Versatile Nâ€Doped MXene Ink for Printed Electrochen

Advanced Energy Materials 9, 1901839

DOI: 10.1002/aenm.201901839

Citation Report

#	Article	IF	CITATIONS
1	Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 46044-46053.	4.0	70
2	Self-Supported Nonprecious MXene/Ni ₃ S ₂ Electrocatalysts for Efficient Hydrogen Generation in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 6931-6938.	2.5	62
3	Two-dimensional composite of D-Ti ₃ C ₂ T _x @S@TiO ₂ (MXene) as the cathode material for aluminum-ion batteries. Nanoscale, 2020, 12, 3387-3399.	2.8	60
4	Ion-assisted self-assembly of macroporous MXene films as supercapacitor electrodes. Journal of Materials Chemistry C, 2020, 8, 2008-2013.	2.7	43
5	A Fast and Cost-Effective Transfer Printing of Liquid Metal Inks for Three-Dimensional Wiring in Flexible Electronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36723-36730.	4.0	53
6	Printing and coating MXenes for electrochemical energy storage devices. JPhys Energy, 2020, 2, 031004.	2.3	42
7	3D Printing of NiCoP/Ti3C2 MXene Architectures for Energy Storage Devices with High Areal and Volumetric Energy Density. Nano-Micro Letters, 2020, 12, 143.	14.4	90
8	Recent developments of advanced micro-supercapacitors: design, fabrication and applications. Npj Flexible Electronics, 2020, 4, .	5.1	147
9	Advancements in Therapeutics via 3D Printed Multifunctional Architectures from Dispersed 2D Nanomaterial Inks. Small, 2020, 16, e2004900.	5.2	17
10	A Review of the Effects of Electrode Fabrication and Assembly Processes on the Structure and Electrochemical Performance of 2D MXenes. Advanced Functional Materials, 2020, 30, 2005305.	7.8	58
11	Inkjet-Printed Ultrathin MoS ₂ -Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 39444-39454.	4.0	45
12	Ti3SiC2/Carbon Nanofibers Fabricated by Electrospinning as Electrode Material for High-Performance Supercapacitors. Journal of Nanoscience and Nanotechnology, 2020, 20, 6441-6449.	0.9	3
13	Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, .	3.0	51
14	Intercalation of Metal Ions into Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Highâ€Arealâ€Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials, 2020, 30, 2003721.	7.8	61
15	A Stretchable Highoutput Triboelectric Nanogenerator Improved by MXene Liquid Electrode with High Electronegativity. Advanced Functional Materials, 2020, 30, 2004181.	7.8	147
16	Recent Advances in Functional 2D MXeneâ€Based Nanostructures for Nextâ€Generation Devices. Advanced Functional Materials, 2020, 30, 2005223.	7.8	216
17	Two-Dimensional Titanium and Molybdenum Carbide MXenes as Electrocatalysts for CO2 Reduction. IScience, 2020, 23, 101181.	1.9	123
18	3D MXene Architectures for Efficient Energy Storage and Conversion. Advanced Functional Materials, 2020, 30, 2000842.	7.8	276

#	Article	IF	CITATIONS
19	Rational design and <i>in situ</i> growth of SnO ₂ /CMF composites: insightful understanding of the formaldehyde gas sensing mechanism and enhanced gas sensing properties. Journal of Materials Chemistry C, 2020, 8, 12418-12426.	2.7	29
20	Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors. Electrochemical Energy Reviews, 2020, 3, 581-612.	13.1	26
21	MXene for energy storage: present status and future perspectives. JPhys Energy, 2020, 2, 032004.	2.3	69
22	Evolution of 3D Printing Methods and Materials for Electrochemical Energy Storage. Advanced Materials, 2020, 32, e2000556.	11.1	134
23	Turning Trash into Treasure: Additive Free MXene Sediment Inks for Screenâ€Printed Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2000716.	11.1	241
24	Recent advances and future challenges in printed batteries. Energy Storage Materials, 2020, 28, 216-234.	9.5	89
25	Enhancing Capacitance Performance of Ti3C2Tx MXene as Electrode Materials of Supercapacitor: From Controlled Preparation to Composite Structure Construction. Nano-Micro Letters, 2020, 12, 77.	14.4	136
26	MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 2020, 32, e1908486.	11.1	239
27	Binder-Free Two-Dimensional MXene/Acid Activated Carbon for High-Performance Supercapacitors and Methylene Blue Adsorption. Energy & Samp; Fuels, 2020, 34, 10120-10130.	2.5	37
28	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
29	Induction of Planar Sodium Growth on MXene (Ti ₃ C ₂ T _{<isx< i="">Sodium Metal Anodes. ACS Nano, 2020, 14, 8744-8753.</isx<>}	7.3	125
30	Taking MXenes from the lab to commercial products. Chemical Engineering Journal, 2020, 401, 125786.	6.6	139
31	Printable Ink Design towards Customizable Miniaturized Energy Storage Devices., 2020, 2, 1041-1056.		45
32	MXene-based 3D porous macrostructures for electrochemical energy storage. JPhys Materials, 2020, 3, 022001.	1.8	42
33	3D Printing for Electrochemical Energy Applications. Chemical Reviews, 2020, 120, 2783-2810.	23.0	255
34	3Dâ€Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Advanced Materials, 2020, 32, e1906652.	11.1	191
35	An outlook on printed microsupercapacitors: Technology status, remaining challenges, and opportunities. Current Opinion in Electrochemistry, 2020, 21, 69-75.	2.5	14
36	Recent advances in the template-confined synthesis of two-dimensional materials for aqueous energy storage devices. Nanoscale Advances, 2020, 2, 2220-2233.	2.2	23

