Fast radio bursts

Astronomy and Astrophysics Review 27, 1

DOI: 10.1007/s00159-019-0116-6

Citation Report

#	Article	IF	CITATIONS
1	Young magnetars with fracturing crusts as fast radio burst repeaters. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5887-5897.	1.6	29
2	Finding the location of a fast radio burst. Science, 2019, 365, 546-547.	6.0	1
3	A fast radio burst localized to a massive galaxy. Nature, 2019, 572, 352-354.	13.7	252
4	Repeating Fast Radio Bursts from Magnetars with Low Magnetospheric Twist. Astrophysical Journal, 2019, 879, 4.	1.6	91
5	Strong gravitational lensing of explosive transients. Reports on Progress in Physics, 2019, 82, 126901.	8.1	93
6	CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2019, 885, L24.	3.0	302
7	Detectability of neutron star — White dwarf coalescences by eROSITA and ART-XC. Journal of High Energy Astrophysics, 2019, 24, 1-5.	2.4	5
8	GBTrans: a commensal search for radio pulses with the Green Bank 20-m telescope. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4001-4006.	1.6	6
9	Observational diversity of magnetized neutron stars. Reports on Progress in Physics, 2019, 82, 106901.	8.1	50
10	Fast radio burst dispersion measures and rotation measures and the origin of intergalactic magnetic fields. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4220-4238.	1.6	27
11	X marks the spot for fast radio bursts. Nature, 2019, 572, 320-321.	13.7	1
12	Real-Time RFI Mitigation for the Apertif Radio Transient System. , 2019, , .		4
13	A Deep Targeted Search for Fast Radio Bursts from the Sites of Low-redshift Short Gamma-Ray Bursts. Astrophysical Journal, 2019, 887, 252.	1.6	10
14	Synthesising the intrinsic FRB population using frbpoppy. Astronomy and Astrophysics, 2019, 632, A125.	2.1	25
15	A cumulative search for hard X/ <i>γ</i> -ray emission associated with fast radio bursts in <i>Fermi</i> /GBM data. Astronomy and Astrophysics, 2019, 631, A62.	2.1	16
16	A Search for Late-time Radio Emission and Fast Radio Bursts from Superluminous Supernovae. Astrophysical Journal, 2019, 886, 24.	1.6	28
17	Fast Radio Bursts from Magnetars Born in Binary Neutron Star Mergers and Accretion Induced Collapse. Astrophysical Journal, 2019, 886, 110.	1.6	96
18	A Search for Gamma-Ray Prompt Emission Associated with the Lorimer Burst FRB 010724. Astrophysical Journal, 2019, 882, 100.	1.6	13

		CITATION RE	PORT	
#	Article		IF	Citations
19	A repeating fast radio burst source localized to a nearby spiral galaxy. Nature, 2020, 577, 190-19)4.	13.7	297
20	Statistical properties of magnetar bursts and FRB 121102. Monthly Notices of the Royal Astrono Society, 2020, 491, 1498-1505.	omical	1.6	41
21	Beaming as an explanation of the repetition/width relation in FRBs. Monthly Notices of the Roya Astronomical Society, 2020, 497, 3076-3082.	l	1.6	30
22	High time resolution and polarization properties of ASKAP-localized fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3335-3350.		1.6	93
23	Detectability of radio afterglows from binary neutron star mergers and implications for fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2384-2390.)	1.6	4
24	Redshift estimates for fast radio bursts and implications on intergalactic magnetic fields. Month Notices of the Royal Astronomical Society, 2020, 498, 4811-4829.	ly	1.6	11
25	Characterizing fast radio bursts through statistical cross-correlations. Physical Review D, 2020, 1	.02, .	1.6	14
26	Looking for MACHOs in the spectra of fast radio bursts. Monthly Notices of the Royal Astronom Society, 2020, 496, 564-580.	ical	1.6	29
27	Is GRB 110715A the Progenitor of FRB 171209?. Astrophysical Journal Letters, 2020, 894, L22.		3.0	12
28	Periodic fast radio bursts from forcedly precessing neutron stars, anomalous torque, and interna magnetic field for FRB 180916.J0158+65 and FRB 121102. Monthly Notices of the Royal Astron Society, 2020, 497, 1001-1007.	l omical	1.6	22
29	Electron Density Structure of the Local Galactic Disk. Astrophysical Journal, 2020, 897, 124.		1.6	31
30	A bright, high rotation-measure FRB that skewers the M33 halo. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4716-4724.		1.6	27
31	Nonlinear self-focusing in strongly magnetized pair plasma. Physical Review E, 2020, 102, 01321	.1.	0.8	4
32	A quantitative assessment of communicating extra-terrestrial intelligent civilizations in the galax and the case of FRB-like signals. Frontiers of Physics, 2020, 15, 1.	У	2.4	4
33	Diverse polarization angle swings from a repeating fast radio burst source. Nature, 2020, 586, 6	93-696.	13.7	109
34	The synchrotron maser emission from relativistic magnetized shocks: dependence on the pre-sho temperature. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2884-2895.	ock	1.6	21
35	A unified picture of Galactic and cosmological fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1397-1405.		1.6	134
36	On the magnetoionic environments of fast radio bursts. Monthly Notices of the Royal Astronom Society, 2020, 499, 355-361.	ical	1.6	7

