Insecticide resistance status of Aedes aegypti and Aedes New Guinea

Parasites and Vectors 12, 333 DOI: 10.1186/s13071-019-3585-6

Citation Report

#	Article	IF	CITATIONS
1	Pyrethrin from Dalmatian pyrethrum (Tanacetum cinerariifolium (Trevir.) Sch. Bip.): biosynthesis, biological activity, methods of extraction and determination. Phytochemistry Reviews, 2021, 20, 875-905.	6.5	18
2	Decreased bioefficacy of long-lasting insecticidal nets and the resurgence of malaria in Papua New Guinea. Nature Communications, 2020, 11, 3646.	12.8	30
3	Carapa guianensis Aubl. (Meliaceae) oil associated with silk fibroin, as alternative to traditional surfactants, and active against larvae of the vector Aedes aegypti. Industrial Crops and Products, 2020, 157, 112931.	5.2	17
4	Mating and blood-feeding induce transcriptome changes in the spermathecae of the yellow fever mosquito Aedes aegypti. Scientific Reports, 2020, 10, 14899.	3.3	21
5	Frequency of kdr mutations in the voltage-sensitive sodium channel (VSSC) gene in Aedes aegypti from Yogyakarta and implications for Wolbachia-infected mosquito trials. Parasites and Vectors, 2020, 13, 429.	2.5	7
6	Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan. Scientific Reports, 2020, 10, 21034.	3.3	14
7	Baseline Susceptibility Status of Florida Populations of Aedes aegypti (Diptera: Culicidae) and Aedes albopictus. Journal of Medical Entomology, 2020, 57, 1550-1559.	1.8	22
8	Reproductive and developmental performance of the yellow fever mosquito, Aedes aegypti, fed on the Syrian hamster, Mesocricetus auratus, immunized with a mosquito midgut lectin. Invertebrate Reproduction and Development, 2020, 64, 169-177.	0.8	0
9	Contrasting resistance patterns to type I and II pyrethroids in two major arbovirus vectors Aedes aegypti and Aedes albopictus in the Republic of the Congo, Central Africa. Infectious Diseases of Poverty, 2020, 9, 23.	3.7	20
10	Low Levels of Pyrethroid Resistance in Hybrid Offspring of a Highly Resistant and a More Susceptible Mosquito Strain. Journal of Insect Science, 2020, 20, .	1.5	4
11	Adulticidal activities of Cymbopogon citratus (Stapf.) and Eucalyptus globulus (Labill.) essential oils and of their synergistic combinations against Aedes aegypti (L.), Aedes albopictus (Skuse), and Musca domestica (L.). Environmental Science and Pollution Research, 2020, 27, 20201-20214.	5.3	28
12	Suppressive effects of insect growth regulators on development, reproduction and nutritional indices of the Egyptian cotton leafworm, <i>Spodoptera littoralis</i> (Lepidoptera: Noctuidae). Invertebrate Reproduction and Development, 2020, 64, 178-187.	0.8	13
13	Aircraft disinsection: what is the usefulness as a public health measure?. Journal of Travel Medicine, 2021, 28, .	3.0	2
14	Spatial population genomics of a recent mosquito invasion. Molecular Ecology, 2021, 30, 1174-1189.	3.9	31
15	Outcomes from international field trials with Male Aedes Sound Traps: Frequency-dependent effectiveness in capturing target species in relation to bycatch abundance. PLoS Neglected Tropical Diseases, 2021, 15, e0009061.	3.0	9
16	Rhamnolipids on Aedes aegypti larvae: a potential weapon against resistance selection. 3 Biotech, 2021, 11, 172.	2.2	2
17	Insecticide resistance status and mechanisms in Aedes aegypti populations from Senegal. PLoS Neglected Tropical Diseases, 2021, 15, e0009393.	3.0	31
18	Effect of BG-Lures on the Male <i>Aedes</i> (Diptera: Culicidae) Sound Trap Capture Rates. Journal of Medical Entomology, 2021, 58, 2425-2431.	1.8	3

