Safety and immunogenicity of an anti-Middle East resp vaccine: a phase 1, open-label, single-arm, dose-escalati

Lancet Infectious Diseases, The 19, 1013-1022 DOI: 10.1016/s1473-3099(19)30266-x

Citation Report

#	Article	IF	CITATIONS
1	First clinical trial of a MERS coronavirus DNA vaccine. Lancet Infectious Diseases, The, 2019, 19, 924-925.	4.6	13
2	Vaccine against Middle East respiratory syndrome coronavirus. Lancet Infectious Diseases, The, 2019, 19, 1054-1055.	4.6	11
3	Vaccine against Middle East respiratory syndrome coronavirus. Lancet Infectious Diseases, The, 2019, 19, 1053-1054.	4.6	4
4	Preventing drug-resistant tuberculosis transmission. Lancet Infectious Diseases, The, 2020, 20, 157-158.	4.6	5
5	Potential Challenges for Coronavirus (SARS-CoV-2) Vaccines Under Trial. Frontiers in Immunology, 2020, 11, 561851.	2.2	4
6	Prospects for a safe COVID-19 vaccine. Science Translational Medicine, 2020, 12, .	5.8	204
7	Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. New England Journal of Medicine, 2020, 383, 2427-2438.	13.9	1,242
8	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7.3	50
9	A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduction and Targeted Therapy, 2020, 5, 237.	7.1	427
10	New insights on possible vaccine development against SARS-CoV-2. Life Sciences, 2020, 260, 118421.	2.0	8
11	Biological, clinical and epidemiological features of COVID-19, SARS and MERS and AutoDock simulation of ACE2. Infectious Diseases of Poverty, 2020, 9, 99.	1.5	59
12	Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity, 2020, 53, 248-263.	6.6	281
13	Regulatory Considerations on the Development of mRNA Vaccines. Current Topics in Microbiology and Immunology, 2020, , 187-205.	0.7	16
14	Current Status of COVIDâ€19 (Pre)Clinical Vaccine Development. Angewandte Chemie, 2020, 132, 19045-19057.	1.6	4
15	Current Status of COVIDâ€19 (Pre)Clinical Vaccine Development. Angewandte Chemie - International Edition, 2020, 59, 18885-18897.	7.2	61
16	Clinical Characteristics, Diagnosis, and Treatment of Major Coronavirus Outbreaks. Frontiers in Medicine, 2020, 7, 581521.	1.2	42
17	Coronavirus Disease 2019: A Brief Review of the Clinical Manifestations and Pathogenesis to the Novel Management Approaches and Treatments. Frontiers in Oncology, 2020, 10, 572329.	1.3	7
18	COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 2020, 8, 404.	2.1	81

ATION RED

	CITATION N	LEPORT	
#	Article	IF	CITATIONS
19	Transmission and evolutionary dynamics of human coronavirus OC43 strains in coastal Kenya investigated by partial spike sequence analysis, 2015–16. Virus Evolution, 2020, 6, veaa031.	2.2	4
20	Protection against Borreliella burgdorferi infection mediated by a synthetically engineered DNA vaccine. Human Vaccines and Immunotherapeutics, 2020, 16, 2114-2122.	1.4	4
21	Vaccine Candidates against Coronavirus Infections. Where Does COVID-19 Stand?. Viruses, 2020, 12, 861.	1.5	43
22	Progress and Pitfalls in the Quest for Effective SARS-CoV-2 (COVID-19) Vaccines. Frontiers in Immunology, 2020, 11, 579250.	2.2	72
23	The Current Status of COVID-19 Vaccines. Frontiers in Genome Editing, 2020, 2, 579297.	2.7	25
24	COVID-19 in health-care workers: lessons from SARS and MERS epidemics and perspectives for chemoprophylaxis and vaccines Expert Review of Vaccines, 2020, 19, 937-947.	2.0	12
25	Biomedical Science to Tackle the COVID-19 Pandemic: Current Status and Future Perspectives. Molecules, 2020, 25, 4620.	1.7	23
26	Perspectives on development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human Vaccines and Immunotherapeutics, 2020, 16, 2366-2369.	1.4	7
27	Vaccination into the Dermal Compartment: Techniques, Challenges, and Prospects. Vaccines, 2020, 8, 534.	2.1	44
28	An overview of Middle East respiratory syndrome coronavirus vaccines in preclinical studies. Expert Review of Vaccines, 2020, 19, 817-829.	2.0	10
29	Vaccines targeting SARS-CoV-2 tested in humans. Nature Medicine, 2020, 26, 1336-1338.	15.2	7
30	Harnessing Recent Advances in Synthetic DNA and Electroporation Technologies for Rapid Vaccine Development Against COVID-19 and Other Emerging Infectious Diseases. Frontiers in Medical Technology, 2020, 2, 571030.	1.3	29
31	Vaccines for COVID-19. Clinical and Experimental Immunology, 2020, 202, 162-192.	1.1	185
32	DNA-Encoded Glutamine Synthetase Enzyme as Ammonia-Lowering Therapeutic for Hyperammonemia. Nucleic Acid Therapeutics, 2020, 30, 379-391.	2.0	2
33	>Middle East Respiratory Syndrome – What Every Otolaryngologist Should Know: A Review. International Journal of General Medicine, 2020, Volume 13, 483-489.	0.8	1
34	Coronavirus vaccine development: from SARS and MERS to COVID-19. Journal of Biomedical Science, 2020, 27, 104.	2.6	287
35	Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives. International Journal of Environmental Research and Public Health, 2020, 17, 9411.	1.2	85
36	COVID-19: Coronavirus Vaccine Development Updates. Frontiers in Immunology, 2020, 11, 602256.	2.2	143

