Committed emissions from existing energy infrastructu

Nature 572, 373-377 DOI: 10.1038/s41586-019-1364-3

Citation Report

#	Article	IF	CITATIONS
1	Costs to achieve target net emissions reductions in the US electric sector using direct air capture. Environmental Research Letters, 2019, 14, 084013.	5.2	9
2	A New Approach to Partnerships for SDG Transformations. Sustainability, 2019, 11, 4947.	3.2	85
3	Induced Energy-Saving Efficiency Improvements Amplify Effectiveness of Climate Change Mitigation. Joule, 2019, 3, 2103-2119.	24.0	11
4	Committed emissions and the risk of stranded assets from power plants in Latin America and the Caribbean. Environmental Research Letters, 2019, 14, 124096.	5.2	11
5	Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China. Sustainability, 2019, 11, 5537.	3.2	0
6	The Role of "No Net Loss―Policies in Conserving Biodiversity Threatened by the Global Infrastructure Boom. One Earth, 2019, 1, 305-315.	6.8	71
7	Modeling the low-carbon transition of the European energy system - A quantitative assessment of the stranded assets problem. Energy Strategy Reviews, 2019, 26, 100422.	7.3	38
8	Deep Reductions of Committed Emissions from Existing Power Infrastructure: Potential Paths in the United States and China. Environmental Science & amp; Technology, 2019, 53, 14097-14098.	10.0	4
9	Physical and policy pathways to netâ€zero emissions industry. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e633.	8.1	75
10	Refined assessment of size-fractioned particulate matter (PM2.5/PM10/PMtotal) emissions from coal-fired power plants in China. Science of the Total Environment, 2020, 706, 135735.	8.0	23
11	Early transformation of the Chinese power sector to avoid additional coal lock-in. Environmental Research Letters, 2020, 15, 024007.	5.2	23
12	Carbon dioxide emissions continue to grow amidst slowly emerging climate policies. Nature Climate Change, 2020, 10, 3-6.	18.8	324
13	A becoming China and the assisted maturity of the EU: Assessing the factors determining their energy metabolic patterns. Energy Strategy Reviews, 2020, 32, 100562.	7.3	8
14	Incorporating Health Cobenefits in Decision-Making for the Decommissioning of Coal-Fired Power Plants in China. Environmental Science & amp; Technology, 2020, 54, 13935-13943.	10.0	18
15	Flexible CO2 capture in China. International Journal of Greenhouse Gas Control, 2020, 101, 103140.	4.6	10
16	Models on the wrong track: Model-based electricity supply scenarios in Switzerland are not aligned with the perspectives of energy experts and the public. Renewable and Sustainable Energy Reviews, 2020, 134, 110297.	16.4	31
17	Committed Emissions of the U.S. Power Sector, 2000–2018. AGU Advances, 2020, 1, e2020AV000162.	5.4	8
18	Enabling a Rapid and Just Transition away from Coal in China. One Earth, 2020, 3, 187-194.	6.8	83

#	Article	IF	CITATIONS
19	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420
20	Linking carbon market and electricity market for promoting the grid parity of photovoltaic electricity in China. Energy, 2020, 211, 118924.	8.8	31
21	Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate. Journal of Physical Chemistry C, 2020, 124, 23106-23115.	3.1	5
22	Opportunities and challenges in using remaining carbon budgets to guide climate policy. Nature Geoscience, 2020, 13, 769-779.	12.9	68
23	Rethinking Reef Island Stability in Relation to Anthropogenic Sea Level Rise. Earth's Future, 2020, 8, e2020EF001525.	6.3	11
24	Fossil electricity retirement deadlines for a just transition. Science, 2020, 370, 1171-1173.	12.6	56
25	Early decarbonisation of the European energy system pays off. Nature Communications, 2020, 11, 6223.	12.8	123
26	Controllable CO ₂ Capture in Metal–Organic Frameworks: Making Targeted Active Sites Respond to Light. Industrial & Engineering Chemistry Research, 2020, 59, 21894-21900.	3.7	18
27	Process design and economic assessment of butanol production from lignocellulosic biomass via chemical looping gasification. Bioresource Technology, 2020, 316, 123906.	9.6	29
28	The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nature Communications, 2020, 11, 3777.	12.8	97
29	Dynamic energy and carbon footprints of urban transportation infrastructures: Differentiating between existing and newly-built assets. Applied Energy, 2020, 277, 115554.	10.1	23
30	Water resource synergy management in response to climate change in China: From the perspective of urban metabolism. Resources, Conservation and Recycling, 2020, 163, 105095.	10.8	44
31	Chinese Overseas Development Financing of Electric Power Generation: A Comparative Analysis. One Earth, 2020, 3, 491-503.	6.8	33
32	Unraveling the political economy of coal: Insights from Vietnam. Energy Policy, 2020, 147, 111860.	8.8	33
33	Portugal's airport plans threaten wetlands. Science, 2020, 369, 1440-1440.	12.6	14
34	Chemistry of Class 1 CRISPR-Cas effectors: Binding, editing, and regulation. Journal of Biological Chemistry, 2020, 295, 14473-14487.	3.4	49
35	Chlorine-promoted perovskite nanocomposite as a high-performance oxygen transfer agent for chemical looping methane-assisted CO2 splitting. Chemical Engineering Journal Advances, 2020, 4, 100052.	5.2	5
36	Moving toward Net-Zero Emissions Requires New Alliances for Carbon Dioxide Removal. One Earth, 2020, 3, 145-149.	6.8	61

#	Article	IF	CITATIONS
37	Determinants of Different Types of Positive Environmental Behaviors: An Analysis of Public and Private Sphere Actions. Sustainability, 2020, 12, 8547.	3.2	9
38	Hydrological limits to carbon capture and storage. Nature Sustainability, 2020, 3, 658-666.	23.7	63
39	Editors' Choice—Review—Solid-State Electrochemical Carbon Dioxide Sensors: Fundamentals, Materials and Applications. Journal of the Electrochemical Society, 2020, 167, 037567.	2.9	32
40	Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmospheric Chemistry and Physics, 2020, 20, 5729-5757.	4.9	117
41	Three prongs for prudent climate policy. Southern Economic Journal, 2020, 87, 3-29.	2.1	5
42	Shipping and the Paris climate agreement: a focus on committed emissions. BMC Energy, 2020, 2, .	6.3	21
43	Thermodynamic modeling of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mtext>CO</mml:mtext><mml:mn>2</mml:mn></mml:msub> solubility in saline water using NVT flash with the cubic-Plus-association equation of state. Fluid Phase Equilibria, 2020, 520, 112657.</mml:mrow></mml:math>	2.5	ow>16
44	Early retirement of power plants in climate mitigation scenarios. Environmental Research Letters, 2020, 15, 094064.	5.2	38
45	Transforming the coal and steel nexus for China's ecoâ€civilization: Interplay between rail and energy infrastructure. Journal of Industrial Ecology, 2020, 24, 1352-1363.	5.5	7
46	Is there warming in the pipeline? A multi-model analysis of the Zero Emissions Commitment from CO ₂ . Biogeosciences, 2020, 17, 2987-3016.	3.3	87
47	Deconvolution of the Particle Size Effect on CO ₂ Hydrogenation over Iron-Based Catalysts. ACS Catalysis, 2020, 10, 7424-7433.	11.2	108
48	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	10.3	140
49	Scenarios science needed in UNFCCC periodic review. Nature Climate Change, 2020, 10, 272-272.	18.8	4
50	Coal-exit health and environmental damage reductions outweigh economic impacts. Nature Climate Change, 2020, 10, 308-312.	18.8	94
51	Can Steam- and CO-Rich Streams Be Produced Sequentially in the Isothermal Chemical Looping Super-Dry Reforming Scheme?. ACS Omega, 2020, 5, 5401-5406.	3.5	1
52	Emission Regulation of Markets with Sluggish Supply Structures. Environmental and Resource Economics, 2020, 77, 1-33.	3.2	0
53	Mitigation Life Cycle Assessment: Best Practices from LCA of Energy and Water Infrastructure That Incurs Impacts to Mitigate Harm. Energies, 2020, 13, 992.	3.1	9
54	Emissions in the stream: estimating the greenhouse gas impacts of an oil and gas boom. Environmental Research Letters, 2020, 15, 014004.	5.2	17