#	ARTICLE	IF	Citations
37	Functional integrated electromagnetic interference shielding in flexible micro-supercapacitors by cation-intercalation typed Ti3C2Tx MXene. Nano Energy, 2020, 72, 104741.	8.2	62
38	Hierarchical Ti ₃ C ₂ @TiO ₂ MXene hybrids with tunable interlayer distance for highly durable lithium-ion batteries. Nanoscale, 2020, 12, 10369-10379.	2.8	60
39	A MXene-based EDA-Ti3C2Tx intercalation compound with expanded interlayer spacing as high performance supercapacitor electrode material. Carbon, 2021, 173, 135-144.	5.4	46
40	Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 850, 156608.	2.8	79
41	Ti3C2Tx MXene contained nanofluids with high thermal conductivity, super colloidal stability and low viscosity. Chemical Engineering Journal, 2021, 406, 126390.	6.6	74
42	Efficient tuning the electronic structure of N-doped Ti-based MXene to enhance hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 1099-1106.	5.0	57
43	Boosting Dualâ€Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries. Advanced Functional Materials, 2021, 31, 2006798.	7.8	95
44	A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor. Materials Today Energy, 2021, 19, 100598.	2.5	22
45	High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy, 2021, 81, 105609.	8.2	148
46	Polysiloxane Crossâ€Linked Mechanically Stable MXeneâ€Based Lithium Host for Ultrastable Lithium Metal Anodes with Ultrahigh Current Densities and Capacities. Advanced Functional Materials, 2021, 31, 2008044.	7.8	57
47	Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. Journal of Materials Chemistry A, 2021, 9, 3231-3269.	5.2	97
48	2D MXenes Based Supercapacitors. , 2022, , 590-598.		0
49	MXene-encapsulated hollow Fe ₃ O ₄ nanochains embedded in N-doped carbon nanofibers with dual electronic pathways as flexible anodes for high-performance Li-ion batteries. Nanoscale, 2021, 13, 4624-4633.	2.8	78
50	Three-dimensional MXene/BCN microflowers for wearable all-solid-state microsupercapacitors. Journal of Materials Chemistry C, 2021, 9, 11104-11114.	2.7	11
51	Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and Technology, 2021, 11, 5028-5049.	2.1	11
52	Heteroâ€MXenes: Theory, Synthesis, and Emerging Applications. Advanced Materials, 2021, 33, e2004129.	11.1	150
53	Ti ₃ C ₂ T _x MXene for electrode materials of supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11501-11529.	5.2	181
54	Printed aerogels: chemistry, processing, and applications. Chemical Society Reviews, 2021, 50, 3842-3888.	18.7	128

