Unprecedented peroxidase-mimicking activity of single dispersed Fe–Nx moieties hosted by MOF derived por

Biosensors and Bioelectronics 142, 111495

DOI: 10.1016/j.bios.2019.111495

Citation Report

#	Article	IF	CITATIONS
1	Emerging applications of nanozymes in environmental analysis: Opportunities and trends. TrAC - Trends in Analytical Chemistry, 2019, 120, 115653.	5.8	108
2	2D Graphene Oxide/Fe-MOF Nanozyme Nest with Superior Peroxidase-Like Activity and Its Application for Detection of Woodsmoke Exposure Biomarker. Analytical Chemistry, 2019, 91, 13847-13854.	3.2	116
3	Colorimetric quantification and discrimination of phenolic pollutants based on peroxidase-like Fe3O4 nanoparticles. Sensors and Actuators B: Chemical, 2020, 303, 127225.	4.0	94
4	Promoting Active Sites in MOF-Derived Homobimetallic Hollow Nanocages as a High-Performance Multifunctional Nanozyme Catalyst for Biosensing and Organic Pollutant Degradation. ACS Applied Materials & Degradation. ACS Applied	4.0	129
5	Selective Sensing of Copper Ions by Mesoporous Porphyrinic Metal–Organic Framework Nanoovals. Analytical Chemistry, 2020, 92, 2201-2206.	3.2	39
6	Reviewâ€"Nanozyme-Based Immunosensors and Immunoassays: Recent Developments and Future Trends. Journal of the Electrochemical Society, 2020, 167, 037508.	1.3	67
7	Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sensors and Actuators B: Chemical, 2020, 305, 127511.	4.0	204
8	Bimetallic Fe/Mn metal-organic-frameworks and Au nanoparticles anchored carbon nanotubes as a peroxidase-like detection platform with increased active sites and enhanced electron transfer. Talanta, 2020, 210, 120678.	2.9	45
9	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
10	Osmium nanozyme as peroxidase mimic with high performance and negligible interference of O ₂ . Journal of Materials Chemistry A, 2020, 8, 25226-25234.	5.2	44
11	Construct of Carbon Nanotube-Supported Fe2O3 Hybrid Nanozyme by Atomic Layer Deposition for Highly Efficient Dopamine Sensing. Frontiers in Chemistry, 2020, 8, 564968.	1.8	13
12	Degradable metal-organic framework/methylene blue composites-based homogeneous electrochemical strategy for pesticide assay. Sensors and Actuators B: Chemical, 2020, 323, 128701.	4.0	52
13	Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chemical Science, 2020, 11, 9741-9756.	3.7	157
14	Perovskite mesoporous LaFeO3 with peroxidase-like activity for colorimetric detection of gallic acid. Sensors and Actuators B: Chemical, 2020, 321, 128642.	4.0	40
15	Metal–Organicâ€Frameworkâ€Engineered Enzymeâ€Mimetic Catalysts. Advanced Materials, 2020, 32, e20030	06 5 1.1	183
16	Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. Nano-Micro Letters, 2020, 12, 184.	14.4	77
17	The synthetic strategies for single atomic site catalysts based on metal–organic frameworks. Nanoscale, 2020, 12, 20580-20589.	2.8	17
18	Metal–organic framework based nanozymes: promising materials for biochemical analysis. Chemical Communications, 2020, 56, 11338-11353.	2.2	170