	CITATION R	EPORT	
#	Article	IF	CITATIONS
55	Revoking coal mining permits: an economic and legal analysis. Climate Policy, 2020, 20, 980-996.	5.1	8
56	"Carbon pricing―special issue in the European economic review. European Economic Review, 2020, 127, 103440.	2.3	38
57	China's CO2 emissions embodied in fixed capital formation and its spatial distribution. Environmental Science and Pollution Research, 2020, 27, 19970-19990.	5.3	24
58	Electric power development associated with the Belt and Road Initiative and its carbon emissions implications. Applied Energy, 2020, 267, 114784.	10.1	28
59	A simulation-based prediction model for coal-fired power plant condenser maintenance. Applied Thermal Engineering, 2020, 174, 115294.	6.0	14
60	Quantifying the potential for climate change mitigation of consumption options. Environmental Research Letters, 2020, 15, 093001.	5.2	260
62	Hardwired towards transformation? Assessing global climate governance for power sector decarbonization. Earth System Governance, 2021, 8, 100054.	3.4	8
63	(De)coupling and (De)carbonizing in the economies and energy systems of the G20. Environment, Development and Sustainability, 2021, 23, 5614-5639.	5.0	2
64	Revisiting Connections between Capital and Nature II: The Case of Climate Change. Capitalism, Nature, Socialism, 2021, 32, 40-55.	1.6	2
65	Recovery of organic matter from pharmaceutical waste water by energy-saving complex distillation column. Separation Science and Technology, 2021, 56, 1910-1932.	2.5	3
66	An Account of the Catalytic Transfer Hydrogenation and Hydrogenolysis of Carbohydrateâ€Derived Renewable Platform Chemicals over Nonâ€Precious Heterogeneous Metal Catalysts. ChemCatChem, 2021, 13, 59-80.	3.7	36
67	The effects of power system flexibility on the efficient transition to renewable generation. Applied Energy, 2021, 283, 116278.	10.1	17
68	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42, 710-730.	14.0	182
69	Ash formation and trace elements associations with fine particles in an ultra-low emission coal-fired power plant. Fuel, 2021, 288, 119718.	6.4	17
70	(Un)flatten the curve: A simple model of sink capacity. Ecological Economics, 2021, 182, 106826.	5.7	0
71	Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nature Climate Change, 2021, 11, 200-206.	18.8	129
72	Low arbon transition risks for finance. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e678.	8.1	120
73	Perceptions of climate-related risk in Southeast Asia's power sector. Climate Policy, 2021, 21, 264-276.	5.1	8

~		_	
	ON		DT
CHAH		ILEPU	ואי

#	Article	IF	CITATIONS
74	The water footprint of carbon capture and storage technologies. Renewable and Sustainable Energy Reviews, 2021, 138, 110511.	16.4	54
75	Numerical analysis of permeability rebound and recovery during coalbed methane extraction: Implications for CO2 injection methods. Chemical Engineering Research and Design, 2021, 149, 93-104.	5.6	20
76	Facile and environmentally friendly synthesis of ultramicroporous carbon spheres: A significant improvement in CVD method. Carbon, 2021, 171, 426-436.	10.3	18
77	Metal phosphate catalysts to upgrade lignocellulose biomass into value-added chemicals and biofuels. Green Chemistry, 2021, 23, 3818-3841.	9.0	33
78	Insights on the First 29 Long-term Climate Strategies Submitted to the United Nations Framework Convention on Climate Change. , 0, , .		3
79	The limits of renewable energy. AIMS Energy, 2021, 9, 812-829.	1.9	13
80	An enhanced electrochemical CO ₂ reduction reaction on the SnO _x –PdO surface of SnPd nanoparticles decorated on N-doped carbon fibers. Catalysis Science and Technology, 2021, 11, 143-151.	4.1	16
81	Lifespans of passenger cars in Europe: empirical modelling of fleet turnover dynamics. European Transport Research Review, 2021, 13, .	4.8	23
82	Metal and solvent-dependent activity of spinel-based catalysts for the selective hydrogenation and rearrangement of furfural. Sustainable Energy and Fuels, 2021, 5, 3191-3204.	4.9	12
83	Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 °C target. Communications Earth & Environment, 2021, 2, .	6.8	100
84	The BECCS Implementation Gap–A Swedish Case Study. Frontiers in Energy Research, 2021, 8, .	2.3	28
85	Kicking Ash: Who (or What) is Winning the "War on Coal�. Production and Operations Management, 2021, 30, 2162-2187.	3.8	3
86	Enhanced and environment-friendly chemical looping gasification of crop straw using red mud as a sinter-resistant oxygen carrier. Waste Management, 2021, 121, 354-364.	7.4	43
87	Hydrogenolysis of Lignin-Derived Aromatic Ethers over Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 3379-3407.	6.7	59
88	Who cares about coal? Analyzing 70Âyears of German parliamentary debates on coal with dynamic topic modeling. Energy Research and Social Science, 2021, 72, 101869.	6.4	19
89	Can a virus and viral ideas speed the world's journey beyond fossil fuels?. Environmental Research Letters, 2021, 16, 020201.	5.2	1
90	Biogas Upgrading via Cyclic CO ₂ Adsorption: Application of Highly Regenerable PEI@nano-Al ₂ O ₃ Adsorbents with Anti-Urea Properties. Environmental Science & Technology, 2021, 55, 5236-5247.	10.0	42
91	US industrial sector decoupling of energy use and greenhouse gas emissions under COVID: durability and decarbonization. Environmental Research Communications, 2021, 3, 031003.	2.3	7

#	Article	IF	CITATIONS
92	Unit-level cost-benefit analysis for coal power plants retrofitted with biomass co-firing at a national level by combined GIS and life cycle assessment. Applied Energy, 2021, 285, 116494.	10.1	28
93	Characterization and monitoring of vacuum pressure of tank containers with multilayer insulation for cryogenic clean fuels storage and transportation. Applied Thermal Engineering, 2021, 187, 116569.	6.0	11
94	Finance-based accounting of coal emissions. Environmental Research Letters, 2021, 16, 044028.	5.2	15
95	Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 2021, 106, 103256.	4.6	33
96	A plant-by-plant strategy for high-ambition coal power phaseout in China. Nature Communications, 2021, 12, 1468.	12.8	163
97	Evolution patterns of bioenergy with carbon capture and storage (BECCS) from a science mapping perspective. Science of the Total Environment, 2021, 766, 144318.	8.0	13
98	A Modest Defense of Geoengineering Research: a Case Study in the Cost of Learning. Philosophy and Technology, 2021, 34, 1109-1134.	4.3	4
99	Global CO ₂ uptake by cement from 1930 to 2019. Earth System Science Data, 2021, 13, 1791-1805.	9.9	35
100	Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts. Nature Communications, 2021, 12, 2066.	12.8	85
101	Overshooting tippingÂpoint thresholds in a changing climate. Nature, 2021, 592, 517-523.	27.8	79
102	The transformation of provisioning systems from an integrated perspective of social metabolism and political economy: a conceptual framework. Sustainability Science, 2021, 16, 1405-1421.	4.9	23
103	Enhanced stability and hydrophobicity of LiX@ZIF-8 composite synthesized environmental friendly for CO2 capture in highly humid flue gas. Chemical Engineering Journal, 2021, 410, 128322.	12.7	22
104	Repair Failures Call for New Policies to Tackle Leaky Natural Gas Distribution Systems. Environmental Science & Technology, 2021, 55, 6561-6570.	10.0	10
105	Spatially explicit analysis identifies significant potential for bioenergy with carbon capture and storage in China. Nature Communications, 2021, 12, 3159.	12.8	58
106	A decade of the U.S. energy mix transitioning away from coal: historical reconstruction of the reductions in the public health burden of energy. Environmental Research Letters, 2021, 16, 054030.	5.2	19
107	Dynamic Evolution of Fe and Carbon Species over Different ZrO ₂ Supports during CO Prereduction and Their Effects on CO ₂ Hydrogenation to Light Olefins. ACS Sustainable Chemistry and Engineering, 2021, 9, 7891-7903.	6.7	35
108	The persistence of flexible coal in a deeply decarbonizing energy system. Environmental Research Letters, 2021, 16, 064043.	5.2	10
109	Atmospheric CO2 capture and photofixation to near-unity CO by Ti3+-Vo-Ti3+ sites confined in TiO2 ultrathin layers. Science China Chemistry, 2021, 64, 953-958.	8.2	12