#	ARTICLE	IF	CITATIONS
55	A nitrogenous pre-intercalation strategy for the synthesis of nitrogen-doped Ti ₃ C ₂ T _x MXene with enhanced electrochemical capacitance. Journal of Materials Chemistry A, 2021, 9, 6393-6401.	5.2	45
56	Sequentially Bridged Ti ₃ C ₂ T <i>>_x</i> MXene Sheets for High Performance Applications. Advanced Materials Interfaces, 2021, 8, 2002043.	1.9	23
57	MXenes: An Emerging Platform for Wearable Electronics and Looking Beyond. Matter, 2021, 4, 377-407.	5.0	125
58	Effect of Ti3AlC2 precursor and processing conditions on microwave absorption performance of resultant Ti3C2Tx MXene. Journal of Materials Science, 2021, 56, 9287-9301.	1.7	19
59	Multitasking MXene Inks Enable Highâ€Performance Printable Microelectrochemical Energy Storage Devices for Allâ€Flexible Selfâ€Powered Integrated Systems. Advanced Materials, 2021, 33, e2005449.	11.1	182
60	MXene-functionalised 3D-printed electrodes for electrochemical capacitors. Electrochemistry Communications, 2021, 124, 106920.	2.3	34
61	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
62	3D Porous Oxidationâ€Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward Highâ€Performance Supercapacitors. Advanced Functional Materials, 2021, 31, 2101087.	7.8	154
63	MXenes for memristive and tactile sensory systems. Applied Physics Reviews, 2021, 8, .	5 . 5	25
64	Additive Manufacturing of Electrochemical Energy Storage Systems Electrodes. Advanced Energy and Sustainability Research, 2021, 2, 2000111.	2.8	15
65	Interface Engineering via Ti3C2Tx MXene Electrolyte Additive toward Dendrite-Free Zinc Deposition. Nano-Micro Letters, 2021, 13, 89.	14.4	130
66	Perspectives on solution processing of two-dimensional MXenes. Materials Today, 2021, 48, 214-240.	8.3	178
67	Flexible and lightweight melamine sponge/MXene/polyborosiloxane (MSMP) hybrid structure for high-performance electromagnetic interference shielding and anti-impact safe-guarding. Composites Part B: Engineering, 2021, 211, 108669.	5.9	46
68	Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage. Journal of Colloid and Interface Science, 2021, 587, 489-498.	5.0	95
69	3D-printed interdigital electrodes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4489-4507.	1.2	11
70	Controllable Patterning of Porous MXene (Ti ₃ C ₂) by Metalâ€Assisted Electroâ€Gelation Method. Advanced Functional Materials, 2021, 31, 2101374.	7.8	30
71	Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors. Small, 2021, 17, e2100956.	5.2	51
72	3D printing coaxial fiber electrodes towards boosting ultralong cycle life of fibrous supercapacitors. Electrochimica Acta, 2021, 380, 138220.	2.6	10

#	ARTICLE	IF	CITATIONS
73	Direct Ink Writing of Highly Conductive MXene Frames for Tunable Electromagnetic Interference Shielding and Electromagnetic Wave-Induced Thermochromism. Nano-Micro Letters, 2021, 13, 148.	14.4	96
74	Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications. Applied Physics Reviews, 2021, 8, .	5 . 5	67
75	Effect of heat treatment on microwave absorption properties of Ti3C2Tx. Journal of Materials Science: Materials in Electronics, 2021, 32, 17953-17965.	1.1	6
76	MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 2021, 592, 95-102.	5.0	76
77	Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. Npj 2D Materials and Applications, 2021, 5, .	3.9	163
78	Threeâ€Dimensional Printed Mechanically Compliant Supercapacitor with Exceptional Areal Capacitance from a Selfâ€Healable Ink. Advanced Functional Materials, 2021, 31, 2102184.	7.8	22
79	Investigating the rheology of 2D titanium carbide (MXene) dispersions for colloidal processing: Progress and challenges. Journal of Materials Research, 2021, 36, 4578-4600.	1.2	14
80	Lamellar MXene: A novel 2D nanomaterial for electrochemical sensors. Journal of Applied Electrochemistry, 2021, 51, 1509-1522.	1.5	27
81	Flexible Photodriven Actuator Based on Gradient–Paraffin-Wax-Filled Ti ₃ C ₂ T _{<i>x</i>} MXene Film for Bionic Robots. ACS Nano, 2021, 15, 12826-12835.	7.3	52
82	Crumpled nitrogen-doped aerogels derived from MXene and pyrrole-formaldehyde as modified separators for stable lithium-sulfur batteries. Applied Surface Science, 2021, 555, 149717.	3.1	32
83	MXenes@Te as a composite material for high-performance aluminum batteries. Science China Materials, 2022, 65, 85-94.	3.5	10
84	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	7.8	57
85	3D Printed Microâ€Electrochemical Energy Storage Devices: From Design to Integration. Advanced Functional Materials, 2021, 31, 2104909.	7.8	66
86	Stimulation of surface terminating group by carbon quantum dots for improving pseudocapacitance of Ti3C2Tx MXene based electrode. Carbon, 2021, 180, 118-126.	5 . 4	32
87	3D printing of carbon-based materials for supercapacitors. Journal of Materials Research, 2021, 36, 4508-4526.	1.2	7
88	Multifunctional Prussian blue/graphene ink for flexible biosensors and supercapacitors. Electrochimica Acta, 2021, 387, 138496.	2.6	21
89	In-situ selective surface engineering of graphene micro-supercapacitor chips. Nano Research, 2022, 15, 1492-1499.	5.8	19
90	Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics. Journal of Energy Chemistry, 2021, 63, 498-513.	7.1	71

