Thick ice deposits in shallow simple craters on the Moo

Nature Geoscience 12, 597-601 DOI: 10.1038/s41561-019-0405-8

Citation Report

#	Article	IF	CITATIONS
1	â€~The most terrifying moments': India counts down to risky Moon landing. Nature, 2019, 573, 13-14.	27.8	1
2	Analyzing the ages of south polar craters on the Moon: Implications for the sources and evolution of surface water ice Icarus, 2020, 336, 113455.	2.5	53
3	The Lunar Polar Hydrogen Mapper CubeSat Mission. IEEE Aerospace and Electronic Systems Magazine, 2020, 35, 54-69.	1.3	15
4	The preppers' way of space exploration with zero specific cost. , 2020, , .		0
5	Stratigraphy of Ice and Ejecta Deposits at the Lunar Poles. Geophysical Research Letters, 2020, 47, e2020GL088920.	4.0	32
6	Laboratory investigations of Lunar ice imaging in permanently shadowed regions using reflected starlight. Acta Astronautica, 2020, 177, 604-610.	3.2	2
7	Assessing the Roughness Properties of Circumpolar Lunar Craters: Implications for the Timing of Waterâ€lce Delivery to the Moon. Geophysical Research Letters, 2020, 47, e2020GL087782.	4.0	13
8	Meteoroid Bombardment of Lunar Poles. Astrophysical Journal, 2020, 894, 114.	4.5	8
9	A geologic model for lunar ice deposits at mining scales. Icarus, 2020, 347, 113778.	2.5	52
10	Numerical modeling of the formation of Shackleton crater at the lunar south pole. Icarus, 2021, 354, 113992.	2.5	9
11	Water within a permanently shadowed lunar crater: Further LCROSS modeling and analysis. Icarus, 2021, 354, 114089.	2.5	17
12	Geomorphic Evidence for the Presence of Ice Deposits in the Permanently Shadowed Regions of Scottâ€E Crater on the Moon. Geophysical Research Letters, 2021, 48, e2020GL090780.	4.0	14
13	Development of a micro-ice production apparatus and NIR spectral measurements of frosted minerals for future lunar ice exploration missions. Icarus, 2021, 357, 114273.	2.5	8
14	Micro cold traps on the Moon. Nature Astronomy, 2021, 5, 169-175.	10.1	63
15	Challenges in crater chronology on Mars as reflected in Jezero crater. , 2021, , 97-122.		5
16	Small Penetrator Instrument Concept for the Advancement of Lunar Surface Science. Planetary Science Journal, 2021, 2, 38.	3.6	5
17	Feasibility Study of a Highâ€Resolution Shallow Surface Penetration Radar for Space Application. Radio Science, 2021, 56, e2020RS007118.	1.6	1
18	DEEPER: The Drill for Extensive Exploration of Planetary Environments Using Robots. , 2021, , .		0