#	Article	IF	CITATIONS
19	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	1.6	24
20	Advances in Synchrotron Radiationâ€based Xâ€ray Absorption Spectroscopy to Characterize the Fine Atomic Structure of Singleâ€atom Nanozymes. Chemistry - an Asian Journal, 2020, 15, 2110-2116.	1.7	7
21	Single-atom nanozymes: A rising star for biosensing and biomedicine. Coordination Chemistry Reviews, 2020, 418, 213376.	9.5	134
22	Single-atom iron containing nanozyme with peroxidase-like activity and copper nanoclusters based ratio fluorescent strategy for acetylcholinesterase activity sensing. Sensors and Actuators B: Chemical, 2020, 313, 128023.	4.0	75
23	Colloidal-sized zirconium porphyrin metal–organic frameworks with improved peroxidase-mimicking catalytic activity, stability and dispersity. Analyst, The, 2020, 145, 3002-3008.	1.7	16
24	Biogenic synthesis of AuPd nanocluster as a peroxidase mimic and its application for colorimetric assay of acid phosphatase. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124444.	2.3	30
25	Singleâ€Atom Catalysts in Catalytic Biomedicine. Advanced Materials, 2020, 32, e1905994.	11.1	260
26	Urchin peroxidase-mimicking Au@Pt nanoparticles as a label in lateral flow immunoassay: impact of nanoparticle composition on detection limit of Clavibacter michiganensis. Mikrochimica Acta, 2020, 187, 268.	2.5	24
27	Study on adsorption of U(VI) from MOF-derived phosphorylated porous carbons. Journal of Solid State Chemistry, 2021, 293, 121792.	1.4	22
28	Single-atom catalysts boost signal amplification for biosensing. Chemical Society Reviews, 2021, 50, 750-765.	18.7	142
29	Bioinspired nanozyme for portable immunoassay of allergenic proteins based on A smartphone. Biosensors and Bioelectronics, 2021, 172, 112776.	5.3	59
30	Evaluating the electro-sensing behaviors of single-atom catalysts based on mechanistic insights. Current Opinion in Electrochemistry, 2021, 25, 100646.	2.5	3
31	One-pot construction of acid phosphatase and hemin loaded multifunctional metal–organic framework nanosheets for ratiometric fluorescent arsenate sensing. Journal of Hazardous Materials, 2021, 412, 124407.	6.5	41
32	Advances in Singleâ€Atom Nanozymes Research ^{â€} . Chinese Journal of Chemistry, 2021, 39, 174-180.	2.6	80
33	Two-dimensional conductive phthalocyanine-based metal–organic frameworks for electrochemical nitrite sensing. RSC Advances, 2021, 11, 4472-4477.	1.7	41
34	Synthesis Strategies, Catalytic Applications, and Performance Regulation of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2008318.	7.8	133
35	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	7.3	148
36	Nitrogen-Rich Precursors Assisted Synthesis of Metal-Organic Framework-Derived Nanostructures as Bifunctional Catalysts for Electrochemical Sensing and Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2021, 168, 027514.	1.3	5

#	Article	IF	CITATIONS
37	Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. Journal of Nanobiotechnology, 2021, 19, 92.	4.2	29
38	Metal–Organic Frameworks Enhance Biomimetic Cascade Catalysis for Biosensing. Advanced Materials, 2021, 33, e2005172.	11.1	109
39	Boosted peroxidase-like activity of metal-organic framework nanoparticles with single atom Fe(â¢) sites at low substrate concentration. Analytica Chimica Acta, 2021, 1152, 338299.	2.6	13
40	Fe,N-doped carbon as peroxidase mimics for single-use colorimetric bioassays. Journal of Materials Science, 2021, 56, 13579-13589.	1.7	12
41	Singleâ€Atomic Site Catalyst with Heme Enzymesâ€Like Active Sites for Electrochemical Sensing of Hydrogen Peroxide. Small, 2021, 17, e2100664.	5.2	66
42	Applications of single-atom catalysts. Nano Research, 2022, 15, 38-70.	5.8	115
43	Biocatalysts at atom level: From coordination structure to medical applications. Applied Materials Today, 2021, 23, 101029.	2.3	12
44	Iron-Imprinted Single-Atomic Site Catalyst-Based Nanoprobe for Detection of Hydrogen Peroxide in Living Cells. Nano-Micro Letters, 2021, 13, 146.	14.4	30
45	A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Letters, 2021, 13, 154.	14.4	221
46	Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chemical Engineering Journal, 2021, 415, 128876.	6.6	116
47	Metal-organic frameworks for improving wound healing. Coordination Chemistry Reviews, 2021, 439, 213929.	9.5	76
48	Porous Materials Confining Single Atoms for Catalysis. Frontiers in Chemistry, 2021, 9, 717201.	1.8	9
49	Analyte-triggered oxidase-mimetic activity loss of Ag3PO4/UiO-66 enables colorimetric detection of malathion completely free from bioenzymes. Sensors and Actuators B: Chemical, 2021, 338, 129866.	4.0	30
50	Burgeoning single atoms as new types of nanozymes and electrocatalysts for sensing, biomedicine and energy conversion. JPhys Materials, 2021, 4, 044013.	1.8	2
51	Oxidative and adsorptive removal of chlorophenols over Fe-, N- and S-multi-doped carbon xerogels. Journal of Environmental Chemical Engineering, 2021, 9, 105568.	3.3	9
52	Single-atom nanozymes and environmental catalysis: A perspective. Advances in Colloid and Interface Science, 2021, 294, 102485.	7.0	21
53	Single-atom engineering of metal-organic frameworks toward healthcare. CheM, 2021, 7, 2635-2671.	5.8	55
54	Self-Assembled Fabrication of Water-Soluble Porphyrin Mediated Supramolecule-Gold Nanoparticle Networks and Their Application in Selective Sensing. Bulletin of the Chemical Society of Japan, 2021, 94, 2662-2669.	2.0	4