#	Article	IF	CITATIONS
37	The immunology of SARS-CoV-2 infection, the potential antibody based treatments and vaccination strategies. Expert Review of Anti-Infective Therapy, 2020, 19, 1-12.	2.0	10
38	Shelter from the cytokine storm: pitfalls and prospects in the development of SARS-CoV-2 vaccines for an elderly population. Seminars in Immunopathology, 2020, 42, 619-634.	2.8	41
39	COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines, 2020, 8, 649.	2.1	42
40	Balancing Expediency and Scientific Rigor in Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development. Journal of Infectious Diseases, 2020, 222, 180-182.	1.9	12
41	Pharmacologic Treatments and Supportive Care for Middle East Respiratory Syndrome. Emerging Infectious Diseases, 2020, 26, 1102-1112.	2.0	6
42	Immunogenicity of a DNA vaccine candidate for COVID-19. Nature Communications, 2020, 11, 2601.	5.8	514
43	Fighting COVID-19: A quick review of diagnoses, therapies, and vaccines. Biomedical Journal, 2020, 43, 341-354.	1.4	81
44	COVID-19 pandemic: an overview of epidemiology, pathogenesis, diagnostics and potential vaccines and therapeutics. Therapeutic Delivery, 2020, 11, 245-268.	1.2	113
45	The Challenges of Vaccine Development against a New Virus during a Pandemic. Cell Host and Microbe, 2020, 27, 699-703.	5.1	88
46	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	6.6	1,387
47	Highly pathogenic coronaviruses: thrusting vaccine development in the spotlight. Acta Pharmaceutica Sinica B, 2020, 10, 1175-1191.	5.7	16
48	Overview of lethal human coronaviruses. Signal Transduction and Targeted Therapy, 2020, 5, 89.	7.1	218
49	Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2. Vaccines, 2020, 8, 293.	2.1	12
50	Emergence of novel coronavirus and progress toward treatment and vaccine. Reviews in Medical Virology, 2020, 30, e2116.	3.9	8
51	Immunologic aspects of characteristics, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). Journal of Biomedical Science, 2020, 27, 72.	2.6	36
52	Vaccines against Coronaviruses: The State of the Art. Vaccines, 2020, 8, 309.	2.1	49
53	Potential adjuvants for the development of a SARS-CoV-2 vaccine based on experimental results from similar coronaviruses. International Immunopharmacology, 2020, 86, 106717.	1.7	77
54	Vaccines for COVID-19: The current state of play. Paediatric Respiratory Reviews, 2020, 35, 43-49.	1.2	170