#	Article	IF	CITATIONS
110	Applying a scienceâ€based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy, 2021, 13, 1210-1231.	5.6	49
111	Deep CCS: Moving Beyond 90% Carbon Dioxide Capture. Environmental Science & Technology, 2021, 55, 8524-8534.	10.0	32
112	Effects of Voluntary and Involuntary Real Lab Situations on Personal Carbon Footprints of Private Households. Experiences From Germany. Frontiers in Sustainability, 2021, 2, .	2.6	2
113	Effects of Direct Air Capture Technology Availability on Stranded Assets and Committed Emissions in the Power Sector. Frontiers in Climate, 2021, 3, .	2.8	12
114	Three Decades of Climate Mitigation: Why Haven't We Bent the Global Emissions Curve?. Annual Review of Environment and Resources, 2021, 46, 653-689.	13.4	167
115	The geopolitics of energy system transformation: A review. Geography Compass, 2021, 15, e12580.	2.7	80
116	The role of national carbon pricing in phasing out China's coal power. IScience, 2021, 24, 102655.	4.1	44
117	Energy system developments and investments in the decisive decade for the Paris Agreement goals. Environmental Research Letters, 2021, 16, 074020.	5.2	41
118	Long-term temperature and sea-level rise stabilization before and beyond 2100: Estimating the additional climate mitigation contribution from China's recent 2060 carbon neutrality pledge. Environmental Research Letters, 2021, 16, 074032.	5.2	54
119	Integrating high share of renewable energy into power system using customer-sited energy storage. Renewable and Sustainable Energy Reviews, 2021, 143, 110893.	16.4	54
120	A multidimensional feasibility evaluation of low-carbon scenarios. Environmental Research Letters, 2021, 16, 064069.	5.2	54
121	The evolution and future perspectives of energy intensity in the global building sector 1971–2060. Journal of Cleaner Production, 2021, 305, 127098.	9.3	12
122	CCUS As a second-best choice for China's carbon neutrality: an institutional analysis. Climate Policy, 2021, 21, 927-938.	5.1	27
123	Climate change, global population growth, and humanoid robots. Journal of Future Robot Life, 2021, , 1-19.	0.9	6
124	The Oxymoron of Carbon Dioxide Removal: Escaping Carbon Lock-In and yet Perpetuating the Fossil Status Quo?. Frontiers in Climate, 2021, 3, .	2.8	13
125	Ureolysis-induced calcium carbonate precipitation (UICP) in the presence of CO2-affected brine: A field demonstration. International Journal of Greenhouse Gas Control, 2021, 109, 103391.	4.6	11
126	Increase in frequency of nuclear power outages due to changing climate. Nature Energy, 2021, 6, 755-762.	39.5	12
127	Historical Variation of IEA Energy and CO2 Emission Projections: Implications for Future Energy Modeling. Sustainability, 2021, 13, 7432.	3.2	8

#	Article	IF	CITATIONS
128	A methodological approach for strategic evaluation - a response to water scarcity emergency. IOP Conference Series: Materials Science and Engineering, 2021, 1174, 012020.	0.6	0
131	Reducing CO ₂ emissions by targeting the world's hyper-polluting power plants [*] . Environmental Research Letters, 2021, 16, 094022.	5.2	19
132	Coal, power and coal-powered politics in Indonesia. Environmental Science and Policy, 2021, 123, 44-57.	4.9	30
133	Capital stranding cascades: The impact of decarbonisation on productive asset utilisation. Energy Economics, 2021, 103, 105581.	12.1	25
134	The declining performance of the oil sector: Implications for global climate change mitigation. Applied Energy, 2021, 298, 117210.	10.1	5
135	Accuracy Evaluation and Parameter Analysis of Land Surface Temperature Inversion Algorithm for Landsat-8 Data. Advances in Meteorology, 2021, 2021, 1-16.	1.6	2
136	Remarkably efficient and stable Ni/Y2O3 catalysts for CO2 methanation: Effect of citric acid addition. Applied Catalysis B: Environmental, 2021, 293, 120206.	20.2	72
137	Unextractable fossil fuels in a 1.5 °C world. Nature, 2021, 597, 230-234.	27.8	407
138	Distributional impacts of carbon pricing in developing Asia. Nature Sustainability, 2021, 4, 1005-1014.	23.7	36
139	Opportunities for city carbon footprint reductions through imports source shifting: The case of Bogota. Resources, Conservation and Recycling, 2021, 172, 105684.	10.8	14
140	Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO2 Photoreduction. Angewandte Chemie, 0, , .	2.0	2
141	Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200454.	3.4	44
142	Molecular-Scale Insights into Electrochemical Reduction of CO ₂ on Hydrophobically Modified Cu Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 47619-47628.	8.0	24
143	Mechanistic Insights Into Iron(II) Bis(pyridyl)amineâ€Bipyridine Skeleton for Selective CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2021, 60, 26072-26079.	13.8	25
144	A race to zero - Assessing the position of heavy industry in a global net-zero CO2 emissions context. Energy and Climate Change, 2021, 2, 100051.	4.4	24
145	Integrating the inter- and intra-annual dynamic features of capital into environmental footprint assessment: Revisiting China's greenhouse gas footprints, 1995-2015. Science of the Total Environment, 2021, 801, 149629.	8.0	2
146	Questioning the Sun: Unexpected emissions implications from residential solar photovoltaic systems. Resources, Conservation and Recycling, 2022, 176, 105924.	10.8	9
147	Finanzwirtschaft am Kipp-Punkt? Neue Entwicklungen an der Schnittstelle von Klimakrise und Finanzwirtschaft. Sustainable Management, Wertschol pfung Und Effizienz, 2021, , <u>135-160.</u>	0.0	0

ARTICLE IF CITATIONS Macro-financial transition risks in the fight against global warming. SSRN Electronic Journal, 0, , . 0.4 1 148 Bioenergy Policies Worldwide., 2021, , . Reducing the Carbon Footprint: Aluminium Smelting with Changing Energy Systems and the Risk of 150 0.4 6 Carbon Leakage. Minerals, Metals and Materials Series, 2020, , 726-734. Integrating Nickel-Nitrogen Doped Carbon Catalyzed CO2 Electroreduction with Chlor-Alkali Process for CO, Cl2 and KHCO3 Production with Enhanced Techno-Economics. Applied Catalysis B: Environmental, 2020, 275, 119154. Cost Analysis of Carbon Capture and Sequestration of Process Emissions from the U.S. Industrial 152 10.0 66 Sector. Environmental Science & amp; Technology, 2020, 54, 7524-7532. Decarbonizing US passenger vehicle transport under electrification and automation uncertainty has a 5.2 travel budget. Environmental Research Letters, 2020, 15, 0940c2. Utility-specific projections of electricity sector greenhouse gas emissions: a committed emissions 154 5.2 16 model-based case study of California through 2050. Environmental Research Letters, 2020, 15, 1040a4. Thermal power generation is disadvantaged in a warming world. Environmental Research Letters, 0, , . 5.2 Marine biology on a violated planet: from science to conscience. Ethics in Science and Environmental 156 7.9 19 Politics, 2020, 20, 1-13. Retrofit Decarbonization of Coal Power Plantsâ€"A Case Study for Poland. Energies, 2021, 14, 120. 3.1 State of Climate Action: Assessing Progress toward 2030 and 2050., 0, , . 158 13 Multi-bioinspired self-cleaning energy-free cooling coatings. Journal of Materials Chemistry A, 2021, 9, 10.3 24276-24282. Solar Photovoltaics., 2021,, 60-71. 160 0 Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as â€[~]Litmus Testâ€[™]., 2021, , 7-38. Towards carbon neutrality and China's 14th Five-Year Plan: Clean energy transition, sustainable urban 162 13.5 211 development, and investment priorities. Environmental Science and Ecotechnology, 2021, 8, 100130. Decarbonisation Strategies and Economic Opportunities in Australia., 2021, , 203-236. 164 Hydropower., 2021, , 125-138. 166 0 Transitioning to a Prosperous, Resilient and Carbon-Free Economy., 2021, , .