#	ARTICLE	IF	CITATIONS
55	Feâ€"Nâ€"C Single-Atom Catalyst Coupling with Pt Clusters Boosts Peroxidase-like Activity for Cascade-Amplified Colorimetric Immunoassay. Analytical Chemistry, 2021, 93, 12353-12359.	3.2	55
56	Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today, 2021, 40, 101261.	6.2	61
57	Engineering DNA/Fe–N–C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Analytica Chimica Acta, 2021, 1180, 338856.	2.6	19
58	Realizing selective detection with nanozymes: Strategies and trends. TrAC - Trends in Analytical Chemistry, 2021, 143, 116379.	5 . 8	85
59	Selective detection of glutathione by flower-like NiV2O6 with only peroxidase-like activity at neutral pH. Talanta, 2021, 234, 122645.	2.9	26
60	lodide-enhanced Co/Fe-MOFs nanozyme for sensitively colorimetric detection of H2S. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 262, 120117.	2.0	12
61	Advances in metal–organic framework-based nanozymes and their applications. Coordination Chemistry Reviews, 2021, 449, 214216.	9.5	122
62	Multi-enzyme activity of three layers FeO @ZnMnFeO @Fe-Mn organogel for colorimetric detection of antioxidants and norfloxacin with smartphone. Chemical Engineering Journal, 2021, 425, 131823.	6.6	35
63	Prussian Blue and Other Metal–Organic Framework-based Nanozymes. Nanostructure Science and Technology, 2020, , 141-170.	0.1	4
64	Perspectives for Single-Atom Nanozymes: Advanced Synthesis, Functional Mechanisms, and Biomedical Applications. Analytical Chemistry, 2021, 93, 1221-1231.	3.2	86
65	Nanozyme-Participated Biosensing of Pesticides and Cholinesterases: A Critical Review. Biosensors, 2021, 11, 382.	2.3	12
66	A Functionalized Magnetic Graphene-Based MOFs Platform as the Heterogeneous Mimic Enzyme Sensor for Glucose Detection. Catalysis Letters, 2022, 152, 2375-2385.	1.4	8
67	Nanozyme catalysis-assisted ratiometric multicolor sensing of heparin based on target-specific electrostatic-induced aggregation. Talanta, 2022, 238, 123003.	2.9	6
68	Emerging Singleâ€Atom Catalysts/Nanozymes for Catalytic Biomedical Applications. Advanced Healthcare Materials, 2022, 11, e2101682.	3.9	26
69	Self-assembled recombinant camel serum albumin nanoparticles-encapsulated hemin with peroxidase-like activity for colorimetric detection of hydrogen peroxide and glucose. International Journal of Biological Macromolecules, 2021, 193, 2103-2112.	3.6	22
70	Peroxidase-mimetic activity of a nanozyme with uniformly dispersed Fe3O4 NPs supported by mesoporous graphitized carbon for determination of glucose. Mikrochimica Acta, 2021, 188, 421.	2.5	9
71	Metalâ€Organicâ€Frameworkâ€Based Singleâ€Atomic Catalysts for Energy Conversion and Storage: Principles, Advances, and Theoretical Understandings. Advanced Sustainable Systems, 2022, 6, .	2.7	7
72	Co, N-doped carbon dot nanozymes with acid pH-independence and substrate selectivity for biosensing and bioimaging. Sensors and Actuators B: Chemical, 2022, 353, 131150.	4.0	29

