. Nanomaterials, 2022, 12, 4499.	1.9	4
127	Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences (Switzerland), 2023, 13, 623.	1.3	21
128	An Organisational-Life Cycle Assessment Approach for Internet of Things Technologies Implementation in a Human Milk Bank. Sustainability, 2023, 15, 1137.	1.6	6

#	Article	IF	CITATIONS
129	Environmentally friendly, antibacterial materials from recycled keratin incorporated electrospun PLA films with tunable properties. European Polymer Journal, 2023, 185, 111804.	2.6	9
130	A Systematic Review of Real-Time Monitoring Technologies and Its Potential Application to Reduce Food Loss and Waste: Key Elements of Food Supply Chains and IoT Technologies. Sustainability, 2023, 15, 614.	1.6	12
131	Life Cycle Assessment Tool for Food Supply Chain Environmental Evaluation. Sustainability, 2023, 15, 718.	1.6	3
132	Biological and pharmaceutical activities of polysaccharides. , 2023, , 575-607.		0
133	Renovation of Agro-Waste for Sustainable Food Packaging: A Review. Polymers, 2023, 15, 648.	2.0	21
134	A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environmental Au, 2023, 3, 58-75.	3.3	38
135	Bioactive Peptides from Protein-Rich Waste. Sustainable Development and Biodiversity, 2023, , 139-166.	1.4	0
136	Developing a Conceptual Framework Model for Effective Perishable Food Cold-Supply-Chain Management Based on Structured Literature Review. Sustainability, 2023, 15, 4907.	1.6	4
137	Smart packaging â´' A pragmatic solution to approach sustainable food waste management. Food Packaging and Shelf Life, 2023, 36, 101044.	3.3	17
138	Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants, 2023, 12, 861.	2.2	10
139	Enhancement of bioactives, functional and nutraceutical attributes of banana peels and de-oiled groundnut cake through submerged fermentation employing Calocybe indica. Food Bioscience, 2023, 53, 102530.	2.0	2
140	Valorization of Food Waste as Animal Feed: A Step towards Sustainable Food Waste Management and Circular Bioeconomy. Animals, 2023, 13, 1366.	1.0	17
141	Food waste valorization applying the biorefinery concept in the Colombian context: Pre-feasibility analysis of the organic kitchen food waste processing. Biochemical Engineering Journal, 2023, 194, 108864.	1.8	6
142	Combating food spoilage and pathogenic microbes via bacteriocins: A natural and eco-friendly substitute to antibiotics. Food Control, 2023, 149, 109710.	2.8	13
143	Exploring the Dynamic Effects of Agricultural Subsidies on Food Loss: Implications for Sustainable Food Security. Sustainability, 2023, 15, 2886.	1.6	2
144	Environmental and Yield Comparison of Quick Extraction Methods for Caffeine and Chlorogenic Acid from Spent Coffee Grounds. Foods, 2023, 12, 779.	1.9	1
145	Optimizing the Distribution Network of a Bakery Facility: A Reduced Travelled Distance and Food-Waste Minimization Perspective. Sustainability, 2023, 15, 3654.	1.6	5
146	Capsicum Waste as a Sustainable Source of Capsaicinoids for Metabolic Diseases. Foods, 2023, 12, 907.	1.9	5

#	Article	IF	CITATIONS
147	Lauric arginate ethyl ester: An update on the antimicrobial potential and application in the food systems. Frontiers in Microbiology, 0, 14, .	1.5	2
148	Integrating Multi-Criteria Techniques in Life-Cycle Tools for the Circular Bioeconomy Transition of Agri-Food Waste Biomass: A Systematic Review. Sustainability, 2023, 15, 5026.	1.6	11
149	Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. Fermentation, 2023, 9, 274.	1.4	9
150	Urban circular carbon economy through electrochemically influenced microbiomes. One Earth, 2023, 6, 278-289.	3.6	Ο
151	Antioxidant Activity of Peptide Fractions from Chickpea Globulin Obtained by Pulsed Ultrasound Pretreatment. Horticulturae, 2023, 9, 415.	1.2	2
152	Teenagers' Intention on Sustainable Development- A Food Delivery App – Based Analysis. SDMIMD Journal of Management, 0, , 79-89.	0.1	Ο
153	The way forward to produce nutraceuticals from agri-food processing residues: obstacle, solution, and possibility. Journal of Food Science and Technology, 2024, 61, 429-443.	1.4	0
154	Multiple factors affecting occurrence of soft scald and fungal decay in apple during storage. Postharvest Biology and Technology, 2023, 201, 112344.	2.9	1
155	The status of the global food waste mitigation policies: experience and inspiration for China. Environment, Development and Sustainability, 0, , .	2.7	7
156	Investigation of the Factors That Contribute to Fresh Fruit and Vegetable Losses in the Australian Fresh Food Supply Chain. Processes, 2023, 11, 1154.	1.3	1
157	Effects of the Eating Habits of Romanian Residents on the Water Footprint. Water (Switzerland), 2023, 15, 1622.	1.2	1
160	Resource Efficiency for Sustainable Agriculture and Food Value Chains in India: The Case of Food Loss and Waste. , 2023, , 87-103.		1
164	Effect of evaporative cooling structures on the sensory attributes of fruits and vegetables and consumer acceptability. , 2023, , 155-170.		0
179	Utilization of by-products for preparation of Pickering particles. European Food Research and Technology, 2023, 249, 3069-3083.	1.6	1
184	Postharvest waste management and circular bioeconomy: innovations, gaps, and opportunities. , 2023, , 19-58.		0
188	Applying Circular Economy Thinking to Food Systems in the Hospitality Industry in Nigeria. Sustainable Development Goals Series, 2023, , 359-380.	0.2	Ο
190	Application of Swimlane Modelling for the Digital Transformation of Vegetable Supply Chains: A Case Study from a Developing Economy. Lecture Notes in Mechanical Engineering, 2024, , 195-208.	0.3	0
191	AgriTera: Accurate Non-Invasive Fruit Ripeness Sensing via Sub-Terahertz Wireless Signals. , 2023, , .		0

		CITATION REPORT	
#	Article	IF	Citations
202	Traditional and New Sustainable Production Methods in Food Industry. , 2023, , 3743-3754.		0
204	Sustainable chitosan nanoemulsion coatings/films with agri-food byproducts: advances, composit production methods and applications in food preservation. Journal of Food Measurement and Characterization, 2024, 18, 1627-1649.	on, 1.6	Ο
210	Feeding the Globe Nutritious Food in 2050: Obligations and Ethical Choices. , 2024, , 649-668.		0
215	Metabolomics application for food quality improvement and reduction of food loss. AIP Conference Proceedings, 2024, , .	ce 0.3	Ο
218	Value-Added Product Development Utilising the Food Wastes. , 2024, , 287-301.		0
223	Wastes from Fruits and Vegetables Processing Industry for Value-Added Products. , 2024, , 127-1	46.	0
225	Food Waste to Food and Nutrition Security—Need of the Hour. , 2024, , 3-16.		0