Description and basic evaluation of simulated mean sta sensitivity in MIROC6

Geoscientific Model Development 12, 2727-2765 DOI: 10.5194/gmd-12-2727-2019

Citation Report

#	Article	IF	CITATIONS
1	Prognostic Precipitation in the MIROC6â€SPRINTARS GCM: Description and Evaluation Against Satellite Observations. Journal of Advances in Modeling Earth Systems, 2019, 11, 839-860.	1.3	44
2	Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation. Geoscientific Model Development, 2019, 12, 4297-4307.	1.3	8
3	Comment on "The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity― Journal of Climate, 2020, 33, 391-396.	1.2	2
4	Reply to "Comment on â€~The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity'― Journal of Climate, 2020, 33, 397-404.	1.2	1
5	Quantifying Progress Across Different CMIP Phases With the ESMValTool. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032321.	1.2	50
6	Optimal areas and climate change effects on dragon fruit cultivation in Mesoamerica. Journal of Agricultural Science, 2020, 158, 461-470.	0.6	6
8	Future Changes in Climate over the Arabian Peninsula based on CMIP6 Multimodel Simulations. Earth Systems and Environment, 2020, 4, 611-630.	3.0	59
9	Testing a Physical Hypothesis for the Relationship Between Climate Sensitivity and Doubleâ€ITCZ Bias in Climate Models. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001999.	1.3	4
10	The Pacific Equatorial Undercurrent in Three Generations of Global Climate Models and Glider Observations. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016609.	1.0	12
11	Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nature Climate Change, 2020, 10, 928-932.	8.1	71
12	A development of reduction scenarios of the short-lived climate pollutants (SLCPs) for mitigating global warming and environmental problems. Progress in Earth and Planetary Science, 2020, 7, .	1.1	11
13	Evaluation of Historical CMIP6 Model Simulations of Seasonal Mean Temperature over Pakistan during 1970–2014. Atmosphere, 2020, 11, 1005.	1.0	28
14	Variability in the global energy budget and transports 1985–2017. Climate Dynamics, 2020, 55, 3381-3396.	1.7	23
15	Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Advances in Climate Change Research, 2020, 11, 239-251.	2.1	156
16	Seasonal to Decadal Predictions With MIROC6: Description and Basic Evaluation. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002035.	1.3	19
17	Return to different climate states by reducing sulphate aerosols under future CO2 concentrations. Scientific Reports, 2020, 10, 21748.	1.6	8
18	Determining the Anthropogenic Greenhouse Gas Contribution to the Observed Intensification of Extreme Precipitation. Geophysical Research Letters, 2020, 47, e2019GL086875.	1.5	66
19	Broad Consistency Between Observed and Simulated Trends in Sea Surface Temperature Patterns. Geophysical Research Letters, 2020, 47, e2019GL086773.	1.5	34

#	Article	IF	CITATIONS
22	Reconciling Compensating Errors Between Precipitation Constraints and the Energy Budget in a Climate Model. Geophysical Research Letters, 2020, 47, e2020GL088340.	1.5	15
23	Projections of Precipitation and Temperature over the South Asian Countries in CMIP6. Earth Systems and Environment, 2020, 4, 297-320.	3.0	254
24	On the Emergence of the Atlantic Multidecadal SST Signal: A Key Role of the Mixed Layer Depth Variability Driven by North Atlantic Oscillation. Journal of Climate, 2020, 33, 3511-3531.	1.2	10
25	Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model. Atmospheric Chemistry and Physics, 2020, 20, 5657-5678.	1.9	20
26	Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Systems and Environment, 2020, 4, 455-475.	3.0	219
27	Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 2020, 6, eaba1981.	4.7	321
28	Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphereâ€Troposphere Coupling to Quadrupled CO ₂ Concentrations in CMIP6 Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032345.	1.2	50
29	The Atlantic Meridional Overturning Circulation in Highâ€Resolution Models. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015522.	1.0	75
30	Mechanisms of enhanced ocean surface warming in the Kuroshio region for 1951–2010. Climate Dynamics, 2020, 54, 4129-4145.	1.7	7
31	Advances in understanding largeâ€scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences, 2020, 1472, 49-75.	1.8	226
32	Assessment of Sea Ice Extent in CMIP6 With Comparison to Observations and CMIP5. Geophysical Research Letters, 2020, 47, e2020GL087965.	1.5	96
33	Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by <scp>CMIP5</scp> and <scp>CMIP6</scp> models. International Journal of Climatology, 2021, 41, E1100.	1.5	11
34	Historical and projected low-frequency variability in the Somali Jet and Indian Summer Monsoon. Climate Dynamics, 2021, 56, 749-765.	1.7	13
35	The Northwestern Pacific Warming Record in August 2020 Occurred Under Anthropogenic Forcing. Geophysical Research Letters, 2021, 48, e2020GL090956.	1.5	18
36	Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nature Climate Change, 2021, 11, 33-37.	8.1	58
37	Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections. Science of the Total Environment, 2021, 765, 142774.	3.9	38
38	What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?. Climate Dynamics, 2021, 56, 155-187.	1.7	29
39	Evaluating Diurnal and Semi-Diurnal Cycle of Precipitation in CMIP6 Models Using Satellite- and Ground-Based Observations. Journal of Climate, 2021, , 1-56.	1.2	19

