Eggshell calcium: A cheap alternative to expensive supp

Trends in Food Science and Technology 91, 219-230

DOI: 10.1016/j.tifs.2019.07.021

Citation Report

#	Article	IF	CITATIONS
1	Preparation of Calcium Magnesium Acetate Snow Melting Agent Using Raw Calcium Acetate-Rich Made from Eggshells. Waste and Biomass Valorization, 2020, 11, 6757-6767.	1.8	9
2	Channelling eggshell waste to valuable and utilizable products: A comprehensive review. Trends in Food Science and Technology, 2020, 106, 78-90.	7.8	117
3	Fish Protein and Its Derivatives: The Novel Applications, Bioactivities, and Their Functional Significance in Food Products. Food Reviews International, 2022, 38, 1607-1634.	4.3	19
4	Preliminary study on the correlation between the trace Mn2+ and the calcite polymorph in gallstones containing calcium carbonate from the northeast China via electron spin resonance. Journal of Trace Elements in Medicine and Biology, 2020, 60, 126494.	1.5	3
5	An Inclusive Overview of Advanced Thermal and Nonthermal Extraction Techniques for Bioactive Compounds in Food and Food-related Matrices. Food Reviews International, 2022, 38, 1166-1196.	4.3	80
6	Physicochemical and structural characteristics of nano eggshell calcium prepared by wet ball milling. LWT - Food Science and Technology, 2020, 131, 109721.	2.5	25
7	Valorization of fisheries by-products: Challenges and technical concerns to food industry. Trends in Food Science and Technology, 2020, 99, 34-43.	7.8	64
8	Conversion of waste eggshell into difunctional Au/CaCO3 nanocomposite for 4-Nitrophenol electrochemical detection and catalytic reduction. Applied Surface Science, 2020, 510, 145526.	3.1	63
9	Effective valorization of food wastes and byâ€products through pulsed electric field: A systematic review. Journal of Food Process Engineering, 2021, 44, e13629.	1.5	47
10	State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry. Frontiers in Bioengineering and Biotechnology, 2020, 8, 612567.	2.0	38
11	Au nanoparticle-loaded eggshell for electrochemical detection of nitrite. RSC Advances, 2021, 11, 4112-4117.	1.7	14
12	Functional Food for Elderly High in Antioxidant and Chicken Eggshell Calcium to Reduce the Risk of Osteoporosis—A Narrative Review. Foods, 2021, 10, 656.	1.9	28
13	Multi-Class Procedure for Analysis of 50 Antibacterial Compounds in Eggshells Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. Molecules, 2021, 26, 1373.	1.7	4
14	Physical properties and compressibility of quail eggshell nanopowder with heat treatment temperature variations. Materials Research Express, 2021, 8, 055008.	0.8	2
15	Superiority of coarse eggshell as a calcium source over limestone, cockle shell, oyster shell, and fine eggshell in old laying hens. Scientific Reports, 2021, 11, 13225.	1.6	8
16	Biotechnological Applications of Eggshell: Recent Advances. Frontiers in Bioengineering and Biotechnology, 2021, 9, 675364.	2.0	37
17	Review on the extraction of calcium supplements from eggshells to combat waste generation and chronic calcium deficiency. Environmental Science and Pollution Research, 2021, 28, 46985-46998.	2.7	6
18	Eggshell derived CaO-Portland cement antibacterial composites. Composites Part C: Open Access, 2021, 5, 100123.	1.5	16

