A functionalized TiO2/Mg2TiO4 nano-layer on biodegra superior bone-implant integration and bacterial disinfe

Biomaterials 219, 119372

DOI: 10.1016/j.biomaterials.2019.119372

Citation Report

#	Article	IF	CITATIONS
1	Multistep Instead of One-Step: A Versatile and Multifunctional Coating Platform for Biocompatible Corrosion Protection. ACS Biomaterials Science and Engineering, 2019, 5, 6541-6556.	2.6	15
2	Properties of Titanium Oxide Coating on MgZn Alloy by Magnetron Sputtering for Stent Application. Coatings, 2020, 10, 999.	1.2	22
3	Effects of Various Polishing Techniques on the Surface Characteristics of the Ti-6Al-4V Alloy and on Bacterial Adhesion. Coatings, 2020, 10, 1057.	1.2	11
4	Advanced Structured of MgO Thin Film for Bio Applications. Materials Science Forum, 2020, 1002, 319-330.	0.3	2
5	Effect of Gradient Nanostructured Ti on Behaviours of MG63 Cells <i>In Vitro</i> . Journal of Nanomaterials, 2020, 2020, 1-11.	1.5	4
6	Mg/Ag ratios induced in vitro cell adhesion and preliminary antibacterial properties of TiN on medical Ti-6Al-4V alloy by Mg and Ag implantation. Surface and Coatings Technology, 2020, 397, 126020.	2.2	21
7	A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111186.	2.5	38
8	Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 2020, 8, 83.	2.0	136
9	Laser Surface Treatment. , 2020, , .		1
10	Interfacial strengthening by reduced graphene oxide coated with MgO in biodegradable Mg composites. Materials and Design, 2020, 191, 108612.	3.3	57
11	Robust Biomimetic Hierarchical Diamond Architecture with a Self-Cleaning, Antibacterial, and Antibiofouling Surface. ACS Applied Materials & amp; Interfaces, 2020, 12, 24432-24441.	4.0	95
12	The role of magnesium in biomaterials related infections. Colloids and Surfaces B: Biointerfaces, 2020, 191, 110996.	2.5	36
13	A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomaterialia, 2020, 108, 207-222.	4.1	96
14	Biodegradable magnesium alloy with eddy thermal effect for effective and accurate magnetic hyperthermia ablation of tumors. National Science Review, 2021, 8, nwaa122.	4.6	35
15	Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg. Bioactive Materials, 2021, 6, 91-105.	8.6	71
16	Protection of magnesium alloys: From physical barrier coating to smart self-healing coating. Journal of Alloys and Compounds, 2021, 853, 157010.	2.8	106
17	In vitro and in vivo evaluations of Mg-Zn-Gd alloy membrane on guided bone regeneration for rabbit calvarial defect. Journal of Magnesium and Alloys, 2021, 9, 281-291.	5.5	30
18	Ag-containing antibacterial self-healing micro-arc oxidation coatings on Mg–Zn–Sr alloys. Surface Engineering, 2021, 37, 926-941.	1.1	19