#	Article	IF	CITATIONS
55	Application of a Risk Analysis Tool to Middle East Respiratory Syndrome Coronavirus (MERS oV) Outbreak in Saudi Arabia. Risk Analysis, 2020, 40, 915-925.	1.5	8
56	Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Central Science, 2020, 6, 315-331.	5.3	1,015
57	The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Frontiers in Microbiology, 2020, 11, 658.	1.5	86
58	In Vivo Delivery of Nucleic Acid-Encoded Monoclonal Antibodies. BioDrugs, 2020, 34, 273-293.	2.2	41
59	Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. Journal of Clinical Medicine, 2020, 9, 623.	1.0	381
60	COVID-19 Vaccines: "Warp Speed―Needs Mind Melds, Not Warped Minds. Journal of Virology, 2020, 94, .	1.5	79
61	COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics, 2020, 10, 7821-7835.	4.6	121
62	In Vivo Assembly of Nanoparticles Achieved through Synergy of Structureâ€Based Protein Engineering and Synthetic DNA Generates Enhanced Adaptive Immunity. Advanced Science, 2020, 7, 1902802.	5.6	30
63	Coronaviruses in animals and humans. BMJ, The, 2020, 368, m634.	3.0	23
64	Synthetic DNA Vaccines Adjuvanted with pIL-33 Drive Liver-Localized T Cells and Provide Protection from Plasmodium Challenge in a Mouse Model. Vaccines, 2020, 8, 21.	2.1	3
65	Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes and Infection, 2020, 22, 74-79.	1.0	288
66	COVID-19: Therapeutics and Their Toxicities. Journal of Medical Toxicology, 2020, 16, 284-294.	0.8	82
67	DNA vaccines: prime time is now. Current Opinion in Immunology, 2020, 65, 21-27.	2.4	123
68	Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. MBio, 2020, 11, .	1.8	43
69	Novel Coronavirus: Current Understanding of Clinical Features, Diagnosis, Pathogenesis, and Treatment Options. Pathogens, 2020, 9, 297.	1.2	44
70	Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 816-826.	4.6	182
71	Safety and immunogenicity of a modified vaccinia virus Ankara vector vaccine candidate for Middle East respiratory syndrome: an open-label, phase 1 trial. Lancet Infectious Diseases, The, 2020, 20, 827-838.	4.6	125
72	Two Middle East respiratory syndrome vaccines: first step for other coronavirus vaccines?. Lancet Infectious Diseases, The, 2020, 20, 760-761.	4.6	4

#	Article	IF	CITATIONS
73	Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infectious Diseases and Therapy, 2020, 9, 255-274.	1.8	142
74	Recent biotechnological approaches for treatment of novel COVID-19: from bench to clinical trial. Drug Metabolism Reviews, 2021, 53, 141-170.	1.5	39
75	Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics, 2021, 113, 1221-1232.	1.3	126
76	The increasing importance of the novel Coronavirus. Hospital Practice (1995), 2021, 49, 1-11.	0.5	8
77	The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. International Immunopharmacology, 2021, 92, 107051.	1.7	33
78	SARS-CoV-2 vaccine research and development: Conventional vaccines and biomimetic nanotechnology strategies. Asian Journal of Pharmaceutical Sciences, 2021, 16, 136-146.	4.3	24
79	Actin networks regulate the cell membrane permeability during electroporation. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183468.	1.4	36
80	Learning from the past: development of safe and effective COVID-19 vaccines. Nature Reviews Microbiology, 2021, 19, 211-219.	13.6	126
81	Current advances in the development of SARS-CoV-2 vaccines. International Journal of Biological Sciences, 2021, 17, 8-19.	2.6	114
82	A review of COVIDâ€19 vaccines and major considerations for diabetic patients. Biotechnology and Applied Biochemistry, 2022, 69, 30-40.	1.4	6
83	Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Advanced Drug Delivery Reviews, 2021, 169, 168-189.	6.6	62
84	DNA vaccines against COVID-19: Perspectives and challenges. Life Sciences, 2021, 267, 118919.	2.0	172
85	Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine, 2021, 31, 100689.	3.2	206
86	Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews, 2021, 169, 137-151.	6.6	152
87	SARS-CoV-2 vaccine candidates in rapid development. Human Vaccines and Immunotherapeutics, 2021, 17, 644-653.	1.4	30
88	Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics, 2021, 13, 140.	2.0	28
90	Innovative Strategies to Understand and Control COVID-19 Disease. Algorithms for Intelligent Systems, 2021, , 209-230.	0.5	0
91	Unsupervised Learning Model to Uncover. Lecture Notes in Computer Science, 2021, , 544-559.	1.0	0