ATION RED

CITATION REPORT

#	Article	IF	CITATIONS
19	Ice Prospecting on the Moon at Mining Scales. , 2021, , .		0
20	Experimental Investigations of Water Extraction Process within Permanently Shadowed Regions of the Moon. , 2021, , .		0
21	Morphometry and Temperature of Simple Craters in Mercury's Northern Hemisphere: Implications for Stability of Water Ice. Planetary Science Journal, 2021, 2, 97.	3.6	3
22	Experimental investigations of thermal properties of icy lunar regolith and their influence on phase change interface movement. Planetary and Space Science, 2021, 200, 105197.	1.7	16
23	Temperatures Near the Lunar Poles and Their Correlation With Hydrogen Predicted by LEND. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006598.	3.6	11
24	Water Group Exospheres and Surface Interactions on the Moon, Mercury, and Ceres. Space Science Reviews, 2021, 217, 1.	8.1	21
25	Secondary Impact Burial and Excavation Gardening on the Moon and the Depth to Ice in Permanent Shadow. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006933.	3.6	14
26	Millimeter―to Decimeter cale Surface Slope and Roughness of the Moon at the Chang'eâ€4 Exploration Region. Geophysical Research Letters, 2021, 48, e2021GL094931.	4.0	3
27	Peering into lunar permanently shadowed regions with deep learning. Nature Communications, 2021, 12, 5607.	12.8	13
28	Impact Gardening as a Constraint on the Age, Source, and Evolution of Ice on Mercury and the Moon. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006172.	3.6	43
29	Mapping of Ice Storage Processes on the Moon with Time-dependent Temperatures. Planetary Science Journal, 2020, 1, 54.	3.6	23
30	Carbon Dioxide Cold Traps on the Moon. Geophysical Research Letters, 2021, 48, .	4.0	20
31	Analyzing Surface Ruggedness Inside and Outside of Ice Stability Zones at the Lunar Poles. Planetary Science Journal, 2021, 2, 213.	3.6	12
32	Concept of application of water electrolysis propulsion system as a component of a universal space platform for asteroid exploration mission. Aerospace Systems, 0, , 1.	1.4	1
33	Resource potential of lunar permanently shadowed regions. Icarus, 2022, 377, 114874.	2.5	25
34	Navigation on the Line: Traversability Analysis and Path Planning for Extreme-Terrain Rappelling Rovers. , 2020, , .		6
35	Depth to Diameter Analysis on Small Simple Craters at the Lunar South Pole—Possible Implications for Ice Harboring. Remote Sensing, 2022, 14, 450.	4.0	3
36	Spatial Distribution and Thermal Diversity of Surface Volatile Cold Traps at the Lunar Poles. Planetary Science Journal, 2022, 3, 39.	3.6	16

CITATION REPORT

#	Article	IF	CITATIONS
37	Arecibo S-band Radar Characterization of Local-scale Heterogeneities within Mercury's North Polar Deposits. Planetary Science Journal, 2022, 3, 62.	3.6	11
38	Geomorphic map and science target identification on the Shackleton-de Gerlache ridge. Icarus, 2022, 379, 114963.	2.5	13
39	Volatile interactions with the lunar surface. Chemie Der Erde, 2022, 82, 125858.	2.0	26
40	Thermal deformation analysis of a 3D printed Kingdon ion trap for the Moon environment. Advances in Space Research, 2022, 70, 211-222.	2.6	1
41	Dielectric characterization and polarimetric analysis of lunar north polar crater Hermite-A using Chandrayaan-1 Mini-SAR, Lunar Reconnaissance Orbiter (LRO) Mini-RF, and Chandrayaan-2 DFSAR data. Advances in Space Research, 2022, 70, 4030-4055.	2.6	7
42	Polar Ice Accumulation from Volcanically Induced Transient Atmospheres on the Moon. Planetary Science Journal, 2022, 3, 99.	3.6	13
43	Gravity aspects from recent gravity field model GRGM1200A of the moon and analysis of magnetic data. Icarus, 2022, , 115086.	2.5	7
44	Polar Ice on the Moon. , 2022, , 1-9.		2
45	Artemis Accords: Are Safety Zones Practical for Long Term Commercial Lunar Resource Utilisation?. Space Policy, 2022, 62, 101504.	1.5	4
46	Survival of Ancient Lunar Water Affected by Topographic Degradation of Old, Large Complex Craters. Geophysical Research Letters, 2022, 49, .	4.0	1
47	New Constraints on the Volatile Deposit in Mercury's North Polar Crater, Prokofiev. Planetary Science Journal, 2022, 3, 188.	3.6	5
48	Surface Roughness Variation Across Polar Ice Deposit Boundaries on Mercury. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	1
49	The Distribution and Accessibility of Geologic Targets near the Lunar South Pole and Candidate Artemis Landing Sites. Planetary Science Journal, 2022, 3, 275.	3.6	6
50	Illumination and regolith temperature at China's next candidate lunar landing site Shackleton crater. Science China Earth Sciences, 2023, 66, 417-429.	5.2	2
51	ä¸å›½åŽç»æœ^çf探测候选ç€é™†åŒºæ²™å‹åº"顿撞击å'çš"å‰ç§åŠå¶é£ŽåŒ–å±,温度.	scientia s	iINI 6 A Terrae,
52	Review of Comprehensive Exploitation Technology of Lunar Water Ice Resource. Kongjian Kexue Xuebao, 2023, 43, 273.	0.4	0
53	Investigating the dielectric properties of lunar surface regolith fines using Mini-RF SAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 197, 56-70.	11.1	4
54	Statistical estimates of rock-free lunar regolith thickness from diviner. Planetary and Space Science,	17	0