#	Article	IF	CITATIONS
40	Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 models. Ocean Science, 2021, 17, 59-90.	1.3	84
41	Projected Changes in Temperature and Precipitation Over the United States, Central America, and the Caribbean in CMIP6 GCMs. Earth Systems and Environment, 2021, 5, 1-24.	3.0	125
42	The Climatic Analysis of Summer Monsoon Extreme Precipitation Events over West Africa in CMIP6 Simulations. Earth Systems and Environment, 2021, 5, 25-41.	3.0	47
43	Long-term Regional Dynamic Sea Level Changes from CMIP6 Projections. Advances in Atmospheric Sciences, 2021, 38, 157-167.	1.9	9
44	Evaluating the invasion risk of longhorn crazy ants (Paratrechina longicornis) in South Korea using spatial distribution model. Journal of Asia-Pacific Entomology, 2021, 24, 279-287.	0.4	8
45	Constraining human contributions to observed warming since the pre-industrial period. Nature Climate Change, 2021, 11, 207-212.	8.1	108
46	Investigating Runoff Sensitivity in the Land-Surface Model MATSIRO to Reduce Low Runoff Bias. Journal of the Meteorological Society of Japan, 2021, 99, 685-695.	0.7	2
47	Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison. Atmospheric Chemistry and Physics, 2021, 21, 853-874.	1.9	65
48	An evaluation of the Arctic clouds and surface radiative fluxes in CMIP6 models. Acta Oceanologica Sinica, 2021, 40, 85-102.	0.4	8
49	An evaluation of CMIP6 historical simulations of the cold season teleconnection between tropical Indo-Pacific sea surface temperatures and precipitation in Southwest Asia, the coastal Middle East, and Northern Pakistan and India. Journal of Climate, 2021, , 1-43.	1.2	3
50	The Southern Annular Mode in 6th Coupled Model Intercomparison Project Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034161.	1.2	10
51	The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geoscientific Model Development, 2021, 14, 795-820.	1.3	28
52	Historical and Projected Changes in the Southern Hemisphere Surface Westerlies. Geophysical Research Letters, 2021, 48, e2020GL090849.	1.5	57
53	Simulation and Projection of Summer Convective Afternoon Rainfall Activities over Southeast Asia in CMIP6 Models. Journal of Climate, 2021, , 1-43.	1.2	2
54	Towards Conservation of the Remarkably High Number of Daisy Trees (Asteraceae) in Mexico. Plants, 2021, 10, 534.	1.6	4
55	Climate model projections from the Scenario Model Intercomparison ProjectÂ(ScenarioMIP) of CMIP6. Earth System Dynamics, 2021, 12, 253-293.	2.7	236
56	Analysis of the Atmospheric Water Cycle for the Laurentian Great Lakes Region Using CMIP6 Models. Journal of Climate, 2021, 34, 4693-4710.	1.2	5
57	Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming. Polar Science, 2021, 30, 100677.	0.5	9

		CITATION REPORT		
#	Article		IF	CITATIONS
58	Present and Future of Rainfall in Antarctica. Geophysical Research Letters, 2021, 48, e20	20GL092281.	1.5	33
59	Redistribution of Sumatran orangutan in the Leuser ecosystem due to dispersal constrai climate change. IOP Conference Series: Earth and Environmental Science, 2021, 771, 01	nts and 2006.	0.2	0
61	Exploiting large ensembles for a better yet simpler climate model evaluation. Climate Dy 57, 2557-2580.	namics, 2021,	1.7	36
63	Using Climate Model Simulations to Constrain Observations. Journal of Climate, 2021, 3	4, 6281-6301.	1.2	11
64	Comparison of CMIP6 historical climate simulations and future projected warming to an model of global climate. Earth System Dynamics, 2021, 12, 545-579.	empirical	2.7	14
65	Robust Interâ€Hemispheric Asymmetry in the Response to Symmetric Volcanic Forcing in Ensembles. Geophysical Research Letters, 2021, 48, e2021GL092558.	n Model Large	1.5	8
66	Citizen science and niche modeling to track and forecast the expansion of the brown ma stinkbug Halyomorpha halys (Stål, 1855). Scientific Reports, 2021, 11, 11421.	ırmorated	1.6	17
67	Climate change favours large seasonal loss of Arctic ozone. Nature Communications, 20	21, 12, 3886.	5.8	44
68	Comparison of <scp>CMIP6</scp> and <scp>CMIP5</scp> models in simulating mean a precipitation over East Africa. International Journal of Climatology, 2021, 41, 6474-6496	nd extreme	1.5	98
69	Variations in mineralogy of dust in an ice core obtained from northwestern Greenland ov 100 years. Climate of the Past, 2021, 17, 1341-1362.	er the past	1.3	9
71	Forecasting the Distribution of a Range-Expanding Bat Reveals Future Response to Clima Habitat. Acta Chiropterologica, 2021, 23, .	ite Change and	0.2	3
72	Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay Water (Switzerland), 2021, 13, 2110.	y), Ethiopia.	1.2	26
73	The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1. Geoscientific Model Develop 4781-4796.	ment, 2021, 14,	1.3	17
74	A Processâ€Oriented Diagnostic to Assess Precipitationâ€Thermodynamic Relations and CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL094108.	Application to	1.5	5
75	Summer and winter precipitation in East Asia scale with global warming at different rates Communications Earth & Environment, 2021, 2, .	5.	2.6	14
76	Performance of the Taiwan Earth System Model in Simulating Climate Variability Compar Observations and CMIP6 Model Simulations. Journal of Advances in Modeling Earth Syste e2020MS002353.	end With ems, 2021, 13,	1.3	31
77	Energy Budget Constraints on the Time History of Aerosol Forcing and Climate Sensitivit Geophysical Research D: Atmospheres, 2021, 126, e2020JD033622.	y. Journal of	1.2	25
78	Spatiotemporal changes in rainfall and droughts of Bangladesh for1.5 and 2°C tempe scenarios of CMIP6 models. Theoretical and Applied Climatology, 2021, 146, 527-542.	rature rise	1.3	16