#	Article	IF	Citations
37	What binary systems are the most likely sources for periodically repeating FRBs?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 498, L1-L5.	1.2	17
38	A new method for detecting axion with cylindrical superconductor. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 811, 135861.	1.5	6
39	The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars. New Astronomy Reviews, 2020, 91, 101544.	5.2	8
40	On the energy and redshift distributions of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 501, 157-167.	1.6	33
41	The physical mechanisms of fast radio bursts. Nature, 2020, 587, 45-53.	13.7	183
42	No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature, 2020, 587, 63-65.	13.7	101
43	A bright millisecond-duration radio burst from a Galactic magnetar. Nature, 2020, 587, 54-58.	13.7	418
44	A fast radio burst associated with a Galactic magnetar. Nature, 2020, 587, 59-62.	13.7	417
45	Fast radio bursts: do repeaters and non-repeaters originate in statistically similar ensembles?. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3275-3280.	1.6	17
46	A targeted search for repeating fast radio bursts associated with gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2020, 501, 541-547.	1.6	4
47	Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3390-3401.	1.6	68
48	Exploring the dispersion measure of the Milky Way halo. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L106-L110.	1.2	34
49	Dark photon dark matter and fast radio bursts. European Physical Journal C, 2020, 80, 1.	1.4	6
50	A new era of radio transients. Astronomy and Geophysics, 2020, 61, 5.12-5.17.	0.1	1
51	FRB Periodicity: Mild Pulsars in Tight O/B-star Binaries. Astrophysical Journal Letters, 2020, 893, L39.	3.0	85
52	Periodic Fast Radio Bursts as a Probe of Extragalactic Asteroid Belts. Astrophysical Journal Letters, 2020, 895, L1.	3.0	45
53	Gravitational waves from transient neutron star <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>f</mml:mi> -mode oscillations. Physical Review D, 2020, 101, .</mml:math 	1.6	26
54	Detecting helium reionization with fast radio bursts. Physical Review D, 2020, 101, .	1.6	26