	CITATION REF	OKI	
#	ARTICLE Energetic charged particle dose rates in water ice on the Moon. Icarus, 2023, 395, 115477.	lF 2.5	CITATIONS
56	Detecting and characterizing the abundance and form of water-ice in permanently-shadowed regions of the moon using a three-band lidar system. Icarus, 2023, 400, 115540.	2.5	0
57	An assumption of in situ resource utilization for "bio-bricks―in space exploration. Frontiers in Materials, 0, 10, .	2.4	0
58	The Mechanism for the Barrier of Lunar Regolith on the Migration of Water Molecules. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	1
59	Morphological Characterization of Decimeter―to Hectometerâ€6cale Impact Craters at the Chang'Eâ€3/4/5 Landing Sites. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	3
60	Buried Ice Deposits in Lunar Polar Cold Traps Were Disrupted by Ballistic Sedimentation. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	2
61	Polar Ice on the Moon. , 2023, , 971-980.		1
62	Thermal Environments and Volatile Stability Within Lunar Pits and Caves. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	0
63	Morphological characteristics of impact craters with diameters of 5–20Âkm on the Moon. Icarus, 2023, 404, 115688.	2.5	2
65	Estimation of the mass fraction and distribution of ice in a lunar regolith simulant from seismic velocity. Icarus, 2023, , 115725.	2.5	0
66	Analysis of the permanently shadowed region of Cabeus crater in lunar south pole using orbiter high resolution camera imagery. Icarus, 2023, 406, 115762.	2.5	2
67	A New View of the Lunar South Pole from the Lunar Orbiter Laser Altimeter (LOLA). Planetary Science Journal, 2023, 4, 183.	3.6	0
68	Analysis of the relation of hydrogen distribution and topographic roughness in the lunar south polar region. Planetary and Space Science, 2023, , 105797.	1.7	0
69	Analysis of Rock Abundance on Lunar Surface and Near-Surface Using Mini-RF SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 9590-9605.	4.9	1
70	Effects of the evolving early Moon and Earth magnetospheres. Frontiers in Astronomy and Space Sciences, 0, 10, .	2.8	0
71	Lunar Resources. Reviews in Mineralogy and Geochemistry, 2023, 89, 829-868.	4.8	5
72	Lunar Surface Processes. Reviews in Mineralogy and Geochemistry, 2023, 89, 651-690.	4.8	4
73	Morphological analysis of polar landing regions for a solar powered ice drilling mission. Icarus, 2024, 411, 115927.	2.5	0

#	Article	IF	CITATIONS
74	Lunar polar volatile remobilization in regolith-filled craters. Icarus, 2024, 411, 115953.	2.5	1
75	Surface morphology inside the PSR area of lunar polar crater Shoemaker in comparison with that of the sunlit areas. Planetary and Space Science, 2024, 241, 105839.	1.7	Ο
76	Cold-trapped ices at the poles of Mercury and the Moon. , 2024, , 1-29.		0
77	Surface Roughness at the Moon's South Pole: The Influence of Condensed Volatiles on Surface Roughness at the Moon's South Pole. Planetary Science Journal, 2024, 5, 30.	3.6	Ο
78	Potential landing sites characterization on lunar south pole: De-Gerlache to Shackleton ridge region. Icarus, 2024, 412, 115988.	2.5	0

CITATION REPORT