#	Article	IF	CITATIONS
79	The Convectiveâ€Toâ€Total Precipitation Ratio and the "Drizzling―Bias in Climate Models. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034198.	1.2	30
80	Modeling the Impacts of Climate Change on Yields of Various Korean Soybean Sprout Cultivars. Agronomy, 2021, 11, 1590.	1.3	5
81	Understanding Topâ€ofâ€Atmosphere Flux Bias in the AeroCom Phase III Models: A Clearâ€Sky Perspective. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002584.	1.3	4
82	The Brewer–Dobson circulation in CMIP6. Atmospheric Chemistry and Physics, 2021, 21, 13571-13591.	1.9	25
83	Rarity in freshwater vascular plants across Europe and North America: Patterns, mechanisms and future scenarios. Science of the Total Environment, 2021, 786, 147491.	3.9	7
84	Winter Euroâ€Atlantic Climate Modes: Future Scenarios From a CMIP6 Multiâ€Model Ensemble. Geophysical Research Letters, 2021, 48, e2021GL094532.	1.5	5
85	Southern Ocean polynyas in CMIP6 models. Cryosphere, 2021, 15, 4281-4313.	1.5	20
86	Measuring Metrics of Climate Change and Its Implication on the Endangered Mammal Conservation in the Leuser Ecosystem. Frontiers in Environmental Science, 2021, 9, .	1.5	4
87	Impact of climate change on the potential geographical suitability of cassava and sweet potato vs. rice and potato in India. Theoretical and Applied Climatology, 2021, 146, 941-960.	1.3	7
88	Differential Credibility of Climate Modes in CMIP6. Journal of Climate, 2021, 34, 8145-8164.	1.2	22
89	Projections of meteorological drought based on CMIP6 multi-model ensemble: A case study of Henan Province, China. Journal of Contaminant Hydrology, 2021, 243, 103887.	1.6	9
90	Role of tide-induced vertical mixing in the deep Pacific Ocean circulation. Journal of Oceanography, 2021, 77, 173-184.	0.7	10
91	Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models. Atmospheric Chemistry and Physics, 2021, 21, 1105-1126.	1.9	39
92	Response of Global Tropical Cyclone Activity to Increasing CO2: Results from Downscaling CMIP6 Models. Journal of Climate, 2021, 34, 57-70.	1.2	105
93	Impact of the Quasi-Biennial Oscillation on the Northern Winter Stratospheric Polar Vortex in CMIP5/6 Models. Journal of Climate, 2020, 33, 4787-4813.	1.2	38
94	Effects of Buoyancy and Wind Forcing on Southern Ocean Climate Change. Journal of Climate, 2020, 33, 10003-10020.	1.2	26
95	The Diurnal Temperature Range in CMIP6 Models: Climatology, Variability, and Evolution. Journal of Climate, 2020, 33, 8261-8279.	1.2	22
96	How Does the Quasi-Biennial Oscillation Affect the Boreal Winter Tropospheric Circulation in CMIP5/6 Models?. Journal of Climate, 2020, 33, 8975-8996.	1.2	32

#	Article	IF	CITATIONS
97	Predictive Skill Assessment for Land Water Storage in CMIP5 Decadal Hindcasts by a Global Reconstruction of GRACE Satellite Data. Journal of Climate, 2020, 33, 9497-9509.	1.2	5
98	d4PDF: large-ensemble and high-resolution climate simulations for global warming risk assessment. Progress in Earth and Planetary Science, 2020, 7, .	1.1	48
99	Two decades of Earth system modeling with an emphasis on Model for Interdisciplinary Research on Climate (MIROC). Progress in Earth and Planetary Science, 2020, 7, .	1.1	36
100	Biogeophysical and biogeochemical impacts of land-use change simulated by MIROC-ES2L. Progress in Earth and Planetary Science, 2020, 7, .	1.1	10
101	Future dynamic sea level change in the western subtropical North Pacific associated with ocean heat uptake and heat redistribution by ocean circulation under global warming. Progress in Earth and Planetary Science, 2020, 7, .	1.1	5
102	Impact of air–sea coupling on the probability of occurrence of heat waves in Japan. Progress in Earth and Planetary Science, 2020, 7, .	1.1	3
103	Marine Low Clouds and their Parameterization in Climate Models. Journal of the Meteorological Society of Japan, 2020, 98, 1097-1127.	0.7	9
104	Snow-induced buffering in aerosol–cloud interactions. Atmospheric Chemistry and Physics, 2020, 20, 13771-13780.	1.9	12
105	Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 2020, 20, 16023-16040.	1.9	25
106	Effective radiative forcing and adjustments in CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 9591-9618.	1.9	149
107	Climate and air quality impacts due to mitigation of non-methane near-term climate forcers. Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.	1.9	30
108	Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models. Biogeosciences, 2020, 17, 4173-4222.	1.3	255
109	Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6?. Earth System Dynamics, 2020, 11, 1233-1258.	2.7	63
110	Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth System Dynamics, 2020, 11, 995-1012.	2.7	135
111	Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geoscientific Model Development, 2020, 13, 2197-2244.	1.3	245
112	Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 3643-3708.	1.3	99
113	Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere, 2020, 14, 2495-2514.	1.5	115
114	The Gulf Stream and Kuroshio Current are synchronized. Science, 2021, 374, 341-346.	6.0	12