CITATION REPORT

#	Article	IF	CITATIONS
19	Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. Journal of Materials Chemistry B, 2021, 9, 6691-6702.	2.9	27
20	Preparation and Characterization of CuO/MgO Nano Particles using Sol-Gel Technique. IOP Conference Series: Materials Science and Engineering, 2021, 1094, 012163.	0.3	0
21	Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. Nanomaterials, 2021, 11, 789.	1.9	29
22	Titania-zinc phosphate/nanocrystalline zinc composite coatings for corrosion protection of biomedical WE43 magnesium alloy. Surface and Coatings Technology, 2021, 410, 126940.	2.2	18
23	Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105157.	3.3	31
24	A composite coating with physical interlocking and chemical bonding on WE43 magnesium alloy for corrosion protection and cytocompatibility enhancement. Surface and Coatings Technology, 2021, 412, 127078.	2.2	22
25	Advanced Strategies of Biomimetic Tissueâ€Engineered Grafts for Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2100408.	3.9	66
26	Biomedical Implants with Chargeâ€Transfer Monitoring and Regulating Abilities. Advanced Science, 2021, 8, e2004393.	5.6	18
27	3D-Printing Biodegradable PU/PAAM/Gel Hydrogel Scaffold with High Flexibility and Self-Adaptibility to Irregular Defects for Nonload-Bearing Bone Regeneration. Bioconjugate Chemistry, 2021, 32, 1915-1925.	1.8	13
28	One-step rapid synthesis of a 3D porous surface on Zr-based bulk metallic glass. Surface and Coatings Technology, 2021, 418, 127230.	2.2	11
29	Regulation of extracellular bioactive cations in bone tissue microenvironment induces favorable osteoimmune conditions to accelerate in situ bone regeneration. Bioactive Materials, 2021, 6, 2315-2330.	8.6	69
30	Mg/Cu-doped TiO2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. Materials Science and Engineering C, 2021, 128, 112322.	3.8	36
31	Biological effects, applications and strategies of nanomodification of dental metal surfaces. Materials and Design, 2021, 207, 109890.	3.3	10
32	In vitro and in vivo antibacterial performance of Zr & O PIII magnesium alloys with high concentration of oxygen vacancies. Bioactive Materials, 2021, 6, 3049-3061.	8.6	12
33	Mechanical properties and corrosion resistance of powder metallurgical Mg-Zn-Ca/Fe bulk metal glass composites for biomedical application. Journal of Materials Science and Technology, 2022, 103, 73-83.	5.6	25
34	A bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. Materials Science and Engineering C, 2021, 131, 112501.	3.8	13
35	Thermo-responsive hydrogel-supported antibacterial material with persistent photocatalytic activity for continuous sterilization and wound healing. Composites Part B: Engineering, 2022, 229, 109459.	5.9	32
36	3D-printed pre-tapped-hole scaffolds facilitate one-step surgery of predictable alveolar bone augmentation and simultaneous dental implantation. Composites Part B: Engineering, 2022, 229, 109461.	5.9	24

#	Article	IF	CITATIONS
37	Antibacterial carbon dots/iron oxychloride nanoplatform for chemodynamic and photothermal therapy. Colloids and Interface Science Communications, 2021, 45, 100552.	2.0	22
38	Biomass Microcapsules with Stem Cell Encapsulation for Bone Repair. Nano-Micro Letters, 2022, 14, 4.	14.4	56
39	Degradability and in vivo biocompatibility of micro-alloyed Mg-Ca-La alloys as orthopedic implants. Materials Letters, 2022, 310, 131510.	1.3	5
40	Deep eutectic solvent-assisted synthesis of a 3D nanoporous surface on Zr-based amorphous alloy. Journal of Alloys and Compounds, 2022, 903, 163949.	2.8	7
41	Surface Engineering for Dental Implantology: Favoring Tissue Responses Along the Implant. Tissue Engineering - Part A, 2022, 28, 555-572.	1.6	18
42	GSK-3β suppression upregulates Gli1 to alleviate osteogenesis inhibition in titanium nanoparticle-induced osteolysis. Journal of Nanobiotechnology, 2022, 20, 148.	4.2	4
43	Construction of a magnesium hydroxide/graphene oxide/hydroxyapatite composite coating on Mg–Ca–Zn–Ag alloy to inhibit bacterial infection and promote bone regeneration. Bioactive Materials, 2022, 18, 354-367.	8.6	43
44	A multifunctional osteogenic system of ultrasonically spray deposited bone-active coatings on plasma-activated magnesium. Journal of Magnesium and Alloys, 2023, 11, 2719-2739.	5.5	4
46	Recent Advances in Transition-Metal Based Nanomaterials for Noninvasive Oncology Thermal Ablation and Imaging Diagnosis. Frontiers in Chemistry, 2022, 10, 899321.	1.8	9
47	Enhanced anti-corrosion and biocompatibility of a functionalized layer formed on ZK60 Mg alloy via hydroxyl (OH-) ion implantation. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112533.	2.5	15
48	Insight into the Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Mg Alloys from the Microstructures in PEO Coatings. Journal of Materials Engineering and Performance, 0, , .	1.2	0
49	Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2022, 8, 2321-2335.	2.6	47
50	Enhanced healing process of tooth sockets using strontium-doped TiO ₂ . RSC Advances, 2022, 12, 17817-17820.	1.7	1
51	Magnesium for Implants: A Review on the Effect of Alloying Elements on Biocompatibility and Properties. Materials, 2022, 15, 5669.	1.3	12
52	High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials, 2022, 288, 121741.	5.7	32
53	Advances in the Study of Magnesium Alloys and Their Use in Bone Implant Material. Metals, 2022, 12, 1500.	1.0	6
54	Growth inhibition of bacterial pathogens by photo-catalyst process of nano-alloys FeCuNi doped TiO2 under ultraviolet irradiation. Heliyon, 2022, 8, e10611.	1.4	3
55	Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). Journal of Orthopaedic Translation, 2022, 36, 184-193.	1.9	18