#	Article	IF	CITATIONS
19	Simple recycling of biowaste eggshells to various calcium phosphates for specific industries. Scientific Reports, 2021, 11, 15143.	1.6	19
20	Research of qualitative indicators of butter cookies using protein-mineral supplements. EUREKA Life Sciences, 2021, , 27-33.	0.1	0
21	Determining the influence of protein-mineral additives on the properties of butter cookies emulsion. Eastern-European Journal of Enterprise Technologies, 2021, 4, 42-49.	0.3	0
22	A review on recent advances of egg byproducts: Preparation, functional properties, biological activities and food applications. Food Research International, 2021, 147, 110563.	2.9	20
23	Different Surface Appearances Caused by Unbalanced Mn2+ Accumulation in Gallstones Consisting of Cholesterol and CaCO3 Obtained from a Patient After Cholecystectomy. Biological Trace Element Research, 2021, , 1.	1.9	0
24	Characterization of Macro- and Microalgae Extracts Bioactive Compounds and Micro- and Macroelements Transition from Algae to Extract. Foods, 2021, 10, 2226.	1.9	13
25	Transfer of enrofloxacin, ciprofloxacin, and lincomycin into eggshells and residue depletion in egg components after multiple oral administration to laying hens. Poultry Science, 2021, 100, 101341.	1.5	3
26	Utilization of eggshell waste in calcium-fortified foods and other industrial applications: A review. Trends in Food Science and Technology, 2021, 115, 422-432.	7.8	46
27	Integrating waste fish scale-derived gelatin and chitosan into edible nanocomposite film for perishable fruits. International Journal of Biological Macromolecules, 2021, 191, 1164-1174.	3.6	45
28	Influence of fermentation on the characteristics of Baltic Sea macroalgae, including microbial profile and trace element content. Food Control, 2021, 129, 108235.	2.8	8
29	Recycled eggshells as precursors for iron-impregnated calcium oxide catalysts for partial oxidation of methane. Bioresources and Bioprocessing, 2020, 7, .	2.0	6
30	Shells and Other Calcium Carbonate-Based Waste. , 2021, , 467-503.		O
31	PRODUCTION AND CHARACTERIZATION OF RICE STARCH AND CORN STARCH BASED BIODEGRADABLE BIOPLASTIC USING VARIOUS PLASTICIZERS AND NATURAL REINFORCING FILLERS. Cellulose Chemistry and Technology, 2021, 55, 867-881.	0.5	8
32	Removal of Heavy Metals (Copper and Lead) Using Waste Eggshell with Two Different Species and Three Different Forms. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri EnstitÃ1/4sÃ1/4 Dergisi, 0, , .	0.4	0
33	Mechanical and Environmental Performance of Eggshell Lime for Expansive Soils Improvement. Transportation Geotechnics, 2021, 31, 100681.	2.0	29
34	Production of Bio-Calcium Oxide Derived from Hatchery Eggshell Waste Using an Industrial-Scale Car Bottom Furnace. Journal of Renewable Materials, 2022, 10, 1137-1151.	1.1	4
35	ATIK YUMURTA KABUKLARINDAN SENTEZLENEN HİDROKSİAPATİTLER İLE SULARDAN MALAHİT YEŞİL Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2020, 23, 141-152.	GİDERÄ	°Mİ.
36	Eggshell as a calcium source replacing limestone meal in mink (<i>Neovison vison</i>) diets. Journal of Animal and Feed Sciences, 2020, 29, 338-344.	0.4	2

#	Article	IF	Citations
37	Characterization of eggshell as limestone replacement and its influence on properties of modified cement. Construction and Building Materials, 2022, 319, 126006.	3.2	11
38	Influences of agro-wastes on the physico-mechanical and durability properties of unfired clay blocks. Construction and Building Materials, 2022, 318, 126011.	3.2	13
39	Usos potenciales de la c \tilde{A}_i scara de huevo de gallina (Gallus gallus domesticus): una revisi \tilde{A}^3 n sistem \tilde{A}_i tica. Revista Colombiana De Ciencia Animal Recia, 2020, 12, e776.	0.2	0
40	Bio-dielectric based on superconductors yttrium calcium barium copper oxide (YCaBa ₂ Cu ₃ O _{7â^'<i>x</i>via sol-gel process. Materials Science-Poland, 2021, 39, 305-318.}	0.4	1
41	Adding value to processes, products, and by-products from the poultry industry through enzymatic technologies., 2022,, 235-251.		0
42	Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods, 2022, 11, 409.	1.9	16
43	Effects of eggshell powder supplementation on nutritional and sensory attributes of biscuits. Czech Journal of Food Sciences, 2022, 40, 26-32.	0.6	7
44	Pathways for Sustainable Utilization of Waste Chicken Eggshell. Journal of Renewable Materials, 2022, 10, 2217-2246.	1.1	1
45	Eggshell and Walnut Shell in Unburnt Clay Blocks. CivilEng, 2022, 3, 263-276.	0.8	4
46	THE EFFECTS OF NATURAL AND SYNTHETIC CALCIUM UTILIZATION ON QUALITY PARAMETERS OF COOKIES. Applied Food Research, 2022, , 100093.	1.4	0
47	Green synthesis of ZnO/eggshell nanocomposite using <i>ferulago macrocarpa</i> extract and its photocatalytic and antimicrobial activity in water disinfection. Inorganic and Nano-Metal Chemistry, 0, , 1-12.	0.9	0
48	A novel process to separate the eggshell membranes and eggshells via flash evaporation. Food Science and Technology, 0, 42, .	0.8	5
49	Photocatalytic performance of TiO2/Eggshell composite for wastewater treatment. Materials Today: Proceedings, 2022, 65, 3000-3006.	0.9	5
50	Evaluation of Nutricell HyC® (combination of 25OHD ₃ and Vitamin C) Supplementation on Broiler Breeders Fertility in Laying Period. IOP Conference Series: Earth and Environmental Science, 2022, 1020, 012016.	0.2	0
51	Determination of some nutritional and quality properties of eggshell powder added cookies. Journal of Food Measurement and Characterization, 2022, 16, 3315-3320.	1.6	1
52	Production of Nutrient-Enriched Vermicompost from Aquatic Macrophytes Supplemented with Kitchen Waste: Assessment of Nutrient Changes, Phytotoxicity, and Earthworm Biodynamics. Agronomy, 2022, 12, 1303.	1.3	7
53	Fabrication of Fibrous Materials Based on Cyclodextrin and Egg Shell Waste as an Affordable Composite for Dental Applications. Frontiers in Materials, 2022, 9, .	1.2	2
54	Optimization of preparation of calcium propionate from eggshell by Response Surface Methodology (RSM). Food Science and Technology, 0, 42, .	0.8	1