#	Article	IF	CITATIONS
73	Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection. Talanta, 2022, 240, 123145.	2.9	29
74	Co–N–C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Analytical and Bioanalytical Chemistry, 2022, 414, 1857-1865.	1.9	20
75	Perspective for Single Atom Nanozymes Based Sensors: Advanced Materials, Sensing Mechanism, Selectivity Regulation, and Applications. Analytical Chemistry, 2022, 94, 1499-1509.	3.2	37
76	Biocatalytic Metalâ€Organic Frameworks: Promising Materials for Biosensing. ChemBioChem, 2022, 23, .	1.3	21
77	Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Research, 2022, 15, 4411-4420.	5.8	55
78	Manganese-doped iron coordination polymer nanoparticles with enhanced peroxidase-like activity for colorimetric detection of antioxidants. Analyst, The, 2022, 147, 238-246.	1.7	13
79	Peroxidase-like activity of Ru–N–C nanozymes in colorimetric assay of acetylcholinesterase activity. Analytica Chimica Acta, 2022, 1191, 339362.	2.6	19
80	Generated Mercury(I) as a Peroxidase-like Activity Modulator via Stimulating the Expression of Active Sites of Silver Nanoparticles for Environmental Hg ²⁺ Detection. ACS Applied Nano Materials, 2022, 5, 2048-2056.	2.4	7
81	Desolvation-induced formation of recombinant camel serum albumin-based nanocomposite for glutathione colorimetric determination. Sensors and Actuators B: Chemical, 2022, 357, 131417.	4.0	6
82	Singleâ€Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chemistry - an Asian Journal, 2022, 17, .	1.7	19
83	Multienzyme Cascades Based on Highly Efficient Metal–Nitrogen–Carbon Nanozymes for Construction of Versatile Bioassays. Analytical Chemistry, 2022, 94, 3485-3493.	3.2	54
84	Designing CoS _{1.035} Nanoparticles Anchored on N-Doped Carbon Dodecahedron as Dual-Enzyme Mimics for the Colorimetric Detection of H ₂ O ₂ and Glutathione. ACS Omega, 2022, 7, 11135-11147.	1.6	6
85	Constructing bifunctional metal–organic framework based nanozymes with fluorescence and oxidase activity for the dual-channel detection of butyrylcholinesterase. Analytica Chimica Acta, 2022, 1205, 339717.	2.6	17
86	Zeolitic imidazolate frameworks-derived hollow Co/N-doped CNTs as oxidase-mimic for colorimetric-fluorescence immunoassay of ochratoxin A. Sensors and Actuators B: Chemical, 2022, 359, 131609.	4.0	30
87	Engineering single-atom catalysts toward biomedical applications. Chemical Society Reviews, 2022, 51, 3688-3734.	18.7	43
88	Hemin loaded Znâ^'N–C single-atom nanozymes for assay of propyl gallate and formaldehyde in food samples. Food Chemistry, 2022, 389, 132985.	4.2	11
89	Solvothermal synthesis of transition metal (iron/copper) and nitrogen coâ^'doped carbon nanomaterials: comparing their peroxidaseâ^'like properties. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	3
90	Single-atom iron catalysts for biomedical applications. Progress in Materials Science, 2022, 128, 100959.	16.0	17