#	Article	IF	CITATIONS
168	A techno-economic assessment of carbon-sequestration tax incentives in the U.S. power sector. International Journal of Greenhouse Gas Control, 2021, 111, 103450.	4.6	14
169	<i>Debating Climate Ethics</i> Revisited. Ethics, Policy and Environment, 2021, 24, 89-111.	1.3	5
173	Financing the Transition. , 2021, , 621-645.		0
175	Forests. , 2021, , 462-500.		0
177	Solar Thermal Energy. , 2021, , 72-104.		1
178	Improving the Governance of Governments. , 2021, , 591-620.		2
179	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	3.3	26
180	Energy systems in scenarios at net-zero CO2 emissions. Nature Communications, 2021, 12, 6096.	12.8	91
181	Estimating a social cost of carbon for global energy consumption. Nature, 2021, 598, 308-314.	27.8	136
182	Trade and Climate Change. , 2021, , 571-590.		1
186	Industry and Manufacturing. , 2021, , 408-438.		0
190	Buildings and Precincts. , 2021, , 301-337.		Ο
191	Geophysical constraints on the reliability of solar and wind power worldwide. Nature Communications, 2021, 12, 6146.	12.8	90
192	Phasing out the blast furnace to meet global climate targets. Joule, 2021, 5, 2646-2662.	24.0	42
195	Land Use. , 2021, , 441-461.		0
196	Social Movements for Change. , 2021, , 646-667.		0
197	Decarbonisation Strategies and Economic Opportunities in Indonesia. , 2021, , 237-268.		0
198	Mining, Metals, Oil and Gas. , 2021, , 529-568.		0

#	Article	IF	CITATIONS
199	The Hydrogen Economy. , 2021, , 173-200.		0
200	National Climate Change Adaptation Case Study: Early Adaptation to Climate Change through Climate-Compatible Development and Adaptation Pathways. , 2021, , 365-388.		1
201	Urban Water. , 2021, , 338-364.		0
202	Beyond carbon in socioenvironmental assessment: Life cycle assessment as a decision support tool for net-zero energy systems. Energy and Climate Change, 2021, 2, 100061.	4.4	10
203	Kicking Ash: Who (or What) Is Winning the 'War on Coal'?. SSRN Electronic Journal, 0, , .	0.4	0
204	Effects of the Policy and Human Intervention on the Infrastructure-Environment Nexus in China. Sustainability, 2020, 12, 7279.	3.2	0
205	A Temporal Convolution Network Approach to State-of-Charge Estimation in Li-ion Batteries. , 2020, , .		5
206	Balancing climate and development goals. Environmental Research Letters, 2020, 15, 124057.	5.2	1
207	China's pathways to peak carbon emissions: New insights from various industrial sectors. Applied Energy, 2022, 306, 118039.	10.1	112
208	German efficiency gone wrong: Unintended incentives arising from the gas TSOs' benchmarking. Energy Policy, 2022, 160, 112595.	8.8	2
209	Global Warming: Analysis of Behavior and Organizational Practices as Climate Impacts Increase. , 2020, , 221-256.		10
210	Historical precedents and feasibility of rapid coal and gas decline required for the 1.5°C target. One Earth, 2021, 4, 1477-1490.	6.8	30
211	Flame-Made La2O3-Based Nanocomposite CO2 Sensors as Perspective Part of GHG Monitoring System. Sensors, 2021, 21, 7297.	3.8	2
212	Effect of Precursors of Fe-Based Fischer–Tropsch Catalysts Supported on Expanded Graphite for CO ₂ Hydrogenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 15545-15556.	6.7	11
213	Climate implications of electrification projects in the developing world: a systematic review. Environmental Research Letters, 2020, 15, 103010.	5.2	0
214	Same-plant trends in capacity factor and heat rate for US power plants, 2001–2018. IOP SciNotes, 2020, 1, 024007.	0.8	6
215	The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source-sink matching analysis for existing coal-fired power plants. Resources, Conservation and Recycling, 2022, 178, 106070.	10.8	33
216	How does the photovoltaic industry contribute to China's carbon neutrality goal? Analysis of a system dynamics simulation. Science of the Total Environment, 2022, 808, 151868.	8.0	41

#	Article	IF	CITATIONS
217	Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls. Nature Climate Change, 2021, 11, 1077-1083.	18.8	49
218	Electric fuel conversion with hydrogen production by multiphase plasma at ambient pressure. Chemical Engineering Journal, 2022, 433, 133660.	12.7	6
219	The Expanding Coal Power Fleet in Southeast Asia: Implications for Future CO ₂ Emissions and Electricity Generation. Earth's Future, 2021, 9, e2021EF002257.	6.3	8
220	Prospects for a saturation of humanity's resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Global Environmental Change, 2021, 71, 102410.	7.8	48
221	The political economy of coal: Lessons learnt from 15 country case studies. World Development Perspectives, 2021, 24, 100368.	2.0	17
222	Water for energy: Characterizing coâ€evolving energy and water systems under twin climate and energy system nonstationarities. Wiley Interdisciplinary Reviews: Water, 2022, 9, e1576.	6.5	3
223	Pushing out or pulling in? The determinants of Chinese energy finance in developing countries. Energy Research and Social Science, 2022, 86, 102441.	6.4	15
224	Could quality of governance influence pollution? Evidence from the revised Environmental Kuznets Curve in Central and Eastern European countries. Energy Reports, 2022, 8, 809-819.	5.1	45
225	Regional Disparities in Steel Production Restrained its Global Decarbonization Progress: A Cross-National Analysis. SSRN Electronic Journal, 0, , .	0.4	0
226	Changes in perspective needed to forge †noâ€regret' forestâ€based climate change mitigation strategies. GCB Bioenergy, 2022, 14, 246-257.	5.6	12
227	Estimating the Employment and Fiscal Consequences of Thermal Coal Phase-Out in China. Energies, 2022, 15, 800.	3.1	11
228	Quantifying the regional stranded asset risks from new coal plants under 1.5 °C. Environmental Research Letters, 2022, 17, 024029.	5.2	18
229	Regional trade agreement burdens global carbon emissions mitigation. Nature Communications, 2022, 13, 408.	12.8	49
230	The (Un)availability of Human Activities for Social Intervention: Reflecting on Social Mechanisms in Technology Assessment and Sustainable Development Research. Sustainability, 2022, 14, 1394.	3.2	5
231	Counting Carbon or Counting Coal? Anchoring Climate Governance in Fossil Fuel–Based Accountability Frameworks. Global Environmental Politics, 2022, 22, 48-69.	3.0	8
232	A striking growth of CO ₂ emissions from the global cement industry driven by new facilities in emerging countries. Environmental Research Letters, 2022, 17, 044007.	5.2	37
233	NEPA and climate change: consideration of climate mitigation and adaptation in infrastructure review processes. Environmental Research: Infrastructure and Sustainability, 2022, 2, 015004.	2.3	4
234	Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements. Applied Energy, 2022, 310, 118561.	10.1	53

#	Article	IF	CITATIONS
235	Novel non-noble metal catalyst with high efficiency and synergetic photocatalytic hydrolysis of ammonia borane and mechanism investigation. Energy, 2022, 244, 123187.	8.8	21
236	Plant conversions and abatement technologies cannot prevent stranding of power plant assets in 2 °C scenarios. Nature Communications, 2022, 13, 806.	12.8	13
237	Drivers of CO2 Emissions: A Debt Perspective. International Journal of Environmental Research and Public Health, 2022, 19, 1847.	2.6	5
238	Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 2022, 3, 141-155.	29.7	587
239	Innovation in low-energy demand and its implications for policy ., 2022, 1, .		6
240	Determinants of emissions pathways in the coupled climate–social system. Nature, 2022, 603, 103-111.	27.8	83
241	The clean energy claims of BP, Chevron, ExxonMobil and Shell: A mismatch between discourse, actions and investments. PLoS ONE, 2022, 17, e0263596.	2.5	54
242	Marine seismic surveys for hydrocarbon exploration: What's at stake?. South African Journal of Science, 2022, 118, .	0.7	1
243	Comment on â€~Climate mitigation forestry—temporal trade-offs'. Environmental Research Letters, 2022, 17, 048001.	5.2	5
244	Childhood pneumonia in New Zealand. Journal of Paediatrics and Child Health, 2022, , .	0.8	0
245	Driving mechanisms for decoupling CO ₂ emissions from economic development in the ten largest emission countries. Ecosystem Health and Sustainability, 2022, 8, .	3.1	9
246	A review of publicly available data sources for models to study renewables integration in China's power system. Renewable and Sustainable Energy Reviews, 2022, 159, 112215.	16.4	11
247	Climate mitigation under S-shaped energy technology diffusion: Leveraging synergies of optimisation and simulation models. Technological Forecasting and Social Change, 2022, 178, 121568.	11.6	5
248	Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis. Renewable and Sustainable Energy Reviews, 2022, 161, 112367.	16.4	16
249	Comparison of SDS and L-Methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage. Chemical Engineering Journal, 2022, 438, 135504.	12.7	51
250	Sulfur recycle in biogas production: Novel Higee desulfurization process using natural amino acid salts. Chemosphere, 2022, 297, 134215.	8.2	3
251	Deciphering the CO2 emissions and emission intensity of cement sector in China through decomposition analysis. Journal of Cleaner Production, 2022, 352, 131627.	9.3	39
252	The political economy of coal phase-out: Exploring the actors, objectives, and contextual factors shaping policies in eight major coal countries. Energy Research and Social Science, 2022, 90, 102590.	6.4	25