#	Article	IF	CITATIONS
55	Balık kılçığı ve yumurta kabuğu atıklarından sentezlenen hidroksiapatit adsorbentlerinin sulu çözeltisinden Cu(II) iyonlarının gideriminde kullanılabilirliğinin araştırılması. Journal of the Facul Engineering and Architecture of Gazi University, 0, , .	tyaß	0
56	Biotechnological interventions in food waste treatment for obtaining value-added compounds to combat pollution. Environmental Science and Pollution Research, 2022, 29, 62755-62784.	2.7	7
57	Dielectric properties of eggshell powder at 2.45 and 5.8 GHz relevant to dielectric heating. Journal of Microwave Power and Electromagnetic Energy, 2022, 56, 178-191.	0.4	0
58	Imaging of eggshells and eggs in the gastrointestinal tract: pictorial essay. Clinical Imaging, 2022, 91, 64-68.	0.8	0
59	An appealing review of industrial and nutraceutical applications of pistachio waste. Critical Reviews in Food Science and Nutrition, 0 , 1 -19.	5. 4	7
60	Biogenic calcium carbonate derived from waste shells for advanced material applications: A review. Frontiers in Materials, 0, 9, .	1.2	6
61	Evaluation of mechanical and microstructural properties of eggshell lime/rice husk ash alkali-activated cement. Construction and Building Materials, 2023, 364, 129931.	3.2	5
62	INFLUENCE OF CHICKEN EGGSHELL POWDER AS AN ALTERNATIVE COAGULANT ON THE YIELD AND TEXTURAL CHARACTERISTICS OF TOFU. Jurnal Teknologi (Sciences and Engineering), 2022, 85, 159-165.	0.3	0
63	On the removal efficiency of copper ions in wastewater using calcined waste eggshells as natural adsorbents. Scientific Reports, 2023 , 13 , .	1.6	9
64	Utilization of Chicken Eggshell Waste: A Potential Calcium Source for Incorporation into Vegetable Soup Mix. Frontiers in Advanced Materials Research, 0, , 15-31.	0.2	0
65	Mechanical and cytotoxic properties of zinc-substituted hydroxyapatite bioceramic derived from eggshells. AIP Conference Proceedings, 2023, , .	0.3	1
66	Mollusk Shell Waste as Composite Photocatalyst for Methylene Blue Removal. , 0, , .		0
67	Calcium Enrichment in Edible Mushrooms: A Review. Journal of Fungi (Basel, Switzerland), 2023, 9, 338.	1.5	4
68	Quantum Chemical Calculations of m-Toluidine and Investigation of Its Adsorption on Eggshells. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2023, 16, 169-183.	0.1	1
73	Current Trends and Prospects of Transforming Animal Waste into Food., 2023,, 469-503.		0
89	Revolutionizing Food. Advances in Environmental Engineering and Green Technologies Book Series, 2024, , 133-150.	0.3	O