#	Article	IF	CITATIONS
91	Extrusionâ€Based 3Dâ€Printed Supercapacitors: Recent Progress and Challenges. Energy and Environmental Materials, 2022, 5, 800-822.	7.3	24
92	Electrodeposition of poly(3,4-ethylenedioxythiophene) coated manganese dioxide nanospheres for flexible asymmetric planar supercapacitor with superior energy density. Journal of Power Sources, 2021, 506, 230176.	4.0	20
93	3D Printed Electrochromic Supercapacitors with Ultrahigh Mechanical Strength and Energy Density. Small, 2021, 17, e2102639.	5.2	20
94	Crosslinking Nanoarchitectonics of Nitrogenâ€doped Carbon/MoS ₂ Nanosheets/Ti ₃ C ₂ T _{<i>x</i>} MXene Hybrids for Highly Reversible Sodium Storage. ChemSusChem, 2021, 14, 5293-5303.	3.6	22
95	Neuroâ€Receptor Mediated Synapse Device Based on Crumpled MXene Ti ₃ C ₂ T <i>_x</i> Nanosheets. Advanced Functional Materials, 2021, 31, 2104304.	7.8	14
96	MXene-Derived Quantum Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy Conversion and Storage Applications. Energy & Dots for Energy & Dots f	2.5	41
97	Tunable nitrogen-doped delaminated 2D MXene obtained by NH3/Ar plasma treatment as highly efficient hydrogen and oxygen evolution reaction electrocatalyst. Chemical Engineering Journal, 2021, 420, 129832.	6.6	30
98	Recent progress in solution assembly of 2D materials for wearable energy storage applications. Journal of Energy Chemistry, 2021, 62, 27-42.	7.1	29
99	Stretchable Ti ₃ C ₂ T _x MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. Journal of Materials Chemistry A, 2021, 9, 4664-4672.	5.2	15
100	Evaluation and Optimization of Dielectric Properties of PVDF/BaTiO ₃ Nanocomposites Film for Energy Storage and Sensors. ECS Journal of Solid State Science and Technology, 2020, 9, 115005.	0.9	5
101	MXenes: focus on optical and electronic properties and corresponding applications. Nanophotonics, 2020, 9, 1601-1620.	2.9	82
102	Surface functionalization of MXenes. Materials Advances, 2021, 2, 7277-7307.	2.6	73
103	A durable MXene-based zinc ion hybrid supercapacitor with sulfated polysaccharide reinforced hydrogel/electrolyte. Journal of Materials Chemistry A, 2021, 9, 23941-23954.	5.2	49
105	Nanoarchitectonics from 2D to 3D: MXenes-derived nitrogen-doped 3D nanofibrous architecture for extraordinarily-fast capacitive deionization. Chemical Engineering Journal, 2022, 430, 133161.	6.6	109
106	2D materials inks toward smart flexible electronics. Materials Today, 2021, 50, 116-148.	8.3	57
107	Material and structural design of microsupercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 313-334.	1.2	7
108	Oxocarbon Organic Conjugated Compounds for Lithium-ion Batteries and Solar Cells: Progress and Perspectives. Current Organic Chemistry, 2020, 24, 200-215.	0.9	1
109	Functional 2D MXene Inks for Wearable Electronics. Materials, 2021, 14, 6603.	1.3	16

#	Article	IF	Citations
110	Microscale Curling and Alignment of Ti ₃ C ₂ T <i>_x</i>) MXene by Confining Aerosol Droplets for Planar Micro-Supercapacitors. ACS Omega, 2021, 6, 33067-33074.	1.6	5
111	Laser In-Situ synthesis of metallic cobalt decorated porous graphene for flexible In-Plane microsupercapacitors. Journal of Colloid and Interface Science, 2022, 610, 775-784.	5.0	10
112	Vacuumâ€Assisted Layerâ€byâ€Layer Carbon Nanotube/Ti ₃ C ₂ T <i>_X</i> MXene Films for Detecting Human Movements. Advanced Materials Technologies, 2022, 7, 2101096.	3.0	6
113	3D Macroporous Oxidationâ€Resistant Ti ₃ C ₂ T <i>>_x</i> MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life. Advanced Functional Materials, 2022, 32, 2109479.	7.8	74
114	Homogeneous Na Deposition Enabling Highâ€Energy Naâ€Metal Batteries. Advanced Functional Materials, 2022, 32, 2110280.	7.8	38
115	3D Printed MXene Aerogels with Truly 3D Macrostructure and Highly Engineered Microstructure for Enhanced Electrical and Electrochemical Performance. Advanced Materials, 2022, 34, e2104980.	11.1	64
116	Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chemical Engineering Journal, 2022, 431, 133985.	6.6	47
117	MXene nanofibers confining MnO _{<i>x</i>>li>} nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton Transactions, 2022, 51, 1423-1433.	1.6	8
118	Conductive and eco-friendly gluten/MXene composite organohydrogels for flexible, adhesive, and low-temperature tolerant epidermal strain sensors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128182.	2.3	9
119	Recent advances on energy storage microdevices: From materials to configurations. Energy Storage Materials, 2022, 45, 741-767.	9.5	15
120	Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. Journal of Alloys and Compounds, 2022, 900, 163436.	2.8	34
121	Prospects of MXenes/graphene nanocomposites for advanced supercapacitor applications. Journal of Electroanalytical Chemistry, 2022, 905, 115973.	1.9	10
122	3D Printed Template-Assisted Assembly of Additive-Free Ti ₃ C ₂ T _{<i>x</i>} MXene Microlattices with Customized Structures toward High Areal Capacitance. ACS Nano, 2022, 16, 2699-2710.	7.3	43
123	A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors. Applied Sciences (Switzerland), 2022, 12, 862.	1.3	24
124	Wrinkled and flexible N-doped MXene additive for improving the mechanical and electrochemical properties of the nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode. Electrochimica Acta, 2022, 410, 139989.	2.6	6
125	Prospective advances in MXene inks: screen printable sediments for flexible micro-supercapacitor applications. Journal of Materials Chemistry A, 2022, 10, 4533-4557.	5.2	38
126	Three-Dimensional Ti ₃ C ₂ T _{<i>x</i>} MXene-Prussian Blue Hybrid Microsupercapacitors by Water Lift-Off Lithography. ACS Nano, 2022, 16, 1974-1985.	7.3	25
127	Interconnected N-doped MXene spherical shells for highly efficient capacitive deionization. Environmental Science: Nano, 2022, 9, 204-213.	2.2	12