#	Article	IF	CITATIONS
91	Controllable synthesis of boron-doped Zn–N–C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosensors and Bioelectronics, 2022, 210, 114294.	5.3	44
92	Glucose-responsive biomimetic nanoreactor in bacterial cellulose hydrogel for antibacterial and hemostatic therapies. Carbohydrate Polymers, 2022, 292, 119615.	5.1	23
93	Fe N C single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione. Journal of Materiomics, 2022, 8, 1251-1259.	2.8	8
94	Nanozymes: Supramolecular perspective. Biochemical Engineering Journal, 2022, 183, 108463.	1.8	2
95	Comparative study of Pd@Pt nanozyme improved colorimetric N-ELISA for the paper-output portable detection of Staphylococcus aureus. Talanta, 2022, 247, 123503.	2.9	17
96	An ultra-highly active nanozyme of Fe,N co-doped ultrathin hollow carbon framework for antibacterial application. Chinese Chemical Letters, 2023, 34, 107650.	4.8	11
97	Homogeneity of Supported Singleâ€Atom Active Sites Boosting the Selective Catalytic Transformations. Advanced Science, 2022, 9, .	5.6	47
98	Metal-organic frameworks-derived bimetallic oxide composite nanozyme fiber membrane and the application to colorimetric detection of phenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129662.	2.3	12
99	Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chemical Engineering Journal, 2022, 449, 137855.	6.6	32
100	Water dispersible cobalt single-atom catalysts with efficient Chemiluminescence enhancement for sensitive bioassay. Talanta, 2022, 250, 123732.	2.9	13
101	Fluorescence sensing platform for sarcosine analysis based on nitrogen-doping copper nanosheets and gold nanoclusters. Analytica Chimica Acta, 2022, 1223, 340188.	2.6	6
102	Fe Single-Atom Electrochemical Sensors for H ₂ O ₂ Produced by Living Cells. ACS Applied Nano Materials, 2022, 5, 11852-11863.	2.4	15
103	Single-Atom Nanozymes: Fabrication, Characterization, Surface Modification and Applications of ROS Scavenging and Antibacterial. Molecules, 2022, 27, 5426.	1.7	15
104	Chiral Nanozymes for Enantioselective Biological Catalysis. Angewandte Chemie, 0, , .	1.6	1
105	Chiral Nanozymes for Enantioselective Biological Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
106	Singleâ€Atomic Iron Doped Carbon Dots with Both Photoluminescence and Oxidaseâ€Like Activity. Small, 2022, 18, .	5.2	43
107	Nanozymes enable sensitive food safety analysis. , 2022, 1, 12-21.		11
108	Single-Atomic Site Catalyst Enhanced Lateral Flow Immunoassay for Point-of-Care Detection of Herbicide. Research, 2022, 2022, .	2.8	8