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Functionalized Coatings on Degradable Magnesium Alloys for Orthopedic Implants: A Review. Transactions of the Indian Institute of Metals, 2023, 76, 613-627.	0.7	2
57	Bio-inspired dual-adhesive particles from microfluidic electrospray for bone regeneration. Nano Research, 2023, 16, 5292-5299.	5.8	25
58	Antimicrobial micro/nanorobotic materials design: From passive combat to active therapy. Materials Science and Engineering Reports, 2023, 152, 100712.	14.8	12
59	Dual-functional coatings on magnesium alloys: Enhancing corrosion behavior under stress and osteogenic effect in osteoporotic rats. Applied Materials Today, 2023, 30, 101723.	2.3	2
60	Biodegradable Mg-Sc-Sr Alloy Improves Osteogenesis and Angiogenesis to Accelerate Bone Defect Restoration. Journal of Functional Biomaterials, 2022, 13, 261.	1.8	5
61	An osteogenic magnesium alloy with improved corrosion resistance, antibacterial, and mechanical properties for orthopedic applications. Journal of Biomedical Materials Research - Part A, 2023, 111, 556-574.	2.1	0
62	Corrosion in Mg-alloy biomedical implants- the strategies to reduce the impact of the corrosion inflammatory reaction and microbial activity. Journal of Magnesium and Alloys, 2022, 10, 3306-3326.	5.5	20
63	Irregular pore size of degradable bioceramic Voronoi scaffolds prepared by stereolithography: Osteogenesis and computational fluid dynamics analysis. Materials and Design, 2022, 224, 111414.	3.3	7
64	Facile and versatile strategy for fabrication of highly bacteriostatic and biocompatible SLA-Ti surfaces with the regulation of Mg/Cu coimplantation ratio for dental implant applications. Colloids and Surfaces B: Biointerfaces, 2023, 223, 113180.	2.5	2
65	Biological Scaffolds Assembled with Magnetic Nanoparticles for Bone Tissue Engineering: A Review. Materials, 2023, 16, 1429.	1.3	3
66	Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review. Journal of Materials Science, 2023, 58, 3879-3908.	1.7	11
67	Novel Developments in Advanced Materials Fields: Porous and Non-Porous Biomaterials Used in Regenerative Medicine and Tissue Engineering. Scientific Bulletin of Valahia University: Materials and Mechanics, 2023, 19, 42-52.	0.1	0
73	Metal ions: the unfading stars of bone regeneration—from bone metabolism regulation to biomaterial applications. Biomaterials Science, 2023, 11, 7268-7295.	2.6	6
77	Construction of antibacterial bone implants and their application in bone regeneration. Materials Horizons, 2024, 11, 590-625.	6.4	2
83	Nanoparticles for the Prevention and Treatment of Bacterial Biofilms on Orthopedic Implants. Advances in Bioinformatics and Biomedical Engineering Book Series, 2024, , 208-245.	0.2	0