#	Article	IF	CITATIONS
115	SITool (v1.0) – a new evaluation tool for large-scale sea ice simulations: application to CMIP6 OMIP. Geoscientific Model Development, 2021, 14, 6331-6354.	1.3	2
116	Robust Evaluation of ENSO in Climate Models: How Many Ensemble Members Are Needed?. Geophysical Research Letters, 2021, 48, e2021GL095041.	1.5	21
117	On the impossibility of extreme event thresholds in the absence of global warming. Environmental Research Letters, 2021, 16, 115014.	2.2	5
118	Climate Impact of Cloud Water Inhomogeneity through Microphysical Processes in a Global Climate Model. Journal of Climate, 2020, 33, 5195-5212.	1.2	4
119	Future intensification of precipitation and wind gust associated thunderstorms over Lake Victoria. Weather and Climate Extremes, 2021, 34, 100391.	1.6	8
120	The Influence of Natural and Anthropogenic Forcing on Water and Energy Balance and on Photosynthesis. Land, 2021, 10, 1151.	1.2	0
121	Defining the Internal Component of Atlantic Multidecadal Variability in a Changing Climate. Geophysical Research Letters, 2021, 48, e2021GL095023.	1.5	19
122	Evaluation of CMIP6 GCMs for simulations of temperature over Thailand and nearby areas in the early 21st century. Heliyon, 2021, 7, e08263.	1.4	10
124	ASSESSMENT OF THE NATURAL VARIABILITY COMPONENTS IN LOCAL SEA LEVEL AROUND THE EAST ASIA USING MIROC6 PROJECTIONS. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2021, 77, I_967-I_972.	0.0	0
125	UNCERTAINTY IN REGIONAL SEA LEVEL RISE DUE TO CLIMATE CHANGE AROUND JAPAN. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2020, 76, I_1135-I_1140.	0.0	0
126	Species distribution modeling that overlooks intraspecific variation is inadequate for proper conservation of marula (Sclerocarya birrea, Anacardiaceae). Global Ecology and Conservation, 2021, 32, e01908.	1.0	6
127	Decadal change of extreme consecutive dry days in spring over the middle and lower reaches of the Yangtze River around the early 2000s: The synergistic effect of mega-El Niño/Southern Oscillation, Atlantic Multidecadal Oscillation, and Arctic sea ice. Atmospheric Research, 2022, 266, 105936.	1.8	11
128	Assessment of Model Performance in East Asia Based on the CMIP6 Multi-Model Ensemble. Journal of Climate Change Research, 2021, 12, 461-478.	0.1	2
129	Climate change favours connectivity between virus-bearing pest and rice cultivations in sub-Saharan Africa, depressing local economies. PeerJ, 2021, 9, e12387.	0.9	15
130	Precipitation patterns over northern Brazil basins: climatology, trends, and associated mechanisms. Theoretical and Applied Climatology, 2022, 147, 767-783.	1.3	8
131	Evaluation of the seasonality and spatial aspects of the Southern Annular Mode in <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 3820-3837.	1.5	4
132	Global Simulation of Snow Algal Blooming by Coupling a Land Surface and Newly Developed Snow Algae Models. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	8
133	Towards better characterization of global warming impacts in the environment through climate classifications with improved global models. International Journal of Climatology, 2022, 42, 5197-5217.	1.5	6

#	Article	IF	CITATIONS
134	Evaluating Climate Models' Cloud Feedbacks Against Expert Judgment. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035198.	1.2	24
135	Estimates of soil erosion rates in a principal watershed in Gozo, Malta under current and future climatic conditions. Catena, 2022, 210, 105900.	2.2	3
136	MODELING THE DISTRIBUTION OF THE SOUTHERN YELLOW-CHEEKED GIBBON (NOMASCUS GABRIELLAE) USING MAXENT. Science and Technology, 2021, 59, .	0.1	1
137	Response of convective systems to the orbital forcing of the last interglacial in a global nonhydrostatic atmospheric model with and without a convective parameterization. Climate Dynamics, 2022, 59, 1617-1648.	1.7	3
138	Contributions of anthropogenic aerosol forcing and multidecadal internal variability to midâ€20th century Arctic coolingX02014;CMIP6/DAMIP multimodel analysis. Geophysical Research Letters, 0, , .	1.5	6
139	The Handsome Cross Grasshopper Oedaleus decorus (Germar, 1825) (Orthoptera: Acrididae) as a Neglected Pest in the South-Eastern Part of West Siberian Plain. Insects, 2022, 13, 49.	1.0	3
140	Effects of Anthropogenic Aerosol and Greenhouse Gas Emissions on Northern Hemisphere Monsoon Precipitation: Mechanisms and Uncertainty. Journal of Climate, 2022, 35, 2305-2326.	1.2	18
141	Transient Influence of the Reduction of Deepwater Formation on Ocean Heat Uptake and Heat Budgets in the Global Climate System. Geophysical Research Letters, 2022, 49, .	1.5	2
142	Climate change leads to range contraction for Japanese population of the Oriental Honey-Buzzards: Implications for future conservation strategies. Global Ecology and Conservation, 2022, 34, e02044.	1.0	1
143	Extreme Tropical Precipitation Clusters Show Strong Increases in Frequency Under Global Warming in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	1.5	1
144	Predicting the future distributions of Calomicrus apicalis Demaison, 1891 (Coleoptera: Chrysomelidae) under climate change. Journal of Plant Diseases and Protection, 0, , 1.	1.6	6
145	Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Optical Properties Based on CMIP6 models. Journal of Climate, 2022, 35, 3007-3019.	1.2	5
146	Clear-Sky Direct Aerosol Radiative Forcing Uncertainty Associated with Aerosol Vertical Distribution Based on CMIP6 models. Journal of Climate, 2022, 35, 3021-3035.	1.2	5
147	A global climate model ensemble for downscaled monthly climate normals over North America. International Journal of Climatology, 2022, 42, 5871-5891.	1.5	29
148	Predicted declines in suitable habitat for greater oneâ€horned rhinoceros (<i>Rhinoceros) Tj ETQq0 0 0 rgBT /C 18288-18304.</i>	verlock 10 0.8	0 Tf 50 187 Td 18
149	The Increasing Role of Vegetation Transpiration in Soil Moisture Loss across China under Global Warming. Journal of Hydrometeorology, 2022, 23, 253-274.	0.7	10
150	Enhanced Arctic warming amplification revealed in a low-emission scenario. Communications Earth & Environment, 2022, 3, .	2.6	15
151	A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes. Geoscientific Model Development, 2022, 15, 1375-1411.	1.3	11