#	Article	IF	Citations
128	Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Nextâ€Generation Supercapacitors: A Review. Advanced Functional Materials, 2022, 32, .	7.8	152
129	Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Analytica Chimica Acta, 2022, 1197, 339520.	2.6	17
130	Flexible and mechanically strong MXene/FeCo@C decorated carbon cloth: A multifunctional electromagnetic interference shielding material. Composites Science and Technology, 2022, 221, 109337.	3.8	37
131	A review on inâ€mold electronics technology. Polymer Engineering and Science, 2022, 62, 967-990.	1.5	20
132	Molten salt method synthesis of multivalent cobalt and oxygen vacancy modified Nitrogen-doped MXene as highly efficient hydrogen and oxygen Evolution reaction electrocatalysts. Journal of Colloid and Interface Science, 2022, 615, 831-839.	5.0	16
133	High-resolution extrusion printing of Ti3C2-based inks for wearable human motion monitoring and electromagnetic interference shielding. Carbon, 2022, 191, 277-289.	5.4	47
134	MXene wearables: properties, fabrication strategies, sensing mechanism and applications. Materials Advances, 2022, 3, 3784-3808.	2.6	29
135	<scp>Twoâ€dimensional MXenes</scp> : New frontier of wearable and flexible electronics. InformaÄnÃ- Materiály, 2022, 4, .	8.5	102
136	Review on Ti3C2-Based MXene Nanosheets for Flexible Electrodes. Electronic Materials Letters, 2022, 18, 256-274.	1.0	16
137	Surfaceâ€Adaptive Capillarity Enabling Densified 3D Printing for Ultraâ€High Areal and Volumetric Energy Density Supercapacitors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
138	Emerging Advancements in Polypyrrole MXene Hybrid Nanoarchitectonics for Capacitive Energy Storage Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1521-1540.	1.9	15
139	Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Advanced Materials, 2022, 34, e2108855.	11.1	361
140	Threeâ€Dimensional MXenes for Supercapacitors: A Review. Small Methods, 2022, 6, e2101537.	4.6	75
141	Surfaceâ€Adaptive Capillarity Enabling Densified 3D Printing for Ultraâ€High Areal and Volumetric Energy Density Supercapacitors. Angewandte Chemie, 2022, 134, .	1.6	4
142	Langmuir–Blodgett Assembly of Ti ₃ C ₂ T <i>>_x</i> Nanosheets for Planar Microsupercapacitors. ACS Applied Nano Materials, 2022, 5, 4170-4179.	2.4	4
143	Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Advanced Composites and Hybrid Materials, 2022, 5, 1537-1547.	9.9	78
144	Self-assembled Ti3C2TX MXene/graphene composite for the electrochemical reduction and detection of p-nitrophenol. Microchemical Journal, 2022, 179, 107473.	2.3	24
145	Dispenser Printed Bismuthâ€Based Magnetic Field Sensors with Nonâ€Saturating Large Magnetoresistance for Touchless Interactive Surfaces. Advanced Materials Technologies, 2022, 7, .	3.0	7