		EPORT	
#	Article	IF	CITATIONS
253	Europe's Climate Target for 2050: An Assessment. Intereconomics, 2021, 56, 330-335.	2.2	14
254	Process-Oriented Smart Adsorbents: Tailoring the Properties Dynamically as Demanded by Adsorption/Desorption. Accounts of Chemical Research, 2022, 55, 75-86.	15.6	25
255	Environmental Consequences of Potential Strategies for China to Prepare for Natural Gas Import Disruptions. Environmental Science & Technology, 2022, 56, 1183-1193.	10.0	6
256	Plastics and climate change—Breaking carbon lock-ins through three mitigation pathways. One Earth, 2022, 5, 361-376.	6.8	52
257	Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system. Applied Energy, 2022, 316, 119134.	10.1	25
258	Fixed-capital formation for services in Japan incurs substantial carbon-intensive material consumption. Resources, Conservation and Recycling, 2022, 182, 106334.	10.8	7
259	An experimental strategy for evaluating the energy performance of metal–organic framework-based carbon dioxide adsorbents. Chemical Engineering Journal, 2022, 442, 136210.	12.7	8
260	The perceived effectiveness and hidden inequity of postpandemic fiscal stimuli. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2105006119.	7.1	2
261	Immobilization of carbonic anhydrase for CO2 capture and utilization. Applied Microbiology and Biotechnology, 2022, 106, 3419-3430.	3.6	13
262	Coal vs. renewables: Least-cost optimization of the Indonesian power sector. Energy for Sustainable Development, 2022, 68, 350-363.	4.5	18
263	Biobased plastic: A plausible solution toward carbon neutrality in plastic industry?. Journal of Hazardous Materials, 2022, 435, 129037.	12.4	18
264	Existing fossil fuel extraction would warm the world beyond 1.5 °C. Environmental Research Letters, 2022, 17, 064010.	5.2	47
265	Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction. Chinese Journal of Catalysis, 2022, 43, 1618-1633.	14.0	6
266	The type of power capacity matters for economic development – Evidence from a global panel. Resources and Energy Economics, 2022, 69, 101313.	2.5	3
267	Global liquefied natural gas expansion exceeds demand for coal-to-gas switching in paris compliant pathways. Environmental Research Letters, 2022, 17, 064048.	5.2	5
268	On the rules of life and Kleiber's Law: the macroscopic relationship between materials and energy. Heliyon, 2022, , e09647.	3.2	0
269	The pursuit of net-positive sustainability for industrial decarbonization with hybrid energy systems. Journal of Cleaner Production, 2022, 362, 132349.	9.3	8
270	Breaking Consensus, Transforming Metabolisms. Social Text, 2022, 40, 135-155.	1.1	0

~		~	
(15	ГАТ	DEI	
	IAL	NL	PORT

#	Article	IF	CITATIONS
271	Fast pyrolysis of Beauty Leaf Fruit Husk (BLFH) in an auger reactor: Effect of temperature on the yield and physicochemical properties of BLFH oil. Renewable Energy, 2022, 194, 1098-1109.	8.9	11
273	Current global efforts are insufficient to limit warming to 1.5°C. Science, 2022, 376, 1404-1409.	12.6	117
274	Requirements for a Maritime Transition in Line With the Paris Agreement. SSRN Electronic Journal, 0, ,	0.4	0
276	Peer-to-Peer Transactive Network with Shared Energy Storage in Distribution Network. , 2022, , .		0
277	Resilience of U.S. coastal wetlands to accelerating sea level rise. Environmental Research Communications, 2022, 4, 061001.	2.3	6
278	The expansion of natural gas infrastructure puts energy transitions at risk. Nature Energy, 2022, 7, 582-587.	39.5	65
279	N, P Co-doped porous biochar derived from cornstalk for high performance CO2 adsorption and electrochemical energy storage. Separation and Purification Technology, 2022, 299, 121719.	7.9	62
280	Insights into the limitations to vibrational excitation of CO ₂ : validation of a kinetic model with pulsed glow discharge experiments. Plasma Sources Science and Technology, 2022, 31, 074003.	3.1	13
281	Understanding the complexity of existing fossil fuel power plant decarbonization. IScience, 2022, 25, 104758.	4.1	6
282	Planning the Built Environment and Land Use Towards Deep Decarbonization of the United States. Journal of Planning Literature, 2023, 38, 426-441.	3.5	4
283	Contrasting suitability and ambition in regional carbon mitigation. Nature Communications, 2022, 13, .	12.8	9
284	Traffic ahead: Navigating the road to carbon neutrality. Energy Research and Social Science, 2022, 91, 102686.	6.4	2
285	Taking climate change seriously: Time to credibly communicate on corporate climate performance. Ecological Economics, 2022, 200, 107542.	5.7	8
286	Fully self-powered electrocaloric cooling/heating with triboelectric nanogenerator. Nano Energy, 2022, 101, 107623.	16.0	4
287	Macrofinancial Risks of the Transition to a Low-Carbon Economy. Review of Environmental Economics and Policy, 2022, 16, 173-195.	7.0	9
288	Estimating Global Anthropogenic CO2 Gridded Emissions Using a Data-Driven Stacked Random Forest Regression Model. Remote Sensing, 2022, 14, 3899.	4.0	10
289	Moving a step closer towards environmental sustainability in Asian countries: focusing on real income, urbanization, transport infrastructure, and research and development. Economic Research-Ekonomska Istrazivanja, 2023, 36, .	4.7	8
290	Measuring corporate Paris Compliance using a strict science-based approach. Nature Communications, 2022, 13, .	12.8	13

#	Article	IF	CITATIONS
291	Backlash to fossil fuel phase-outs: the case of coal mining in US presidential elections. Environmental Research Letters, 2022, 17, 094002.	5.2	8
292	Climate risks and foreign direct investment in developing countries: the role of national governance. Sustainability Science, 2022, 17, 1723-1740.	4.9	16
293	Centennial Memory of the Arctic Ocean for Future Arctic Climate Recovery in Response to a Carbon Dioxide Removal. Earth's Future, 2022, 10, .	6.3	5
294	Life Cycle Greenhouse Gas Emissions of the USPS Next-Generation Delivery Vehicle Fleet. Environmental Science & Technology, 2022, 56, 13391-13397.	10.0	3
295	Future projections of daily maximum and minimum temperatures over East Asia for the carbon neutrality period of 2050-2060. Theoretical and Applied Climatology, 2022, 150, 203-213.	2.8	2
296	Macroeconomic effects of a low carbon electrification of greater Kampala Metropolitan area energy policy: A computable general equilibrium analysis. Energy Strategy Reviews, 2022, 43, 100909.	7.3	1
297	Emission effects of China's rural revitalization: The nexus of infrastructure investment, household income, and direct residential CO2 emissions. Renewable and Sustainable Energy Reviews, 2022, 167, 112829.	16.4	19
298	The German coal debate on Twitter: Reactions to a corporate policy process. Energy Policy, 2022, 169, 113178.	8.8	3
299	Study on effect of tank and fin configurations and operating conditions on performance of thermal storage system. Case Studies in Thermal Engineering, 2022, 38, 102353.	5.7	0
300	A cross-chain enabled day-ahead collaborative power-carbon-TGC market. Energy, 2022, 258, 124881.	8.8	8
301	Assessment on embodied energy and greenhouse gas emissions in urban water system from life cycle perspective: A typical case of India. Sustainable Cities and Society, 2022, 86, 104152.	10.4	10
302	Implications of shrinking household sizes for meeting the 1.5°C climate targets. Ecological Economics, 2022, 202, 107590.	5.7	9
303	Aerosol and precursor gas emissions. , 2022, , 299-342.		2
304	Comparison of Technologies and Practices for Removing Carbon Dioxide from the Atmosphere. RSC Energy and Environment Series, 2022, , 351-377.	0.5	1
305	Chapter 3. Negative Emissions: The Role and Response of the Climate System. RSC Energy and Environment Series, 2022, , 27-56.	0.5	1
306	Molecular-scale mechanisms of CO2 mineralization in nanoscale interfacial water films. Nature Reviews Chemistry, 2022, 6, 598-613.	30.2	24
307	Political Strategies to Overcome Climate Policy Obstructionism. Perspectives on Politics, 0, , 1-11.	0.3	0
308	Exploring Enablers for an Ambitious Coal Phaseout. Politics and Governance, 2022, 10, 200-212.	1.5	9

