Combining Dithienosilole-Based Organic Dyes with a Br toward Enhanced Visible-Light-Driven Hydrogen Produ

ACS Applied Energy Materials 2, 5600-5612

DOI: 10.1021/acsaem.9b00782

Citation Report

#	Article	IF	CITATIONS
1	Arylene Ethynylene-Functionalized Bithiazole-Based Zinc Polymers for Ultraefficient Photocatalytic Activity. ACS Omega, 2019, 4, 17798-17806.	1.6	6
2	Photocatalysts for H 2 Generation from Starburst Triphenylamine/Carbazole Donorâ€Based Metalâ€Free Dyes and Porous Anatase TiO 2 Cube. ChemSusChem, 2020, 13, 1037-1043.	3.6	14
3	Dyeâ€Sensitized Heterogeneous Photocatalysts for Green Redox Reactions. European Journal of Inorganic Chemistry, 2020, 2020, 899-917.	1.0	37
4	Panchromatic dirhodium photocatalysts for dihydrogen generation with red light. Chemical Science, 2020, 11, 9775-9783.	3.7	12
5	Crystal Structures and Phosphorescent Properties of Groupâ€14 Dipyridinometalloles and Their Copper Complexes. ChemPlusChem, 2020, 85, 1912-1918.	1.3	1
6	Multiresponsive Nanoprobes for Turn-On Fluorescence/ ¹⁹ F MRI Dual-Modal Imaging. Analytical Chemistry, 2020, 92, 11739-11746.	3.2	27
7	Tuning the Properties of Benzothiadiazole Dyes for Efficient Visible Light-Driven Photocatalytic H ₂ Production under Different Conditions. ACS Applied Energy Materials, 2020, 3, 8912-8928.	2.5	20
8	Photocatalytic H ₂ Production from Water by Metalâ€free Dyeâ€sensitized TiO ₂ Semiconductors: The Role and Development Process of Organic Sensitizers. ChemSusChem, 2020, 13, 5863-5895.	3.6	57
9	Asymmetric zinc porphyrin derivatives bearing three pseudo-pyrimidine meso-position substituents and their photosensitization for H2 evolution. New Journal of Chemistry, 2020, 44, 11237-11247.	1.4	5
10	Multicarbazole-Based Dâ^ï∈–A Dyes Sensitized Hydrogen Evolution under Visible Light Irradiation. ACS Omega, 2020, 5, 2027-2033.	1.6	16
11	Silole and selenophene-based D-Ï€-A dyes in dye-sensitized solar cells: Insights from optoelectronic and regeneration properties. Dyes and Pigments, 2020, 176, 108243.	2.0	6
12	Molecular design of dye-TiO2 assemblies for green light-induced photocatalytic selective aerobic oxidation of amines. Journal of Colloid and Interface Science, 2021, 581, 826-835.	5.0	17
13	CuWO4-x nanoparticles incorporated brookite TiO2 porous nanospheres: Preparation and dramatic photocatalytic activity for light driven H2 generation. Materials Research Bulletin, 2021, 136, 111171.	2.7	13
14	Well-defined Cu ₂ O photocatalysts for solar fuels and chemicals. Journal of Materials Chemistry A, 2021, 9, 5915-5951.	5.2	101
15	Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Materials Horizons, 2021, 8, 2964-3008.	6.4	34
16	Design of dye-sensitized TiO ₂ materials for photocatalytic hydrogen production: light and shadow. JPhys Energy, 2021, 3, 031001.	2.3	28
17	In–N–In Sites Boosting Interfacial Charge Transfer in Carbon-Coated Hollow Tubular In ₂ O ₃ /Znln ₂ S ₄ Heterostructure Derived from In-MOF for Enhanced Photocatalytic Hydrogen Evolution. ACS Catalysis, 2021, 11, 6276-6289.	5. 5	110
18	Organic sensitizers featuring tetrathienosilole core for efficient and robust dye-sensitized solar cells. Solar Energy, 2021, 221, 402-411.	2.9	4

#	Article	IF	CITATIONS
19	2D CoP supported 0D WO3 constructed S-scheme for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 20560-20572.	3.8	67
20	Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 433, 134474.	6.6	81
21	Photocatalytic conversion of arylboronic acids to phenols by a new 2D donor–acceptor covalent organic framework. Materials Advances, 2022, 3, 4699-4706.	2.6	8
22	Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications. Chinese Journal of Catalysis, 2022, 43, 2111-2140.	6.9	49
23	Long-term photochemical stability of heteroaromatic dye-functionalised g-C3N4 via covalent linkage for efficient photocatalytic hydrogen evolution. Dyes and Pigments, 2023, 212, 111128.	2.0	3
24	Vinylene-linked covalent organic frameworks with manipulated electronic structures for efficient solar-driven photocatalytic hydrogen production. Chinese Journal of Catalysis, 2023, 47, 171-180.	6.9	34
26	Visible light-driven highly-efficient hydrogen production by a naphthalene imide derivative-sensitized TiO ₂ photocatalyst. Chemical Communications, 2023, 59, 8676-8679.	2.2	0
29	Influence of triphenylamine derivatives in efficient dye-sensitized/organic solar cells. Journal of Materials Chemistry A, 2023, 11, 25136-25215.	5.2	1