	Сітатіої	n Report	
#	ARTICLE Vaccine Development and Immune Responses in COVID-19: Lessons from the Past. , 2021. , 149-185.	IF	CITATIONS
93	COVID-19 vaccine: where are we now and where should we go?. Expert Review of Vaccines, 2021, 20, 23-44.	2.0	107
94	The COVID-19 Vaccine Landscape. Advances in Experimental Medicine and Biology, 2021, 1318, 549-573.	0.8	9
95	Coronavirus (SARS-CoV-2): a systematic review for potential vaccines. Human Vaccines and Immunotherapeutics, 2022, 18, 1-18.	1.4	11
96	Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity. Journal of Virology, 2021, 95, .	1.5	48
97	Walter Reed Army Institute of Research (WRAIR): Fifty Years of Achievements That Impact Science and Society. Military Medicine, 2021, 186, 72-77.	0.4	4
98	Immunotherapy of prostate cancer using novel synthetic DNA vaccines targeting multiple tumor antigens. Genes and Cancer, 2021, 12, 51-64.	0.6	6
99	Soluble Spike DNA Vaccine Provides Long-Term Protective Immunity against SARS-CoV-2 in Mice and Nonhuman Primates. Vaccines, 2021, 9, 307.	2.1	28
100	Frontrunners in the race to develop a SARS-CoV-2 vaccine. Canadian Journal of Microbiology, 2021, 67, 189-212.	0.8	11
101	Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Advanced Drug Delivery Reviews, 2021, 170, 113-141.	6.6	71
102	COVID-19: Insights into Potential Vaccines. Microorganisms, 2021, 9, 605.	1.6	31
103	Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics, 2021, 13, 501.	2.0	15
104	NIH funding for vaccine readiness before the COVID-19 pandemic. Vaccine, 2021, 39, 2458-2466.	1.7	26
105	Mapping the technological landscape of SARS, MERS, and SARS-CoV-2 vaccines. Drug Development and Industrial Pharmacy, 2021, 47, 673-684.	0.9	3
106	Exploring status of emergency drugs and vaccine development in Covid-19 pandemic: an update. VirusDisease, 2021, 32, 198-210.	1.0	6
107	The UK approach to COVID-19 vaccination: why was it so different?. Drugs in Context, 2021, 10, 1-9.	1.0	3
108	SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand?. Advanced Drug Delivery Reviews, 2021, 172, 314-338.	6.6	75
110	Intradermal delivery of a synthetic DNA vaccine protects macaques from Middle East respiratory syndrome coronavirus. JCI Insight, 2021, 6, .	2.3	7