CITATION REPORT

#	Article	IF	CITATIONS
19	Microorganisms Associated with Mosquito Oviposition Sites: Implications for Habitat Selection and Insect Life Histories. Microorganisms, 2021, 9, 1589.	3.6	16
20	A puriï¬ e d lectin with larvicidal activity from a woodland mushroom, Agaricus semotus Fr Acta Biologica Szegediensis, 2021, 65, 65-73.	0.3	2
21	Effect of Petroleum Products on the Larvicidal Activity of Aedes Mosquitoes in Ika North-East LGA, Delta State, Nigeria. The Open Environmental Research Journal, 2021, 14, 24-30.	1.5	1
22	Analysis of the chemical composition, antifungal activity and larvicidal action against Aedes aegypti larvae of the Essential Oil Cymbopogon nardus. Research, Society and Development, 2021, 10, e543101321452.	0.1	1
26	Seroprevalence of dengue, Zika, chikungunya and Ross River viruses across the Solomon Islands. PLoS Neglected Tropical Diseases, 2022, 16, e0009848.	3.0	2
28	Spatiotemporal distribution and insecticide resistance status of Aedes aegypti in Ghana. Parasites and Vectors, 2022, 15, 61.	2.5	5
29	Sex-specific distribution and classification of Wolbachia infections and mitochondrial DNA haplogroups in Aedes albopictus from the Indo-Pacific. PLoS Neglected Tropical Diseases, 2022, 16, e0010139.	3.0	6
30	Optimization of Aedes albopictus (Diptera: Culicidae) Mass Rearing through Cost-Effective Larval Feeding. Insects, 2022, 13, 504.	2.2	3
31	The Invasive Mosquitoes of Canada: An Entomological, Medical, and Veterinary Review. American Journal of Tropical Medicine and Hygiene, 2022, 107, 231-244.	1.4	1
32	Insecticide Resistance in Alabama Populations of the Mosquito <i>Aedes albopictus</i> . Journal of Medical Entomology, 2022, 59, 1678-1686.	1.8	4
33	Solar-powered Mosquito Trap with Air Quality Monitoring. Journal of Physics: Conference Series, 2022, 2319, 012005.	0.4	0
34	Evidence of High Frequencies of Insecticide Resistance Mutations in <i>Aedes aegypti</i> (Culicidae) Mosquitoes in Urban Accra, Ghana: Implications for Insecticide-based Vector Control of <i>Aedes</i> -borne Arboviral Diseases. Journal of Medical Entomology, 2022, 59, 2090-2101.	1.8	6
35	Metallothionein gene expression in rat tissues: response to dietary restriction after orally dichlorodiphenyldichloroethylene (DDE) exposure and high-fat feeding. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 0, , 1-6.	1.5	0
36	Rapid Evaporative Ionization Mass Spectrometry (REIMS): a Potential and Rapid Tool for the Identification of Insecticide Resistance in Mosquito Larvae. Journal of Insect Science, 2022, 22, .	1.5	1
37	Larvicidal activity of plant extracts from Colombian North Coast against Aedes aegypti L. mosquito larvae. Arabian Journal of Chemistry, 2022, 15, 104365.	4.9	5
38	Insecticide resistance in malaria and arbovirus vectors in Papua New Guinea, 2017–2022. Parasites and Vectors, 2022, 15, .	2.5	2
39	Assessment of susceptible Culex quinquefasciatus larvae in Indonesia to different insecticides through metabolic enzymes and the histopathological midgut. Heliyon, 2022, 8, e12234.	3.2	5
40	Knockdown of the Sodium/Potassium ATPase Subunit Beta 2 Reduces Egg Production in the Dengue Vector, Aedes aegypti. Insects, 2023, 14, 50.	2.2	1

#	Article	IF	CITATIONS
41	First comprehensive report of the resistance of Culex quinquefasciatus Say (Diptera: Culicidae) to commonly used insecticides in Riyadh, Saudi Arabia. Heliyon, 2023, 9, e12709.	3.2	3
42	Arboviral disease outbreaks, Aedes mosquitoes, and vector control efforts in the Pacific. Frontiers in Tropical Diseases, 0, 4, .	1.4	0
43	The chaperone BiP promotes dengue virus replication and mosquito vitellogenesis in Aedes aegypti. Insect Biochemistry and Molecular Biology, 2023, 155, 103930.	2.7	1
44	2-(dec-2-enyl)-3-methyl quinolin-4-ol-C20H27NO and 7-amino-N-methyl phenazine-1-carboxamide—C14 H13 N4O2: potent bio-active compounds against dengue vector Aedes aegypti. International Journal of Tropical Insect Science, 0, , .	1.0	0
45	Bridging Vectors of Dengue Fever: The Endless Cycle. Infectious Diseases, 0, , .	4.0	0
46	Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. ISME Journal, 2023, 17, 1143-1152.	9.8	7
47	Discovery and structure-activity relationship of Morita-Baylis-Hillman adducts as larvicides against dengue mosquito vector, Aedes aegypti (Diptera: Culicidae). Bioorganic and Medicinal Chemistry, 2023, 90, 117315.	3.0	1
48	A novel strategy for screening mutations in the voltage-gated sodium channel gene of Aedes albopictus based on multiplex PCR-mass spectrometry minisequencing technology. Infectious Diseases of Poverty, 2023, 12, .	3.7	0
49	Larvicidal and anti-termite activities of microbial biosurfactant produced by Enterobacter cloacae SJ2 isolated from marine sponge Clathria sp Scientific Reports, 2023, 13, .	3.3	1
50	Insecticide resistance: Status and potential mechanisms in Aedes aegypti. Pesticide Biochemistry and Physiology, 2023, 195, 105577.	3.6	0
51	Laboratory evaluation of the effects of Portunus pelagicus extracts against Culex pipiens larvae and aquatic non-target organisms. Journal of King Saud University - Science, 2023, 35, 102924.	3.5	0
52	Profiling Insecticide Susceptibility of <i>Aedes albopictus</i> From Hot Springs in Selangor, Malaysia. Journal of the American Mosquito Control Association, 2023, 39, 183-191.	0.7	0
53	Fine-scale monitoring of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Sri Lanka and modeling the phenotypic resistance using rational approximation. Parasites and Vectors, 2024, 17, .	2.5	0
54	Is Anopheles gambiae (sensu stricto), the principal malaria vector in Africa prone to resistance development against new insecticides? Outcomes from laboratory exposure of An. gambiae (s.s.) to sub-lethal concentrations of chlorfenapyr and clothianidin. Current Research in Parasitology and Vector-borne Diseases, 2024, 5, 100172.	1.9	0

CITATION REPORT