#	Article	IF	CITATIONS
152	Observational Constraint on the Climate Sensitivity to Atmospheric CO2 Concentrations Changes Derived from the 1971–2017 Global Energy Budget. Journal of Climate, 2022, 35, 4469-4483.	1.2	3
153	Impacts of Precipitation Modeling on Cloud Feedback in MIROC6. Geophysical Research Letters, 2022, 49, .	1.5	1
154	Recent decadal weakening of the summer Eurasian westerly jet attributable to anthropogenic aerosol emissions. Nature Communications, 2022, 13, 1148.	5.8	22
155	Distinct North American Cooling Signatures Following the Zonally Symmetric and Asymmetric Modes of Winter Stratospheric Variability. Geophysical Research Letters, 2022, 49, .	1.5	7
156	Could detection and attribution of climate change trends be spurious regression?. Climate Dynamics, 2022, 59, 2785-2799.	1.7	1
157	Climateâ€induced range shifts of invasive species (<scp><i>Diaphorina citri</i></scp> Kuwayama). Pest Management Science, 2022, 78, 2534-2549.	1.7	32
158	Global Daily Actual and Snowâ€Free Blueâ€Sky Land Surface Albedo Climatology From 20â€Year MODIS Products. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	11
159	Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nature Communications, 2021, 12, 7237.	5.8	12
160	Future Climate Change Impact on the Nyabugogo Catchment Water Balance in Rwanda. Water (Switzerland), 2021, 13, 3636.	1.2	2
161	Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset. Water (Switzerland), 2021, 13, 3506.	1.2	12
162	CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario. Climatic Change, 2021, 169, 1.	1.7	7
163	Predicting the Hydrological Impacts of Future Climate Change in a Humid-Subtropical Watershed. Atmosphere, 2022, 13, 12.	1.0	4
164	Future Population Exposure to Daytime and Nighttime Heat Waves in South Asia. Earth's Future, 2022, 10, .	2.4	39
165	Gondwanan survivor lineages and the highâ€risk biogeography of Anthropocene Southeast Asia. Journal of Systematics and Evolution, 2022, 60, 715-727.	1.6	4
169	Discrepancies in Simulated Ocean Net Surface Heat Fluxes over the North Atlantic. Advances in Atmospheric Sciences, 2022, 39, 1941-1955.	1.9	3
170	Contrasting Stateâ€Dependent Effects of Natural Forcing on Global and Local Climate Variability. Geophysical Research Letters, 2022, 49, .	1.5	6
171	Assessment of climate change impacts on the hydro-wind-solar energy supply system. Renewable and Sustainable Energy Reviews, 2022, 162, 112480.	8.2	22
172	Multi-Model Forecast Quality Assessment of CMIP6 Decadal Predictions. Journal of Climate, 2022, 35, 4363-4382.	1.2	13

#	Article	IF	CITATIONS
173	Cloud Microphysics in Global Cloud Resolving Models. Atmosphere - Ocean, 2022, 60, 477-505.	0.6	7
174	Low‣evel Marine Tropical Clouds in Six CMIP6 Models Are Too Few, Too Bright but Also Too Compact and Too Homogeneous. Geophysical Research Letters, 2022, 49, .	1.5	12
175	Consistent Trends in Dry Spell Length in Recent Observations and Future Projections. Geophysical Research Letters, 2022, 49, .	1.5	12
178	Reduced surface fine dust under droughts over the southeastern United States during summertime: observations and CMIP6 model simulations. Atmospheric Chemistry and Physics, 2022, 22, 7843-7859.	1.9	3
179	Seasonal extrema of sea surface temperature in CMIP6 models. Ocean Science, 2022, 18, 839-855.	1.3	5
180	Trends in Temperature, Precipitation, Potential Evapotranspiration, and Water Availability across the Teesta River Basin under 1.5 and 2 °C Temperature Rise Scenarios of CMIP6. Atmosphere, 2022, 13, 941.	1.0	14
181	Assessment of dry and heavy rainfall days and their projected changes over Northeast Brazil in Coupled Model Intercomparison Project Phase 6 models. International Journal of Climatology, 2022, 42, 8665-8686.	1.5	5
182	Global Changes in Water Vapor 1979–2020. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	41
183	Circulation Patterns and Associated Rainfall Over South Tropical South America: GCMs Evaluation During the Dryâ€Toâ€Wet Transition Season. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
184	The ability of climate models to reproduce the weakening of the annual air temperature cycle over the central part of the Russian Plain. IOP Conference Series: Earth and Environmental Science, 2022, 1040, 012029.	0.2	0
185	Robust Anthropogenic Signal Identified in the Seasonal Cycle of Tropospheric Temperature. Journal of Climate, 2022, 35, 6075-6100.	1.2	6
186	Combination of Decadal Predictions and Climate Projections in Time: Challenges and Potential Solutions. Geophysical Research Letters, 2022, 49, .	1.5	4
187	Analysis of tropospheric warming and stratosphericÂcooling in the present and future climate from the suite of CMIP6Âmodels. Theoretical and Applied Climatology, 2022, 149, 1717-1726.	1.3	0
188	Estimated cloud-top entrainment index explains positive low-cloud-cover feedback. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
189	Historical and future weather data for dynamic building simulations in Belgium using the regional climate model MAR: typical and extreme meteorological year and heatwaves. Earth System Science Data, 2022, 14, 3039-3051.	3.7	10
190	Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream. Nature Communications, 2022, 13, .	5.8	14
191	On the Detection of Externally Forced Decadal Modulations of the Sahel Rainfall over the Whole Twentieth Century in the CMIP6 Ensemble. Journal of Climate, 2022, 35, 6939-6954.	1.2	2
192	Climate legacies drive the distribution and future restoration potential of dryland forests. Nature Plants, 2022, 8, 879-886.	4.7	11