#	Article	IF	CITATIONS
109	Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nature Communications, $2022,13,.$	5.8	72
110	Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. Journal of Hazardous Materials, 2022, 440, 129707.	6.5	45
111	"Nano Killers―Activation by permonosulfate enables efficient anaerobic microorganisms disinfection. Journal of Hazardous Materials, 2022, 440, 129742.	6.5	11
112	MOF-derived N-doped porous carbon with active magnesium sites as an efficient oxidase mimic for biosensing. Sensors and Actuators B: Chemical, 2022, 370, 132409.	4.0	12
113	Highly dispersed copper single-atom catalysts activated peroxymonosulfate for oxytetracycline removal from water: Mechanism and degradation pathway. Chemical Engineering Journal, 2022, 450, 138194.	6.6	35
114	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	4.1	12
115	Rational Design of Nanozymes Enables Advanced Biochemical Sensing. Chemosensors, 2022, 10, 386.	1.8	12
116	Nanozymes for Regenerative Medicine. Small Methods, 2022, 6, .	4.6	37
117	Theoretical Investigation on the Oxidoreductase-Mimicking Activity of Carbon-Based Nanozyme. ACS Symposium Series, 0, , 67-89.	0.5	0
118	Shape-specific MOF-derived Cu@Fe-NC with morphology-driven catalytic activity: Mimicking peroxidase for the fluorescent- colorimetric immunosignage of ochratoxin. Journal of Hazardous Materials, 2023, 443, 130233.	6.5	16
119	Enhanced peroxidase-like activity of $2(3)$, $9(10)$, $16(17)$, $23(24)$ -octamethoxyphthalocyanine modified CoFe LDH for a sensor array for reducing substances with catechol structure. Analytical and Bioanalytical Chemistry, 2023, 415, 289-301.	1.9	4
120	Single-atom nanozymes: From bench to bedside. Nano Research, 2023, 16, 1992-2002.	5.8	23
121	Single-atom cobalt catalysts as highly efficient oxidase mimics for time-based visualization monitoring the TAC of skin care products. Chemical Engineering Journal, 2023, 456, 141053.	6.6	12
122	Foldable paper microfluidic device based on single iron site-containing hydrogel nanozyme for efficient glucose biosensing. Chemical Engineering Journal, 2023, 454, 140541.	6.6	17
123	One-pot synthesis of gold-copper nanoparticles mediated by silk fibroin peptides: Peroxidase-like properties and its application in antioxidant detection. Microchemical Journal, 2023, 185, 108250.	2.3	5
124	A peroxidase-like single-atom Fe-N5 active site for effective killing human lung adenocarcinoma cells. Nano Research, 2023, 16, 5216-5225.	5.8	3
125	$\label{lem:coordinate} Co(OH)2/MX ene-Ti3C2\ nanocomposites\ with\ triple-enzyme\ mimic\ activities\ as\ hydrogel\ sensing\ platform\ for\ on-site\ detection\ of\ hypoxanthine.\ Mikrochimica\ Acta,\ 2022,\ 189,\ .$	2.5	5
126	Al ³⁺ Cofactor Evoking Iron Porphyrin-AuNP Hybrids as Oxidase-Mimicking Nanozymes with Prominent Catalytic Efficiency in a Broad pH Range. ACS Sustainable Chemistry and Engineering, 2022, 10, 16670-16680.	3.2	2

#	Article	IF	CITATIONS
127	Two Novel Pyrene Tetra-Sulfonate Europium Coordination Polymers: Structure Formation Mechanism Analysis and Sequential Modulation Strategy. Crystals, 2022, 12, 1818.	1.0	0
128	Recent Advances in Nanozymes for Bacteria-Infected Wound Therapy. International Journal of Nanomedicine, 0, Volume 17, 5947-5990.	3.3	13
129	High-Indexed Intermetallic Pt ₃ Sn Nanozymes with High Activity and Specificity for Sensitive Immunoassay. Nano Letters, 2023, 23, 267-275.	4.5	20
130	Sensitive visual detection of gram-positive bacteria by composite filter membrane combined with antibiotic modified nanoparticles. Sensors and Actuators B: Chemical, 2023, 387, 133817.	4.0	0
131	Effect of Phosphorus Modulation in Iron Singleâ€Atom Catalysts for Peroxidase Mimicking. Advanced Materials, 2024, 36, .	11.1	25
132	Recent advances in carbon-supported non-precious metal single-atom catalysts for energy conversion electrocatalysis., 2023, 2, 20220059.		6
133	Single-atom nanozymes as promising catalysts for biosensing and biomedical applications. Inorganic Chemistry Frontiers, 2023, 10, 4289-4312.	3.0	4
142	Nanozymes: A Potent and Powerful Peroxidase Substitute to Treat Tumour Hypoxia., 2023,, 367-382.		0
148	Recent progress in MOFs-based nanozymes for biosensing. Nano Research, 2024, 17, 39-64.	5.8	4
151	Single-atom catalysts: promotors of highly sensitive and selective sensors. Chemical Society Reviews, 2023, 52, 5088-5134.	18.7	9
158	Single-atom nanozymes: classification, regulation strategy, and safety concerns. Journal of Materials Chemistry B, 2023, 11, 9840-9866.	2.9	2
180	Recent progress of metal–organic framework-based nanozymes with oxidoreductase-like activity. Analyst, The, 2024, 149, 1416-1435.	1.7	O