#	Article	IF	CITATIONS
111	Comparative systematic review and meta-analysis of reactogenicity, immunogenicity and efficacy of vaccines against SARS-CoV-2. Npj Vaccines, 2021, 6, 74.	2.9	198
113	Comparison and Analysis of Neutralizing Antibody Levels in Serum after Inoculating with SARS-CoV-2, MERS-CoV, or SARS-CoV Vaccines in Humans. Vaccines, 2021, 9, 588.	2.1	12
114	Immunogenic potential of DNA vaccine candidate, ZyCoV-D against SARS-CoV-2 in animal models. Vaccine, 2021, 39, 4108-4116.	1.7	85
116	Vaccine development lessons between HIV and COVID-19. Lancet Infectious Diseases, The, 2021, 21, 759-761.	4.6	3
117	A novel mouse AAV6 hACE2 transduction model of wild-type SARS-CoV-2 infection studied using synDNA immunogens. IScience, 2021, 24, 102699.	1.9	15
118	Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. Journal of Neuroimmunology, 2021, 356, 577599.	1.1	62
119	The success of SARS-CoV-2 vaccines and challenges ahead. Cell Host and Microbe, 2021, 29, 1111-1123.	5.1	67
120	Potential for Developing Plant-Derived Candidate Vaccines and Biologics against Emerging Coronavirus Infections. Pathogens, 2021, 10, 1051.	1.2	18
121	Amplicon and Metagenomic Analysis of Middle East Respiratory Syndrome (MERS) Coronavirus and the Microbiome in Patients with Severe MERS. MSphere, 2021, 6, e0021921.	1.3	12
123	Meta-analysis and comprehensive study of coronavirus outbreaks: SARS, MERS and COVID-19. Journal of Infection and Public Health, 2021, 14, 1051-1064.	1.9	13
124	Herramientas biotecnológicas en el diagnóstico, prevención y tratamiento frente a pandemias. Revista Bionatura, 2021, 3, 2091-2113.	0.1	0
125	Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine, 2021, 38, 101020.	3.2	121
126	COVID-eVax, an electroporated DNA vaccine candidate encoding the SARS-CoV-2 RBD, elicits protective responses in animal models. Molecular Therapy, 2022, 30, 311-326.	3.7	54
128	Covid-19 Vaccination – A Saviour from Pandemic. Journal of Evolution of Medical and Dental Sciences, 2021, 10, 3424-3429.	0.1	1
129	An AAV-based, room-temperature-stable, single-dose COVID-19 vaccine provides durable immunogenicity and protection in non-human primates. Cell Host and Microbe, 2021, 29, 1437-1453.e8.	5.1	53
130	Lethal Human Coronavirus Infections and the Role of Vaccines in Their Prevention. , 2021, , 533-549.		1
132	Coronaviruses: An Updated Overview of Their Replication and Pathogenesis. Methods in Molecular Biology, 2020, 2203, 1-29.	0.4	132
134	A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Neglected Tropical Diseases, 2020, 14, e0008788.	1.3	11

щ		IF	CITATIONS
#	ARTICLE	IF	CHAHONS
136	SARS-CoV-2- Specific Immune Responses. Journal of Microbiology and Biotechnology, 2020, 30, 1109-1115.	0.9	12
137	In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. Coatings, 2021, 11, 1273.	1.2	19
138	Nucleic Acid Vaccines for COVID-19: A Paradigm Shift in the Vaccine Development Arena. Biologics, 2021, 1, 337-356.	2.3	58
139	Recent Update of COVID-19 Vaccines. Advanced Pharmaceutical Bulletin, 2021, , .	0.6	0
140	Editorial: DNA Vaccines. Frontiers in Medical Technology, 2021, 3, 782986.	1.3	0
141	CORONAVIRUS VACCINE DEVELOPMENT: FROM SARS AND MERS TO COVID-19 (RUSSIAN TRANSLATION). Juvenis Scientia, 2020, 6, 41-80.	0.1	0
142	Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111075118.	3.3	9
143	Revisiting the role of pulsed electric fields in overcoming the barriers to in vivo gene electrotransfer. Bioelectrochemistry, 2022, 144, 107994.	2.4	20
144	Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): an open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe, The, 2022, 3, e11-e20.	3.4	25
146	Novel suction-based in vivo cutaneous DNA transfection platform. Science Advances, 2021, 7, eabj0611.	4.7	17
148	Current Scenario of Covid-19 with Epidemiological and Phylogenetic Analysis of Pakistani Coronavirus: A Review. Journal of Bioresource Management, 2020, 7, 45-65.	0.4	0
152	Epidemiological and Clinical Aspects of COVID-19; a Narrative Review. Archives of Academic Emergency Medicine, 2020, 8, e41.	0.2	82
153	Viral-vectored vaccinesÂagainst SARS-CoV-2. , 2022, , 115-127.		1
154	Prevention of Emerging Infections in Children. Pediatric Clinics of North America, 2022, 69, 185-202.	0.9	2
155	Development of Siglec-9 Blocking Antibody to Enhance Anti-Tumor Immunity. Frontiers in Oncology, 2021, 11, 778989.	1.3	18
156	Vaccine efficacy and SARS-CoV-2 control in California and U.S. during the session 2020–2026: A modeling study. Infectious Disease Modelling, 2022, 7, 62-81.	1.2	14
157	Bioengineering Strategies for Developing Vaccines against Respiratory Viral Diseases. Clinical Microbiology Reviews, 2022, 35, e0012321.	5.7	10
158	Advances in mRNA and other vaccines against MERS-CoV. Translational Research, 2022, 242, 20-37.	2.2	11