#	Article	IF	CITATIONS
193	Thermal bioclimatic indicators over Southeast Asia: present status and future projection using CMIP6. Environmental Science and Pollution Research, 2022, 29, 91212-91231.	2.7	20
194	Climate change will likely threaten areas of suitable habitats for the most relevant medicinal plants native to the Caatinga dry forest. Ethnobiology and Conservation, 0, 11, .	0.0	3
195	Low-level circulation over Central Equatorial Africa as simulated from CMIP5 to CMIP6 models. Climate Dynamics, 0, , .	1.7	4
196	Projected Changes of Surface Winds Over the Antarctic Continental Margin. Geophysical Research Letters, 2022, 49, .	1.5	9
197	Recent progress in simulating two types of ENSO – from CMIP5 to CMIP6. Frontiers in Marine Science, 0, 9, .	1.2	10
198	Quantifying the future risk of dengue under climate change in Japan. Frontiers in Public Health, 0, 10, .	1.3	1
199	Greenhouse-gas forced changes in the Atlantic meridional overturning circulation and related worldwide sea-level change. Climate Dynamics, 2023, 60, 2003-2039.	1.7	7
200	The Elusive Turkestan Lynx at the Northwestern Edge of Geographic Range: Current Suitable Habitats and Distribution Forecast in the Climate Change. Sustainability, 2022, 14, 9491.	1.6	7
201	Future Changes of the Eddy Moisture Convergence in Winter over Coastal Lands in Eastern North America and East Asia. Journal of Geophysical Research D: Atmospheres, 0, , .	1.2	0
202	Projected changes in thermal bioclimatic indicators over the Middle East and North Africa under Paris climate agreement. Stochastic Environmental Research and Risk Assessment, 2023, 37, 577-594.	1.9	20
203	Assessing and projecting surface air temperature conditions required to sustain permafrost in Japan. Progress in Earth and Planetary Science, 2022, 9, .	1.1	1
204	Evaluation of Spatial Distribution of Three Major Leptocorisa (Hemiptera: Alydidae) Pests Using MaxEnt Model. Insects, 2022, 13, 750.	1.0	2
205	Improved skill of Coupled Model Intercomparison Project phase 6 over phase 5 models in reproducing weather regimes in East Asia. International Journal of Climatology, 0, , .	1.5	0
206	On the Effect of Historical SST Patterns on Radiative Feedback. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	24
207	Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes. Microbiome, 2022, 10, .	4.9	14
208	Contradictory effect of climate change on American and European populations of Impatiens capensis Meerb is this herb a global threat?. Science of the Total Environment, 2022, 850, 157959.	3.9	6
209	A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale. Ecological Informatics, 2022, 71, 101792.	2.3	17
210	Evaluation of the CMIP6 Performance in Simulating Precipitation in the Amazon River Basin. Climate, 2022, 10, 122.	1.2	9

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
211	Projected future changes in equatorial wave spectrum in CMIP6. Climate Dynamics, 2023, 60, 3277-3289.	1.7	3
212	How do coupled models represent the African Easterly Jets and their associated dynamics over Central Africa during the September–November rainy season?. Climate Dynamics, 2023, 60, 2907-2929.	1.7	2
213	Future Projections and Uncertainties of CMIP6 for Hydrological Indicators and Their Discrepancies from CMIP5 over South Korea. Water (Switzerland), 2022, 14, 2926.	1.2	5
215	Evaluation and Projection of Surface PM2.5 and Its Exposure on Population in Asia Based on the CMIP6 GCMs. International Journal of Environmental Research and Public Health, 2022, 19, 12092.	1.2	3
216	Using Ice Cores to Evaluate CMIP6 Aerosol Concentrations Over the Historical Era. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
217	Of Atlantic Meridional Overturning Circulation in the CMIP6 Project. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 206, 105193.	0.6	7
218	Projection of future climate change in the Poyang Lake Basin of China under the global warming of 1.5–3°C. Frontiers in Environmental Science, 0, 10, .	1.5	1
219	Reduction in Nearâ€Surface Wind Speeds With Increasing CO ₂ May Worsen Winter Air Quality in the Indoâ€Gangetic Plain. Geophysical Research Letters, 2022, 49, .	1.5	2
220	Changes in Early Summer Precipitation Characteristics Over South China and Taiwan: CESM2â€LE and CMIP6 Multiâ€Model Simulations and Projections. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
221	Modeling seasonal growth of phototrophs on bare ice on the Qaanaaq Ice Cap, northwestern Greenland. Journal of Glaciology, 2023, 69, 487-499.	1.1	4
222	Systematic Climate Model Biases in the Largeâ€Scale Patterns of Recent Seaâ€Surface Temperature and Seaâ€Level Pressure Change. Geophysical Research Letters, 2022, 49, .	1.5	54
224	Cloud Climatologies from Global Climate Models—A Comparison of CMIP5 and CMIP6 Models with Satellite Data. Journal of Climate, 2023, 36, 281-311.	1.2	4
225	Rainfall–Mixed Layer–SST Feedback Contributing to Atlantic Meridional Mode Development. Journal of Climate, 2023, 36, 899-915.	1.2	0
226	Addressing conservation measures through fine-tuned species distribution models for an Italian endangered endemic anuran. Global Ecology and Conservation, 2022, 39, e02302.	1.0	4
227	Climate change and dispersion dynamics of the invasive plant species Chromolaena odorata and Lantana camara in parts of the central and eastern India. Ecological Informatics, 2022, 72, 101824.	2.3	10
228	ANALYSIS OF MAIN FACTOR IN REGIONAL SEA-LEVEL VARIABILITY DUE TO CLIMATE CHANGE AROUND JAPAN. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2022, 78, I_949-I_954.	0.0	0
229	Increasing Hurricane Intensification Rate Near the US Atlantic Coast. Geophysical Research Letters, 2022, 49, .	1.5	13
230	Review of the Observed Energy Flow in the Earth System. Atmosphere, 2022, 13, 1738.	1.0	0