#	ARTICLE	IF	Citations
146	Three-dimensional ordered and porous Ti3C2Tx@Chitosan film enabled by self-assembly strategy for high-rate pseudocapacitive energy storage. Chemical Engineering Journal, 2022, 442, 136255.	6.6	12
147	A facile laser assisted paste-tear approach to large area, flexible and wearable in-plane micro-supercapacitors. Journal of Power Sources, 2022, 532, 231346.	4.0	6
148	Hierarchical porous hollow N-doped Cu-based MOF derivatives as highly sensitive electrochemical sensing platform for pesticides detection. Sensors and Actuators B: Chemical, 2022, 362, 131749.	4.0	12
149	Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots. Chemical Engineering Journal, 2022, 442, 136119.	6.6	15
150	Three-Dimensional Porous Ti ₃ C ₂ T _{<i>></i>} <i> MXene-Based Hybrids Formed by Charge-Driven Assembly. Chemistry of Materials, 2021, 33, 9560-9570.</i>	3.2	10
151	Applications of 2D MXenes for Electrochemical Energy Conversion and Storage. Energies, 2021, 14, 8183.	1.6	9
152	Direct-ink writing 3D printed energy storage devices: From material selectivity, design and optimization strategies to diverse applications. Materials Today, 2022, 54, 110-152.	8.3	66
153	Direct ink writing of conductive materials for emerging energy storage systems. Nano Research, 2022, 15, 6091-6111.	5.8	11
154	Boosting the energy density of aqueous MXeneâ€based supercapacitor by integrating 3D conducting polymer hydrogel cathode. SusMat, 2022, 2, 379-390.	7.8	29
155	Elementâ€Doped Mxenes: Mechanism, Synthesis, and Applications. Small, 2022, 18, e2201740.	5.2	43
156	Pure Aqueous Planar Microsupercapacitors with Ultrahigh Energy Density under Wide Temperature Ranges. Advanced Functional Materials, 2022, 32, .	7.8	17
157	In situ Modified Mesoporous MXene Film with Excellent Oxidation Resistance for High-Performance Supercapacitor. Applied Materials Today, 2022, 27, 101483.	2.3	3
158	3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels. Polymers, 2022, 14, 1992.	2.0	11
159	Self-Supporting, Binder-Free, and Flexible Ti ₃ C ₂ T _{<i>>x</i>} MXene-Based Supercapacitor Electrode with Improved Electrochemical Performance. ACS Nano, 2022, 16, 9713-9727.	7.3	76
160	High-Performance All-solid-state microsupercapacitors from 3D printing Structure-engineered Graphene-Carbon sphere electrodes. Applied Surface Science, 2022, 597, 153730.	3.1	11
161	A focus review on 3D printing of wearable energy storage devices. , 2022, 4, 1242-1261.		23
162	Overview of MXene/conducting polymer composites for supercapacitors. Journal of Energy Storage, 2022, 52, 105008.	3.9	63
163	3D MXenes as promising alternatives for potential electrocatalysis applications: opportunities and challenges. Journal of Materials Chemistry C, 2022, 10, 9669-9690.	2.7	8

#	Article	IF	CITATIONS
164	Strainâ€Driven Autoâ€Detachable Patterning of Flexible Electrodes. Advanced Materials, 2022, 34, .	11.1	50
165	3D-Printed Sodiophilic V ₂ CT _{<i>x</i>} /rGO-CNT MXene Microgrid Aerogel for Stable Na Metal Anode with High Areal Capacity. ACS Nano, 2022, 16, 9105-9116.	7.3	60
166	Advanced manufacturing approaches for electrochemical energy storage devices. International Materials Reviews, 2023, 68, 323-364.	9.4	10
167	Microwave-assisted rapid synthesis of titanium phosphate free phosphorus doped Ti ₃ C ₂ MXene with boosted pseudocapacitance. Journal of Materials Chemistry A, 2022, 10, 15794-15810.	5.2	24
168	Core-shell MXene/nitrogen-doped C heterostructure for wide-band electromagnetic wave absorption at thin thickness. Ceramics International, 2022, 48, 30317-30324.	2.3	16
169	Printing of MXene-based materials and the applications: a state-of-the-art review. 2D Materials, 2022, 9, 042002.	2.0	3
170	Direct ink writing (DIW) of graphene aerogel composite electrode for vanadium redox flow battery. Journal of Power Sources, 2022, 542, 231810.	4.0	19
171	Recent status and future perspectives of 2D MXene for micro-supercapacitors and micro-batteries. Energy Storage Materials, 2022, 51, 500-526.	9.5	58
172	Nitrogen-Doped Porous MXene (Ti3C2) for Flexible Supercapacitors with Enhanced Storage Performance. Molecules, 2022, 27, 4890.	1.7	10
173	Natureâ€Inspired 3D Spiral Grass Structured Graphene Quantum Dots/MXene Nanohybrids with Exceptional Photothermalâ€Driven Pseudoâ€Capacitance Improvement. Advanced Science, 2022, 9, .	5.6	14
174	Cytomembrane-Inspired MXene Ink with Amphiphilic Surfactant for 3D Printed Microsupercapacitors. ACS Nano, 2022, 16, 14723-14736.	7.3	20
175	Wearable Fiber-Based Supercapacitors Enabled by Additive-Free Aqueous MXene Inks for Self-Powering Healthcare Sensors. Advanced Fiber Materials, 2022, 4, 1535-1544.	7.9	19
176	Rheology-Guided Assembly of a Highly Aligned MXene/Cellulose Nanofiber Composite Film for High-Performance Electromagnetic Interference Shielding and Infrared Stealth. ACS Applied Materials & Amp; Interfaces, 2022, 14, 36060-36070.	4.0	46
177	Recent progress on screen-printed flexible sensors for human health monitoring. Sensors and Actuators A: Physical, 2022, 345, 113821.	2.0	35
178	Recent progress of Ti3C2Tx-based MXenes for fabrication of multifunctional smart textiles. Applied Materials Today, 2022, 29, 101612.	2.3	13
179	Clipping electron transport and polarization relaxation of Ti3C2Tx based nanocomposites towards multifunction. Carbon, 2023, 201, 371-380.	5.4	68
180	MXene, silicene and germanene: preparation and energy storage applications. Materials Today Energy, 2022, 30, 101144.	2.5	10
181	Recent advance in two-dimensional MXenes: New horizons in flexible batteries and supercapacitors technologies. Energy Storage Materials, 2022, 53, 783-826.	9.5	23