#	Article	IF	CITATIONS
309	Climate Action Failure Highlighted as Leading Global Risk by Both Scientists and Business Leaders. Earth's Future, 2022, 10, .	6.3	1
310	Pipeline Availability Limits on the Feasibility of Global Coal-to-Gas Switching in the Power Sector. Environmental Science & Technology, 2022, 56, 14734-14742.	10.0	Ο
311	Carbon Capture and Utilization: A Bibliometric Analysis from 2007–2021. Energies, 2022, 15, 6611.	3.1	6
312	The American electric utility industry's role in promoting climate denial, doubt, and delay. Environmental Research Letters, 2022, 17, 094026.	5.2	5
313	Global and Regional Drivers of Power Plant CO ₂ Emissions Over the Last Three Decades Revealed From Unitâ€Based Database. Earth's Future, 2022, 10, .	6.3	6
314	The statistical projection of global GHG emissions from a consumption perspective. Sustainable Production and Consumption, 2022, 34, 318-329.	11.0	3
315	Material requirements for future low-carbon electricity projections in Africa. Energy Strategy Reviews, 2022, 44, 100890.	7.3	2
316	Spatiotemporal change and non-stationarity of air temperature in China from 1959 to 2018. Sustainable Cities and Society, 2022, 87, 104227.	10.4	2
317	Global mitigation efforts cannot neglect emerging emitters. National Science Review, 2022, 9, .	9.5	7
318	Boosting Liquid Hydrocarbon Synthesis from CO ₂ Hydrogenation via Tailoring Acid Properties of HZSM-5 Zeolite. Industrial & Engineering Chemistry Research, 2022, 61, 16393-16401.	3.7	5
319	Substantial regional climate change expected following cessation of CO ₂ emissions. Environmental Research Letters, 2022, 17, 114046.	5.2	2
320	Alternative Pathway to Phase Down Coal Power and Achieve Negative Emission in China. Environmental Science & Technology, 2022, 56, 16082-16093.	10.0	5
321	Perspectives of oxy-coal power plants equipped with CO2 capture, utilization, and storage in terms of energy, economic, and environmental impacts. Energy Conversion and Management, 2022, 273, 116361.	9.2	21
322	The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems. Renewable and Sustainable Energy Reviews, 2023, 171, 113011.	16.4	0
323	Macro energy systems modeling for the least developed and developing countries – A call for action. Environmental Research Letters, 0, , .	5.2	0
324	Yellow, red, and brown energy: leveraging water footprinting concepts for decarbonizing energy systems. Environment, Development and Sustainability, 0, , .	5.0	0
325	Recent advances in paired electrolysis coupling CO2 reduction with alternative oxidation reactions. Journal of Energy Chemistry, 2023, 77, 406-419.	12.9	14
326	Mitigation and adaptation emissions embedded in the broader climate transition. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	3

		CITATION RE	PORT	
#	Article		IF	Citations
328	Requirements for a maritime transition in line with the Paris Agreement. IScience, 202	2, 25, 105630.	4.1	2
329	Identifying crucial emission sources under low forcing scenarios by a comprehensive a analysis. One Earth, 2022, , .	ttribution	6.8	0
330	A novel combined throttle opening and variable valve timing strategy for combined co and power system flexibility. Applied Thermal Engineering, 2023, 219, 119688.	oling, heating,	6.0	0
331	Comparing the German exit of nuclear and coal: Assessing historical pathways and ene dimensions. Energy Research and Social Science, 2022, 94, 102883.	ergy phase-out	6.4	10
332	Geopolitical risks and mineral-driven renewable energy generation in China: A decomp Resources Policy, 2023, 80, 103229.	osed analysis.	9.6	26
333	Global oil refining's contribution to greenhouse gas emissions fromÂ2000 to 2021. In 2023, 4, 100361.	novation(China),	9.1	3
334	Built for net-zero: analysis of long-term greenhouse gas emission pathways for the Nig sector. Journal of Cleaner Production, 2023, 383, 135446.	erian cement	9.3	6
335	Retirement of US fossil fuel-fired power plants will increase water availability. Journal o 2023, 617, 128984.	f Hydrology,	5.4	3
336	High storage capacity and high formation rate of carbon dioxide hydrates via super-hy fluorinated graphenes. Energy, 2023, 264, 126045.	drophobic	8.8	9
337	Impacts of the large-scale use of passenger electric vehicles on public health in 30 US. areas. Renewable and Sustainable Energy Reviews, 2023, 173, 113100.	metropolitan	16.4	8
338	Biocompatible ammonium-based ionic liquids/ZIF-8 composites for CO2/CH4 and CO2 Sustainable Materials and Technologies, 2023, 35, e00558.	/N2 separations.	3.3	4
340	Research on Sustainable Development of the Regional Construction Industry Based or Theory. Sustainability, 2022, 14, 16645.	Entropy	3.2	0
341	Phasing out coal for 2 °C target requires worldwide replication of most ambitious na despite security and fairness concerns. Environmental Research Letters, 2023, 18, 014	tional plans Ю31.	5.2	10
342	Thermocatalytic Ammonia Decomposition – Status and Current Research Demands Hydrogen Fuel Technology. ChemCatChem, 2023, 15, .	for a Carbonâ€Free	3.7	4
343	Global warming overshoots increase risks of climate tipping cascades in a network mo Climate Change, 2023, 13, 75-82.	del. Nature	18.8	23
345	Civil aviation emissions in Argentina. Science of the Total Environment, 2023, 869, 16	1675.	8.0	5
346	Superhydrophobic SiO ₂ –Glass Bubbles Composite Coating for Stable a Daytime Radiative Cooling. ACS Applied Materials & Interfaces, 2023, 15, 4799-4	nd Highly Efficient 813.	8.0	9
347	Uncovering the socioeconomic impacts of China's power system decarbonization. Env Impact Assessment Review, 2023, 99, 107015.	ironmental	9.2	6

#	Article	IF	CITATIONS
348	Review: Renewable Energy in an Increasingly Uncertain Future. Applied Sciences (Switzerland), 2023, 13, 388.	2.5	10
349	Optimization of double-layer shaped phase change wallboard in buildings in two typical climate areas in China. Journal of Energy Storage, 2023, 61, 106698.	8.1	4
350	Physics, Feminism and Whakapapa; Integrating Eco-Subjectivity After the Enlightenment. Sustainable Development Goals Series, 2023, , 37-54.	0.4	0
351	Influence of renewable energy infrastructure, Chinese outward FDI, and technical efficiency on ecological sustainability in belt and road node economies. Renewable Energy, 2023, 205, 608-616.	8.9	15
352	Coal-exit alliance must confront freeriding sectors to propel Paris-aligned momentum. Nature Climate Change, 2023, 13, 130-139.	18.8	9
353	Replacing gas boilers with heat pumps is the fastest way to cut German gas consumption. Communications Earth & Environment, 2023, 4, .	6.8	2
354	Novel Planning Methodology for Spatially Optimized RES Development Which Minimizes Flexibility Requirements for Their Integration into the Power System. Energies, 2023, 16, 3251.	3.1	1
355	Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renewable and Sustainable Energy Reviews, 2023, 177, 113215.	16.4	42
356	How carbon emission prices accelerate net zero: Evidence from China's coal-fired power plants. Energy Policy, 2023, 177, 113524.	8.8	17
357	Air pollution health burden embodied in China's supply chains. Environmental Science and Ecotechnology, 2023, 16, 100264.	13.5	2
358	Electroreduction of CO ₂ on Au(310)@Cu Highâ€index Facets. Angewandte Chemie, 2023, 135, .	2.0	0
359	Electroreduction of CO ₂ on Au(310)@Cu Highâ€index Facets. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
360	A forward looking perspective on the cement and concrete industry: Implications of growth and development in the Global South. Energy Research and Social Science, 2023, 97, 102972.	6.4	8
361	Results from a survey of life cycle assessment-aligned socioenvironmental priorities in US and Australian communities hosting oil, natural gas, coal, and solar thermal energy production. Environmental Research: Infrastructure and Sustainability, 2023, 3, 015007.	2.3	1
362	Perspektiven der Theorie sozialer Systeme für die Umweltsoziologie. , 2023, , 1-15.		0
363	Zur sozialmetabolischen Transformation von Gesellschaft und Soziologie. , 2023, , 1-18.		Ο
364	China's multi-sector-shared CCUS networks in a carbon-neutral vision. IScience, 2023, 26, 106347.	4.1	12
365	The green investment principles: from a nodal governance perspective. International Environmental Agreements: Politics, Law and Economics, 2023, 23, 373-393.	2.9	2