#	Article	IF	CITATIONS
231	Importance of Minor‣ooking Treatments in Global Climate Models. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
232	The DOE E3SM Model Version 2: Overview of the Physical Model and Initial Model Evaluation. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	27
233	Trends in habitat suitability and conservation status of aquatic spiders in Europe. Biological Conservation, 2022, 275, 109767.	1.9	1
234	The Impact of Climate Change on Operational Probable Maximum Precipitation Estimates. Water Resources Research, 2022, 58, .	1.7	9
235	Assessment of Antarctic sea ice area and concentration in Coupled Model Intercomparison Project Phase 5 and Phase 6 models. International Journal of Climatology, 2023, 43, 1314-1332.	1.5	5
236	Anthropogenic aerosols dominated the decreased solar radiation in eastern China over the last five decades. Journal of Cleaner Production, 2022, 380, 135150.	4.6	3
237	Symmetric and asymmetric response of Indian Summer Monsoon rainfall to different ENSO decay phases in observations and CMIP6 models. Global and Planetary Change, 2023, 220, 104000.	1.6	1
238	Evolution of the Internal Climate Modes under Future Warming. Journal of Climate, 2023, 36, 511-529.	1.2	3
239	Assessing future shifts in habitat suitability and connectivity to old-growth forests to support the conservation of the endangered giant noctule. PeerJ, 0, 10, e14446.	0.9	0
240	Can low-resolution CMIP6 ScenarioMIP models provide insight into future European post-tropical-cyclone risk?. Weather and Climate Dynamics, 2022, 3, 1359-1379.	1.2	2
241	Climate change and the potential distribution of the glassy-winged sharpshooter (Homalodisca) Tj ETQq0 0 0 rgl	BT ¦Overloo	ck
242	The performance of CMIP6 models in simulating surface energy fluxes over global continents. Climate Dynamics, 0, , .	1.7	2
243	Divergence in Climate Model Projections of Future Arctic Atlantification. Journal of Climate, 2023, 36, 1727-1748.	1.2	18
244	Differential expansion speeds of Indo-Pacific warm pool and deep convection favoring pool under greenhouse warming. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	8
245	Strong cloud–circulation coupling explains weak trade cumulus feedback. Nature, 2022, 612, 696-700.	13.7	13
246	Southern Ocean Solar Reflection Biases in CMIP6 Models Linked to Cloud Phase and Vertical Structure Representations. Geophysical Research Letters, 2022, 49, .	1.5	12
247	Current and future wind energy resources in the North Sea according to CMIP6. Wind Energy Science, 2022, 7, 2373-2391.	1.2	12
248	Predicting crop yields in Senegal using machine learning methods. International Journal of Climatology, 2023, 43, 1817-1838.	1.5	4

#	Article	IF	CITATIONS
249	Global Evaluation of Runoff Simulation From Climate, Hydrological and Land Surface Models. Water Resources Research, 2023, 59, .	1.7	11
250	Capturing and Attributing the Rainfall Regime Intensification in the West African Sahel with CMIP6 Models. Journal of Climate, 2023, 36, 1823-1843.	1.2	1
251	Attribution of the human influence on heavy rainfall associated with flooding events during the 2012, 2016, and 2018 March-April-May seasons in Kenya. Weather and Climate Extremes, 2022, 38, 100529.	1.6	4
252	Formation of the North Atlantic Warming Hole by reducing anthropogenic sulphate aerosols. Scientific Reports, 2023, 13, .	1.6	0
253	Robustness of precipitation Emergent Constraints in CMIP6 models. Climate Dynamics, 2023, 61, 1439-1450.	1.7	1
254	Potential Weakening of the June 2012 North American Derecho Under Future Warming Conditions. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
255	A Continuing Increase of the Impact of the Spring North Pacific Meridional Mode on the Following Winter El Ni˱o and Southern Oscillation. Journal of Climate, 2023, 36, 585-602.	1.2	12
256	Predicting habitat suitability of Litsea glutinosa: a declining tree species, under the current and future climate change scenarios in India. Landscape and Ecological Engineering, 0, , .	0.7	2
257	Impact of climate change on distribution of common leopard (Panthera pardus) and its implication on conservation and conflict in Nepal. Heliyon, 2023, 9, e12807.	1.4	12
258	Developmental Differentiations of Major Maize Stemborers Due to Global Warming in Temperate and Tropical Climates. Insects, 2023, 14, 51.	1.0	2
259	Evaluation of global teleconnections in CMIP6 climate projections using complex networks. Earth System Dynamics, 2023, 14, 17-37.	2.7	4
260	Modeling climate change impacts on potential global distribution of Tamarixia radiata Waterston (Hymenoptera: Eulophidae). Science of the Total Environment, 2023, 864, 160962.	3.9	6
261	Impact of climate changes in the suitable areas for Coffea arabica L. production in Mozambique: Agroforestry as an alternative management system to strengthen crop sustainability. Agriculture, Ecosystems and Environment, 2023, 346, 108341.	2.5	6
262	CLIMBra - Climate Change Dataset for Brazil. Scientific Data, 2023, 10, .	2.4	14
263	Changes in the ground surface temperature in permafrost regions along the Qinghai–Tibet engineering corridor from 1900 to 2014: A modified assessment of CMIP6. Advances in Climate Change Research, 2023, 14, 85-96.	2.1	5
264	Internal variability plays a dominant role in global climate projections of temperature and precipitation extremes. Climate Dynamics, 2023, 61, 1931-1945.	1.7	9
265	Soil erosion modeling under future climate change: a case study on Marinduque Island, Philippines. , 2023, , 381-398.		1
266	Uncertainty in Simulating Twentieth Century West African Precipitation Trends: The Role of Anthropogenic Aerosol Emissions. Earth's Future, 2023, 11, .	2.4	3