#	Article	IF	CITATIONS
182	Synthesis of MoS ₂ @Nâ€MXene/C Heterogeneous Nanosheets and its Enhanced Pseudocapacitance Effects for NIBs. ChemElectroChem, 2022, 9, .	1.7	1
183	Surface-engineered Ti ₃ C ₂ T _x MXene enabling rapid sodium/potassium ion storage. 2D Materials, 2023, 10, 014005.	2.0	23
184	Controllable Surface-Grafted MXene Inks for Electromagnetic Wave Modulation and Infrared Anti-Counterfeiting Applications. ACS Nano, 2022, 16, 16976-16986.	7.3	74
185	Facile Synthesis of NiCo2O4 Nanowire Arrays/Few-Layered Ti3C2-MXene Composite as Binder-Free Electrode for High-Performance Supercapacitors. Molecules, 2022, 27, 6452.	1.7	6
186	3D printed pure carbon-based electrodes for zinc-ion hybrid supercapacitor. Carbon Trends, 2022, 9, 100222.	1.4	2
187	Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten, 2024, 6, 196-211.	2.0	11
188	Rain Energy Harvesting Using Atomically Thin Gadolinium Telluride Decorated 3D Printed Nanogenerator. Advanced Sustainable Systems, 2022, 6, .	2.7	1
189	3D Printed Supercapacitor: Techniques, Materials, Designs, and Applications. Advanced Functional Materials, 2023, 33, .	7.8	32
190	Multi-electron/ion conduction channels enabling high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2022, 10, 25148-25158.	5.2	11
191	Ultrafast and Sensitive Hydrophobic QCM Humidity Sensor by Sulfur Modified Ti ₃ C ₂ T _x MXene. IEEE Sensors Journal, 2023, 23, 3462-3468.	2.4	5
192	Advanced Three-Dimensional Microelectrode Architecture Design for High-Performance On-Chip Micro-Supercapacitors. ACS Nano, 2022, 16, 17593-17612.	7.3	25
193	Recent advances in polyaniline-based micro-supercapacitors. Materials Horizons, 2023, 10, 670-697.	6.4	13
194	Electrostatic self-assembly of citrus based carbon nanosheets and MXene: Flexible film electrodes and patterned interdigital electrodes for all-solid supercapacitors. Journal of Energy Storage, 2023, 58, 106392.	3.9	7
195	Stabilizing the MXene by Ion Confinement Shielding in a Wide Temperature Range. Small Structures, 2023, 4, .	6.9	1
196	MXene-Based Ink Design for Printed Applications. Nanomaterials, 2022, 12, 4346.	1.9	11
197	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€ion Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
198	Doped-nitrogen enhanced the performance of Nb2CTx on the electrocatalytic synthesis of H2O2. Nano Research, 2023, 16, 6120-6127.	5.8	6
199	Advanced perspectives on MXene composite nanomaterials: Types synthetic methods, thermal energy utilization and 3D-printed techniques. IScience, 2023, 26, 105824.	1.9	4