#	Article	IF	CITATIONS
366	Marginal abatement cost of carbon dioxide emissions: The role of abatement options. European Journal of Operational Research, 2023, 310, 891-901.	5.7	7
367	Enhanced CH ₄ Selectivity in CO ₂ Hydrogenation on Bimetallic Pt–Ni Catalysts with Pt Nanoparticles Modified by Isolated Ni Atoms. ACS Applied Nano Materials, 2023, 6, 5826-5834.	5.0	4
368	Enhancing hydrophobicity via core–shell metal organic frameworks for high-humidity flue gas CO2 capture. Chinese Journal of Chemical Engineering, 2023, 61, 82-89.	3.5	3
369	EU: The Effect of Energy Factors on Economic Growth. Energies, 2023, 16, 2908.	3.1	1
370	A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives. , 2023, 1, 100003.		23
371	Progress in Electroreduction of CO2 to Form Various Fuels Based on Zn Catalysts. Processes, 2023, 11, 1039.	2.8	5
372	Synergetic roadmap of carbon neutrality and clean air for China. Environmental Science and Ecotechnology, 2023, 16, 100280.	13.5	12
373	Introduction to the Special Section: "Beyond Petromodernity― Extrapolation, 2023, 64, 1-9.	0.2	0
374	Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review. Journal of Environmental Chemical Engineering, 2023, 11, 110164.	6.7	23
375	Managing the EU energy crisis and greenhouse gas emissions: Seasonal ARIMA forecast. Problems and Perspectives in Management, 2023, 21, 383-399.	1.4	4
376	Are microgrids an opportunity to trigger changes in small insular territories toward more community-based lifestyles?. Journal of Cleaner Production, 2023, 411, 137206.	9.3	2
377	In the fight against climate change, did the financial sector cut secular ties with the oil industry or merely camouflage them?. Cleaner Production Letters, 2023, 4, 100040.	2.9	1
378	COSTS AND BENEFITS OF THE PARIS CLIMATE TARGETS. Climate Change Economics, 2023, 14, .	5.0	2
379	An Experimental Study of the Impact of Greenwashing on Attitudes toward Fossil Fuel Corporations' Sustainability Initiatives. Environmental Communication, 2023, 17, 486-501.	2.5	1
380	Unintended consequences of curtailment cap policies on power system decarbonization. IScience, 2023, 26, 106967.	4.1	2
381	India's just energy transition: Political economy challenges across states and regions. Energy Policy, 2023, 179, 113621.	8.8	3
382	CO2 capture by various nanoparticles: Recent development and prospective. Journal of Cleaner Production, 2023, 414, 137679.	9.3	6
383	The legacy environmental footprints of manufactured capital. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	3

#	Article	IF	CITATIONS
384	Impact of carbon lock-in on green economic efficiency: Evidence from Chinese provincial data. Science of the Total Environment, 2023, 892, 164581.	8.0	3
385	Highly dispersed Fe/EG catalysts assisted by ammonium citrate and their application in CO2 hydrogenation to olefins. Fuel, 2023, 351, 128926.	6.4	1
386	An emerging and high-performance sepiolite-supported Ni catalyst for low-temperature CO2 methanation: The critical role of hydroxyl groups. Journal of Environmental Chemical Engineering, 2023, 11, 110331.	6.7	3
387	Promotion of Photocatalytic Lignin Models C _β –O Bond Cleavage by Cr-Doped Zinc Indium Sulfide in Alkaline Solvent. Journal of Physical Chemistry C, 2023, 127, 11997-12007.	3.1	1
388	Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability. ACS Applied Materials & Interfaces, 2023, 15, 31994-32001.	8.0	2
389	Future availability of natural gas: Can it support sustainable energy transition?. Resources Policy, 2023, 85, 103824.	9.6	3
390	A novel process-level carbon contribution analysis (PCCA) method for carbon minimization of chemical processes: Exergy mapping to carbon emissions. Chemical Engineering Journal, 2023, 471, 144502.	12.7	3
391	Investment in new coal-fired power plants after the COVID-19 pandemic: experts expect 170–270 GW of new coal. Environmental Research Letters, 2023, 18, 054013.	5.2	0
392	A Hybrid-Electric Passenger Vessel for Inland Waterway. , 2023, , .		2
393	Allocating capital-associated CO2 emissions along the full lifespan of capital investments helps diffuse emission responsibility. Nature Communications, 2023, 14, .	12.8	8
394	Application of the sustainable system-of-systems approach and econometric analysis to address China's decarbonisation problem. Ergonomics, 0, , 1-16.	2.1	0
395	Recovery of methane and acetate during ex-situ biogas upgrading via novel dual-membrane aerated biofilm reactor. Bioresource Technology, 2023, 382, 129181.	9.6	4
396	Al-aided power electronic converters automatic online real-time efficiency optimization method. Fundamental Research, 2023, , .	3.3	0
397	Assessing provincial coal reliance for just low-carbon transition in China. Environmental Impact Assessment Review, 2023, 102, 107198.	9.2	12
399	A Facility-Level Phaseout Strategy for China's Blast Furnaces to Address Multiple Policy Objectives. Environmental Science & Technology, 2023, 57, 10501-10511.	10.0	1
400	Constrained tropical land temperature-precipitation sensitivity reveals decreasing evapotranspiration and faster vegetation greening in CMIP6 projections. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	2
401	Sustainability of Nuclear Fuel Resources in Indonesia with Open and Closed Fuel Cycle. , 0, 4, 47-59.		1
402	Coal phase-out pledges follow peak coal: evidence from 60 years of growth and decline in coal power capacity worldwide. , 2023, 2, .		0

		15	C
#	ARTICLE	IF	CITATIONS
403	Green frontrunner or indebted culprit? Assessing Denmarka€ ™s climate targets in light of fair contributions under the Paris Agreement. Climatic Change, 2023, 176, .	3.6	1
404	Empirical analysis of Chinese overseas power plant investments: Likelihood of suspensions and associated environmental risks. IScience, 2023, 26, 107457.	4.1	1
407	Clobal assessment of the carbon–water tradeoff of dry cooling for thermal power generation. , 2023, 1, 682-693.		0
408	An integrated system with functions of solar desalination, power generation and crop irrigation. , 2023, 1, 716-724.		7
409	Prospect of China's energy and power system under dual carbon goals. Chinese Science Bulletin, 2023, , .	0.7	3
410	MDLab: Al frameworks for carbon capture and battery materials. Frontiers in Environmental Science, 0, 11, .	3.3	1
411	Does information infrastructure and technological infrastructure reduce carbon dioxide emissions in the context of sustainable development? Examining spatial spillover effect. Sustainable Development, 0, , .	12.5	1
412	Progress in Research on Net-Zero-Carbon Cities: A Literature Review and Knowledge Framework. Energies, 2023, 16, 6279.	3.1	0
413	Environmental governance of transnational regions based on ecological security: The China-Mongolia-Russia Economic Corridor. Journal of Cleaner Production, 2023, 422, 138625.	9.3	3
414	Upcycling of plastic wastes and biomass to mechanically robust yet recyclable energy-harvesting materials. Nano Energy, 2023, 116, 108843.	16.0	7
415	Carbon dioxide cured building materials as an approach to decarbonizing the calcium carbide related industry. Renewable and Sustainable Energy Reviews, 2023, 186, 113688.	16.4	1
416	Specifying the Gap between Nations' Outward-Looking and Domestic Climate Policies: A Call for Measures of Domestic Climate Policy Stringency. Climate, 2023, 11, 192.	2.8	Ο
417	Pushed to finance? Assessing technology export as a motivator for coal finance abroad. Environmental Research Letters, 2023, 18, 084028.	5.2	1
418	Plant-by-plant decarbonization strategies for the global steel industry. Nature Climate Change, 2023, 13, 1067-1074.	18.8	4
419	Global land and water limits to electrolytic hydrogen production using wind and solar resources. Nature Communications, 2023, 14, .	12.8	8
420	A net-zero emissions strategy for China's power sector using carbon-capture utilization and storage. Nature Communications, 2023, 14, .	12.8	8
421	Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nature Communications, 2023, 14, .	12.8	15
422	Review on Multiscale CO ₂ Mineralization and Geological Storage: Mechanisms, Characterization, Modeling, Applications and Perspectives. Energy & Fuels, 2023, 37, 14512-14537.	5.1	2