#	Article	IF	CITATIONS
267	Projecting Future Energy Production from Operating Wind Farms in North America. Part II: Statistical Downscaling. Journal of Applied Meteorology and Climatology, 2023, 62, 81-101.	0.6	2
268	The Climate Response to the Mt. Pinatubo Eruption Does Not Constrain Climate Sensitivity. Geophysical Research Letters, 2023, 50, .	1.5	2
269	Response of damaging Philippines tropical cyclones to a warming climate using the pseudo global warming approach. Climate Dynamics, 2023, 61, 3499-3523.	1.7	3
270	The role of the western North Pacific (WNP) as an El Niño–Southern Oscillation (ENSO) precursor in a warmer future climate. Climate Dynamics, 2023, 61, 3755-3773.	1.7	2
271	Rapid sea ice changes in the future Barents Sea. Cryosphere, 2023, 17, 1445-1456.	1.5	7
275	Changes in Winter Temperature Extremes From Future Arctic Seaâ€lce Loss and Ocean Warming. Geophysical Research Letters, 2023, 50, .	1.5	5
276	Implications of exceeding the Paris Agreement for mammalian biodiversity. Conservation Science and Practice, 2023, 5, .	0.9	0
277	The Role of Ozone Depletion in the Lack of Cooling in the Antarctic Upper Stratosphere during Austral Winter. Advances in Atmospheric Sciences, 2023, 40, 619-633.	1.9	0
278	Modeling current and future distribution patterns of Uvaria chamae in Benin (West Africa): Challenges and opportunities for its sustainable management. Heliyon, 2023, 9, e13658.	1.4	5
279	Future Floods in the Brahmaputra River Basin Based on Multi-model Ensemble of CMIP6 Projections. Springer Geography, 2023, , 385-402.	0.3	0
280	Modelling Climatically Suitable Areas for Mahogany (Swietenia macrophylla King) and Their Shifts across Neotropics: The Role of Protected Areas. Forests, 2023, 14, 385.	0.9	8
282	Impacts of soil erosion and climate change on the built heritage of the Pambamarca Fortress Complex in northern Ecuador. PLoS ONE, 2023, 18, e0281869.	1.1	0
283	Future projections of seasonal temperature and precipitation for India. Frontiers in Climate, 0, 5, .	1.3	3
285	Projected expansion of hottest climate zones over Africa during the mid and late 21st century. , 2023, 2, 025002.		2
286	Global Distribution of Culex tritaeniorhynchus and Impact Factors. International Journal of Environmental Research and Public Health, 2023, 20, 4701.	1.2	0
287	Subâ€Seasonal Variability of ENSO Teleconnections in Western North America and Its Prediction Skill. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	1.2	0
288	Current and Potential Future Global Distribution of the Raisin Moth Cadra figulilella (Lepidoptera:) Tj ETQq0 0 0 r	gBT /Overl	ock 10 Tf 50

289	The Eurasian beaver range expansion reveals uneven future trends and possible conservation issues: an European assessment. Biodiversity and Conservation, 2023, 32, 1999-2016.	1.2	7
-----	--	-----	---

#	Article	IF	CITATIONS
290	Desert Locust (Schistocerca gregaria) Invasion Risk and Vegetation Damage in a Key Upsurge Area. Earth, 2023, 4, 187-208.	0.9	1
291	Evaluation of General Circulation Models CMIP6 Performance and Future Climate Change over the Omo River Basin, Ethiopia. Sustainability, 2023, 15, 6507.	1.6	3
292	The future of the El Niño–Southern Oscillation: using large ensembles to illuminate time-varying responses and inter-model differences. Earth System Dynamics, 2023, 14, 413-431.	2.7	9
293	Sensitivity of stratospheric ozone to the latitude, season, and halogen content of a contemporary explosive volcanic eruption. Scientific Reports, 2023, 13, .	1.6	1
294	Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America. Atmosphere, 2023, 14, 755.	1.0	1
313	Squirrels in the Tropics: A Specific Synthesis of their Fate, Stress, Declines, and Extinctions. , 2023, , 197-227.		0
314	Where Do the World's Squirrel Hotspots and Coldspots of 230+ Species Go with Climate Change in 2100? A First BIG DATA Minimum Estimate from an Open Access Climate Niche Rapid Model Assessment. , 2023, , 317-331.		0
315	Squirrels in Cities: Meeting the Anthropological Conservation Conundrum of the World's Squirrels. , 2023, , 169-195.		0
326	Impacts of Air Pollutants on Climate Change: Importance of SLCF Co-Control for Climate Change Mitigation in Short- and Long-Term Future. , 2023, , 1-25.		0
357	Influence of Normalization Techniques in CMIP Model Selection Using an MCDM Method MOORA. Lecture Notes in Civil Engineering, 2024, , 51-59.	0.3	0
366	Impacts of Air Pollutants on Climate Change: Importance of SLCF Co-control for Climate Change Mitigation in Short- and Long-Term Future. , 2023, , 1273-1297.		0