#	Article	IF	CITATIONS
200	3D Printing of Ultralow-Concentration 2D Nanomaterial Inks for Multifunctional Architectures. Nano Letters, 2023, 23, 155-162.	4.5	27
201	Fourier-transform rheology and printability maps of complex fluids for three-dimensional printing. Physics of Fluids, 2023, 35, .	1.6	9
202	Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. Small Methods, 2023, 7, .	4.6	8
203	Natureâ€Inspired Interconnected Macro/Meso/Microâ€Porous MXene Electrode. Advanced Functional Materials, 2023, 33, .	7.8	29
204	2D Titanium carbide printed flexible ultrawideband monopole antenna for wireless communications. Nature Communications, 2023, 14, .	5.8	10
205	Rational design of MXene-MoS2 heterostructure with rapid ion transport rate as an advanced anode for sodium-ion batteries. Chemical Engineering Journal, 2023, 457, 141363.	6.6	38
206	Optimization of ion/electron channels enabled by multiscale MXene aerogel for integrated self-healable flexible energy storage and electronic skin system. Nano Energy, 2023, 107, 108131.	8.2	21
207	Electrospun Fe0.64Ni0.36/MXene/CNFs nanofibrous membranes with multicomponent heterostructures as flexible electromagnetic wave absorbers. Nano Research, 0, , .	5.8	61
208	3D printing of 2D nano-inks for multifarious applications. , 2023, , 91-124.		2
209	Design and fabrication of supercapacitors. , 2023, , 361-404.		0
210	A sensitive electrochemical sensor based on 3D porous melamine-doped rGO/MXene composite aerogel for the detection of heavy metal ions in the environment. Talanta, 2023, 256, 124294.	2.9	21
211	Research Progress and Prospect of Printed Batteries. Lecture Notes in Electrical Engineering, 2023, , 561-569.	0.3	0
212	A Single Electronic Tattoo for Multisensory Integration. Small Methods, 2023, 7, .	4.6	3
213	A comprehensive review of heat transfer enhancement of heat exchanger, heat pipe and electronic components using graphene. Case Studies in Thermal Engineering, 2023, 45, 102874.	2.8	12
214	Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance. Journal of Materials Science and Technology, 2023, 154, 22-29.	5.6	3
215	3D Printed Nitrogenâ€Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance. Advanced Science, 2023, 10, .	5.6	11
216	Unveiling Spin Stateâ€Dependent Micropollutant Removal using Singleâ€Atom Covalent Triazine Framework. Advanced Functional Materials, 2023, 33, .	7.8	9
217	Highly Sensitive Flexible Thermal Sensors Based on a Kind of MXene/DES Inks. ACS Applied Electronic Materials, 2023, 5, 1252-1261.	2.0	2

#	Article	IF	CITATIONS
218	Highly efficient, remarkable sensor activity and energy storage properties of MXenes and borophene nanomaterials. Progress in Solid State Chemistry, 2023, 70, 100392.	3.9	5
219	Nitrogen self-doped porous lamellar carbon with superior electrochemical performance. Diamond and Related Materials, 2023, 134, 109787.	1.8	5
220	3D printed electronics with nanomaterials. Nanoscale, 2023, 15, 5623-5648.	2.8	11
221	Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	32
222	Allâ∈MXeneâ∈Printed RF Resonators as Wireless Plant Wearable Sensors for In Situ Ethylene Detection. Small, 2023, 19, .	5. 2	9
223	Rational Design of MXene Hollow Fiber Membranes for Gas Separations. Nano Letters, 2023, 23, 2710-2718.	4.5	6
224	Recent advances in two-dimensional MXenes for zinc-ion batteries. Materials Chemistry Frontiers, 2023, 7, 2373-2404.	3.2	5
225	Advancement in the Micro-supercapacitors: Synthesis, Design, and Applications. Springer Series in Materials Science, 2023, , 295-330.	0.4	0
226	Synthesis and applications of MXene-based composites: a review. Nanotechnology, 2023, 34, 262001.	1.3	14
227	Facile fabrication of PANI/g-C ₃ N ₄ /MXene composites as electrode materials for supercapacitors. New Journal of Chemistry, 2023, 47, 8670-8678.	1.4	4
229	Three-Dimensional MXene-Based Functional Materials for Water Treatment: Preparation, Functional Tailoring, and Applications. Industrial & Engineering Chemistry Research, 2023, 62, 7297-7335.	1.8	3
231	Three-dimensional (3D) Printed Supercapacitor. , 2023, , 1-21.		1
246	MXenes based 2D nanostructures for supercapacitors. , 2023, , 261-303.		0
257	Additive Manufacturing for Functionalized Nanomaterials Dedicated to Supercapacitors. Materials Horizons, 2024, , 131-160.	0.3	0
265	Metal Carbides and Metal Nitrides Composites for Supercapacitor Applications. ACS Symposium Series, 0, , 81-96.	0.5	0
278	Pseudocapacitive Materials for 3D Printed Supercapacitors. Engineering Materials, 2024, , 237-256.	0.3	0
294	MXene-based aerogels for electromagnetic interference shielding. , 2024, , 427-456.		O