#	Article	IF	CITATIONS
159	A novel DNA platform designed for vaccine use with high transgene expression and immunogenicity. Vaccine, 2021, 39, 7175-7181.	1.7	3
160	Immune profile and responses of a novel dengue DNA vaccine encoding an EDIII-NS1 consensus design based on Indo-African sequences. Molecular Therapy, 2022, 30, 2058-2077.	3.7	10
161	Adenovirus-based vaccines—a platform for pandemic preparedness against emerging viral pathogens. Molecular Therapy, 2022, 30, 1822-1849.	3.7	24
162	Immunological challenges of the "new―infections: corona viruses. , 2022, , 395-450.		2
163	Comparison of Wild Type DNA Sequence of Spike Protein from SARS-CoV-2 with Optimized Sequence on The Induction of Protective Responses Against SARS-Cov-2 Challenge in Mouse Model. Human Vaccines and Immunotherapeutics, 2022, 18, 1-11.	1.4	2
164	A lethal mouse model for evaluating vaccine-associated enhanced respiratory disease during SARS-CoV-2 infection. Science Advances, 2022, 8, eabh3827.	4.7	27
165	Middle East Respiratory Syndrome coronavirus vaccine development: updating clinical studies using platform technologies. Journal of Microbiology, 2022, 60, 238-246.	1.3	5
166	Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. Nanomaterials, 2022, 12, 226.	1.9	20
167	Advanced Materials for SARS oVâ€2 Vaccines. Advanced Materials, 2022, 34, e2107781.	11.1	25
168	Induction of tier-2 neutralizing antibodies in mice with a DNA-encoded HIV envelope native like trimer. Nature Communications, 2022, 13, 695.	5.8	2
170	Immunogenic Epitope-Based Vaccine Prediction from Surface Clycoprotein of MERS-CoV by Deploying Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics, 2022, 28, 77.	0.9	5
171	DNA vaccines join the fight against COVID-19. Lancet, The, 2022, 399, 1281-1282.	6.3	17
172	Vaccine-induced immune responses against SARS-CoV-2 infections. Exploration of Immunology, 0, , 356-373.	1.7	0
173	Middle East Respiratory Syndrome Coronavirus. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 828-838.	0.8	7
174	Techniques for Developing and Assessing Immune Responses Induced by Synthetic DNA Vaccines for Emerging Infectious Diseases. Methods in Molecular Biology, 2022, 2410, 229-263.	0.4	1
175	Two DNA vaccines protect against severe disease and pathology due to SARS-CoV-2 in Syrian hamsters. Npj Vaccines, 2022, 7, 49.	2.9	7
176	Immune Responses of a Novel Bi-Cistronic SARS-CoV-2 DNA Vaccine Following Intradermal Immunization With Suction Delivery. Frontiers in Virology, 0, 2, .	0.7	9
178	Immune Response to SARS-CoV-2 Vaccines. Biomedicines, 2022, 10, 1464.	1.4	24