	Сітатіо	n Report	
#	Article	IF	CITATIONS
423	Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature, 2023, 622, 514-520.	27.8	9
424	The fiscal implications of stringent climate policy. Economic Analysis and Policy, 2023, 80, 495-504.	6.6	1
425	Accelerating the Renewable Energy Revolution to Get Back to the Holocene. Earth's Future, 2023, 11, .	6.3	3
426	Integrating HZSM‑5 nanosheets with Fe-Co bimetallic catalyst toward efficient CO2-to-gasoline fuel conversion. Fuel, 2024, 357, 129904.	6.4	0
427	The ban on the sale of new petrol and diesel cars: Can it help control prospective marine pollution of polycyclic aromatic hydrocarbons (PAHs) in Shandong Province, China?. Journal of Hazardous Materials, 2023, 460, 132451.	12.4	1
429	Overshooting the critical threshold for the Greenland ice sheet. Nature, 2023, 622, 528-536.	27.8	3
430	China's bulk material loops can be closed but deep decarbonization requires demand reduction. Nature Climate Change, 2023, 13, 1136-1143.	18.8	2
432	The material implications and embodied emissions of clean power transition in Guangdong, China from 1978 to 2050. Journal of Cleaner Production, 2023, 422, 138512.	9.3	0
433	Theoretical and Experimental Study for Static Evaporation Rate of a Self-Developed Liquid Hydrogen Storage Tank. Advanced Topics in Science and Technology in China, 2023, , 271-278.	0.1	0
434	Medium- and long-term interval optimal scheduling of cascade hydropower-photovoltaic complementary systems considering multiple uncertainties. Applied Energy, 2024, 353, 122085.	10.1	0
435	Global database of cement production assets and upstream suppliers. Scientific Data, 2023, 10, .	5.3	3
436	Concentration of asset owners exposed to power sector stranded assets may trigger climate policy resistance. Nature Communications, 2023, 14, .	12.8	0
437	Surface reconstruction and cleavage of phyllosilicate clay edge by density functional theory. Applied Clay Science, 2023, 246, 107178.	5.2	0
438	Effect of MgCl2 on CO2 sequestration as hydrates in marine environment: A thermodynamic and kinetic investigation with morphology insights. Energy, 2024, 286, 129616.	8.8	0
439	Can transnational municipal networks mitigate the carbon pollution of the world's power plants?: an empirical analysis. , 2023, 2, .		0
440	How much additional global warming should we expect from past CO2 emissions?. , 0, 1, .		0
441	Metallurgical Coke Production with Biomass Additives. Part 2. Production and Characterization of Laboratory Biocokes. Studies in Systems, Decision and Control, 2024, , 287-306.	1.0	0
442	Local carbon emission zone construction in the highly urbanized regions: Application of residential and transport CO2 emissions in Shanghai, China. Building and Environment, 2024, 247, 111007.	6.9	0

#	Article	IF	CITATIONS
443	Strategies to reduce CO2 emissions and increase temporary carbon stock in Brazilian housing using planted wood. Environmental Development, 2024, 49, 100946.	4.1	0
444	Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation. Applied Surface Science, 2024, 646, 158945.	6.1	3
445	The decarbonization pathway of power system by high-resolution model under different policy scenarios in China. Applied Energy, 2024, 355, 122235.	10.1	1
446	Material and Carbon Footprints of Machinery Capital. Environmental Science & Technology, 0, , .	10.0	0
447	Post-growth: A viable path to limiting global warming to 1.5°C. One Earth, 2024, 7, 44-58.	6.8	0
448	Mineral import demand-driven solar energy generation in China: A threshold estimation using the counterfactual shock approach. Renewable Energy, 2024, 221, 119764.	8.9	1
449	MEIC-global-CO2: A new global CO2 emission inventory with highly-resolved source category and sub-country information. Science China Earth Sciences, 0, , .	5.2	0
450	Modeling hydrological processes under Multi-Model projections of climate change in a cold region of Hokkaido, Japan. Catena, 2024, 234, 107605.	5.0	0
451	Effect of various potassium agents on product distributions and biochar carbon sequestration of biomass pyrolysis. Energy, 2024, 289, 130012.	8.8	0
452	Vulnerability assessment of heat waves within a risk framework using artificial intelligence. Science of the Total Environment, 2024, 912, 169355.	8.0	0
453	The impact of circular economy indicators in the optimal planning of energy systems. Sustainable Production and Consumption, 2024, 44, 234-249.	11.0	0
454	Research on energy efficiency and decarbonization pathway of nearly zero energy buildings based on system dynamic simulation. Developments in the Built Environment, 2024, 17, 100310.	4.0	0
455	Banning fossil fuel cars and boilers in Switzerland: Mitigation potential, justice, and the social structure of the vulnerable. Energy Research and Social Science, 2024, 108, 103377.	6.4	0
456	Perspektiven der Theorie sozialer Systeme für die Umweltsoziologie. , 2024, , 63-77.		0
457	Techno-economic evaluation of CO2 capture and storage retrofit in decarbonizing different thermal power plants: A case study in China. Applied Thermal Engineering, 2024, 242, 122380.	6.0	0
458	Zur sozialmetabolischen Transformation von Gesellschaft und Soziologie. , 2024, , 31-48.		0
459	Sustainable Seawater Desalination and Energy Management: Mechanisms, Strategies, and the Way Forward. Research, 2023, 6, .	5.7	1
460	Multi-agent game operation of regional integrated energy system based on carbon emission flow. Frontiers in Energy Research, 0, 11, .	2.3	0

#	Article	IF	CITATIONS
463	Investment benefit analysis of coal-to-hydrogen coupled CCS technology in China based on real option approach. Energy, 2024, 294, 130293.	8.8	0
464	Investment law v. supply-side climate policies: insights from Rockhopper v. Italy and Lone Pine v. Canada. International Environmental Agreements: Politics, Law and Economics, 2024, 24, 193-216.	2.9	0
466	Identifying urban, transportation, and socioeconomic characteristics across US zip codes affecting CO2 emissions: A decision tree analysis. Energy and Built Environment, 2024, , .	5.9	0
467	Tuning the CO ₂ Reduction Activity of Graphitic Carbon Nitride via the Capping-Agent-Free Involvement of Ag Nanocrystals. Industrial & Engineering Chemistry Research, 2024, 63, 1740-1747.	3.7	1
468	Greening the path to carbon neutrality in the post-COP26 era: EmbracingÂgreen energy, green innovation, and green human capital. , 2024, 3, 100134.		3
469	MEIC-global-CO ₂ : 精细æ⁰å^†ç±»ä¸‹åŒå«æ¬¡å›½å®¶ä¿jæ•çš"å SCIENTIA SINICA Terrae, 2024, 54, 469-485.	°ç ∱CO &ar	np; t;sub&am
470	Multi-dimensional decoupling analysis in the context of energy use: Dynamic well-being, resource, and impact decoupling relationships in China. Applied Energy, 2024, 359, 122726.	10.1	0
471	Emergent climate change patterns originating from deep ocean warming in climate mitigation scenarios. Nature Climate Change, 2024, 14, 260-266.	18.8	1
472	Bimetallic Ni-Fe Supported by Gadolinium Doped Ceria (GDC) Catalyst for CO2 Methanation. Bulletin of Chemical Reaction Engineering and Catalysis, 2024, 19, 99-107.	1.1	0
473	Chemical space analysis and property prediction for carbon capture solvent molecules. , 2024, 3, 528-543.		0
475	Optimal CCUS Supply Chain toward Carbon Neutrality: Novel Framework for Thermal Power, Iron-Steel, and Cement Sectors. Industrial & Engineering Chemistry Research, 2024, 63, 4460-4477.	3.7	0
476	Coal transitions—part 2: phase-out dynamics in global long-term mitigation scenarios. Environmental Research Letters, 2024, 19, 033002.	5.2	0
477	Evaluation of the impact of export restrictions on the upgrading of China's energy industry based on the Kuznets curve. Journal of Computational Methods in Sciences and Engineering, 2024, 24, 153-164.	0.2	0
478	Coal-Fired Power Plants Using Ammonia for Flexibility Enhancement under Carbon Control Strategies: Status, Development, and Perspectives. Energy & Fuels, 2024, 38, 4946-4965.	5.1	0
479	Coupling and electronic synergistic effects of Fe/CeO2 composite to achieve high efficiency and selectivity for RWGS reaction. Journal of CO2 Utilization, 2024, 81, 102728.	6.8	0
480	Modulation of coupling climatic extremes and their climate signals in a subtropical monsoon country. Theoretical and Applied Climatology, 0, , .	2.8	0
481	Accelerating carbon neutrality in China: Sensitive intervention points for the energy and transport sectors in Beijing and Hong Kong. Journal of Cleaner Production, 2024, 450, 141681.	9.3	0
482	Cost-effectiveness uncertainty may bias the decision of coal power transitions in China. Nature Communications, 2024, 15, .	12.8	0

#	Article	IF	CITATIONS
483	Spatiotemporal characteristics and driving factor analysis of embodied CO2 emissions in China's building sector. Energy Policy, 2024, 188, 114085.	8.8	0
484	Climate change in pest risk assessment: Interpretation and communication of uncertainties. EPPO Bulletin, 2024, 54, 4-19.	0.8	0