#	Article	IF	CITATIONS
179	Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines, 2022, 10, 993.	2.1	10
180	Coronaviruses. , 2023, , 277-306.		0
181	Persistence of MERS-CoV-spike-specific B cells and antibodies after late third immunization with the MVA-MERS-S vaccine. Cell Reports Medicine, 2022, 3, 100685.	3.3	11
182	Increased neutralization and IgG epitope identification after MVA-MERS-S booster vaccination against Middle East respiratory syndrome. Nature Communications, 2022, 13, .	5.8	6
183	Immunogenicity of High-Dose MVA-Based MERS Vaccine Candidate in Mice and Camels. Vaccines, 2022, 10, 1330.	2.1	6
185	Nature of viruses and pandemics: Coronaviruses. Current Research in Immunology, 2022, 3, 151-158.	1.2	3
186	A comparison between SARS-CoV-1 and SARS-CoV2: an update on current COVID-19 vaccines. DARU, Journal of Pharmaceutical Sciences, 0, , .	0.9	5
188	Optimization of In Vivo Electroporation Conditions and Delivery of DNA Vaccine Encoding SARS-CoV-2 RBD Using the Determined Protocol. Pharmaceutics, 2022, 14, 2259.	2.0	7
189	Plant Molecular Pharming and Plant-Derived Compounds towards Generation of Vaccines and Therapeutics against Coronaviruses. Vaccines, 2022, 10, 1805.	2.1	3
190	Postoperative Management During the Pandemic Coronavirus Disease 2019 (COVID-19) Era. European Journal of Medical and Health Sciences, 2022, 4, 26-29.	0.1	0
191	A Δ42PD1 fusion-expressing DNA vaccine elicits enhanced adaptive immune response to HIV-1: the key role of TLR4. Virology Journal, 2022, 19, .	1.4	1
192	Evaluation of Zika virus DNA vaccines based on NS1 and domain III of E. International Immunopharmacology, 2022, 113, 109308.	1.7	1
193	Elicitation of immune responses against Nipah virus by an engineered synthetic DNA vaccine. Frontiers in Virology, 0, 2, .	0.7	0
194	Delivery of a DNA vaccine encoding SARS-CoV-2 receptor-binding domain (RBD) by electroporation. Meditsinskii Akademicheskii Zhurnal, 2022, 2, 191-196.	0.2	0
195	Respiratory mucosal vaccination of peptide-poloxamine-DNA nanoparticles provides complete protection against lethal SARS-CoV-2 challenge. Biomaterials, 2023, 292, 121907.	5.7	11
196	Large-Scale Production and Business Plan for Novel Corona Vaccine. Microorganisms for Sustainability, 2022, , 303-323.	0.4	0
197	Oral Delivery of SARS-CoV-2 DNA Vaccines Using Attenuated Salmonella typhimurium as a Carrier in Rat. Molecular Genetics, Microbiology and Virology, 2022, 37, 159-166.	0.0	5
198	Vaccine development for zoonotic viral diseases caused by positive‑sense single‑stranded RNA viruses belonging to the <i>Coronaviridae and <i>Togaviridae families (Review). Experimental and Therapeutic Medicine, 2022, 25, .</i></i>	0.8	2

#	Article	IF	CITATIONS
199	The need and challenges for development of vaccines against emerging infectious diseases. Jornal De Pediatria, 2023, 99, S37-S45.	0.9	4
200	A novel intradermal tattoo-based injection device enhances the immunogenicity of plasmid DNA vaccines. Npj Vaccines, 2022, 7, .	2.9	2
201	A first-in-human trial on the safety and immunogenicity of COVID-eVax, a cellular response-skewed DNA vaccine against COVID-19. Molecular Therapy, 2023, 31, 788-800.	3.7	8
203	Improved DNA Vaccine Delivery with Needle-Free Injection Systems. Vaccines, 2023, 11, 280.	2.1	21
204	Computational approaches in COVID-19 vaccine development. , 2023, , 339-350.		0
205	Preclinical safety assessment of the suction-assisted intradermal injection of the SARS-CoV-2 DNA vaccine candidate pGO-1002 in white rabbit. Archives of Toxicology, 2023, 97, 1177-1189.	1.9	1
206	Engineering potent live attenuated coronavirus vaccines by targeted inactivation of the immune evasive viral deubiquitinase. Nature Communications, 2023, 14, .	5.8	4
207	Vaccination strategies for mitigation of MERS-CoV outbreaks. The Lancet Global Health, 2023, 11, e644-e645.	2.9	1
208	Safety and immunogenicity of the ChAdOx1, MVA-MERS-S, and GLS-5300 DNA MERS-CoV vaccines. International Immunopharmacology, 2023, 118, 109998.	1.7	1
209	A Thermal-Stable Protein Nanoparticle That Stimulates Long Lasting Humoral Immune Response. Vaccines, 2023, 11, 426.	2.1	4
210	Geneâ€encoded nanoparticle vaccine platforms for in vivo assembly of multimeric antigen to promote adaptive immunity. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	3.3	1
211	The Novelty of mRNA Viral Vaccines and Potential Harms: A Scoping Review. J, 2023, 6, 220-235.	0.6	3
217	Technologies for Making New Vaccines. , 2023, , 1350-1373.e9.		0
218	Coronavirus Vaccines. , 2023, , 248-257.e4.		0
229	Approaches to Improve the Immunogenicity of Plasmid DNA-Based Vaccines against COVID-19. , 0, , .		0