	Сіт	ation Report	
#	Article	IF	CITATIONS
55	A Binary Comb Model for Periodic Fast Radio Bursts. Astrophysical Journal Letters, 2020, 893, L26.	3.0	97
56	The Northern Cross fast radio burst project – I. Overview and pilot observations at 408ÂMHz. Month Notices of the Royal Astronomical Society, 2020, 494, 1229-1236.	nly 1.6	14
57	Updated constraints on superconducting cosmic strings from the astronomy of fast radio bursts. European Physical Journal C, 2020, 80, 1.	1.4	4
58	A Data-driven Technique Using Millisecond Transients to Measure the Milky Way Halo. Astrophysical Journal Letters, 2020, 895, L49.	3.0	20
59	Radiation forces constrain the FRB mechanism. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1217-1228.	1.6	16
60	Persistent Radio Emission from Synchrotron Heating by a Repeating Fast Radio Burst Source in a Nebula. Astrophysical Journal, 2020, 896, 71.	1.6	13
61	Stimulated emission–based model of fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2020, 494, 876-884.	1.6	2
62	A quark nova in the wake of a core-collapse supernova: a unifying model for long duration gamma-ray bursts and fast radio bursts. Research in Astronomy and Astrophysics, 2020, 20, 027.	0.7	7
63	Fast Radio Bursts from Interacting Binary Neutron Star Systems. Astrophysical Journal Letters, 2020, 890, L24.	3.0	48
64	Fast Radio Bursts from Activity of Neutron Stars Newborn in BNS Mergers: Offset, Birth Rate, and Observational Properties. Astrophysical Journal, 2020, 891, 72.	1.6	47
65	The Fast Radio Burst Luminosity Function and Death Line in the Low-twist Magnetar Model. Astrophysical Journal, 2020, 891, 82.	1.6	43
66	Testing the Hypothesis of a Compact-binary-coalescence Origin of Fast Radio Bursts Using a Multimessenger Approach. Astrophysical Journal Letters, 2020, 891, L39.	3.0	7
67	Radius-to-frequency Mapping and FRB Frequency Drifts. Astrophysical Journal, 2020, 889, 135.	1.6	32
68	Periodic Fast Radio Bursts from Young Neutron Stars. Astrophysical Journal, 2020, 890, 162.	1.6	9
69	Blast Waves from Magnetar Flares and Fast Radio Bursts. Astrophysical Journal, 2020, 896, 142.	1.6	121
70	A Dual-band Radio Observation of FRB 121102 with the Deep Space Network and the Detection of Multiple Bursts. Astrophysical Journal Letters, 2020, 897, L4.	3.0	22
71	A neutron star–white dwarf binary model for periodically active fast radio burst sources. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1543-1546.	1.6	28
72	Are fast radio bursts made by neutron stars?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 494, L64-L68.	1.2	31

#	Article	IF	CITATIONS
73	Upgraded antennas for pulsar observations in the Argentine Institute of Radio astronomy. Astronomy and Astrophysics, 2020, 633, A84.	2.1	10
74	Repeating fast radio bursts with WSRT/Apertif. Astronomy and Astrophysics, 2020, 635, A61.	2.1	48
75	Explanation of detailed spectral properties of fast radio bursts by the axion star model. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	5
76	Periodic Fast Radio Bursts with Neutron Star Free Precession. Astrophysical Journal Letters, 2020, 892, L15.	3.0	75
77	On the True Fractions of Repeating and Nonrepeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2021, 906, L5.	3.0	23
78	Magnetic fields in the Milky Way from pulsar observations: effect of the correlation between thermal electrons and magnetic fields. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2220-2237.	1.6	20
79	Fast radio burst repeaters produced via Kozai-Lidov feeding of neutron stars in binary systems. Astronomy and Astrophysics, 2021, 645, A122.	2.1	4
80	Magnetic Fields in Elliptical Galaxies: An Observational Probe of the Fluctuation Dynamo Action. Astrophysical Journal, 2021, 907, 2.	1.6	8
81	Statistical modelling of the cosmological dispersion measure. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2615-2629.	1.6	23
82	Deep Optical Observations Contemporaneous with Emission from the Periodic FRB 180916.J0158+65. Astrophysical Journal Letters, 2021, 907, L3.	3.0	18
83	Fast radio bursts. Astronomy and Geophysics, 2021, 62, 1.29-1.35.	0.1	8
84	Axion-radiation conversion by super and normal conductors. Nuclear Physics B, 2021, 963, 115298.	0.9	9
85	Electromagnetic bursts from mergers of oscillons in axion-like fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 024-024.	1.9	20
86	An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Nature Astronomy, 2021, 5, 401-407.	4.2	104
87	Dispersion measure distributions of fast radio bursts due to the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3664-3669.	1.6	1
88	The 60 pc Environment of FRB 20180916B. Astrophysical Journal Letters, 2021, 908, L12.	3.0	67
89	Reprocessing of a Green Bank 43 m Telescope Survey of Unidentified Bright Radio Sources for Pulsars and Radio Bursts. Research Notes of the AAS, 2021, 5, 21.	0.3	2
90	Accurate precision cosmology with redshift unknown gravitational wave sources. Physical Review D, 2021, 103, .	1.6	79

#	ARTICLE	IF	CITATIONS
" 91	Rotation Measure Evolution of the Repeating Fast Radio Burst Source FRB 121102. Astrophysical	3.0	80
	The shurter of factors lie have to Calcon Director Machanita and Actors and 20021 (4, 1		
92	The physics of fast radio bursts. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	87
93	Fast radio bursts from axion stars moving through pulsar magnetospheres. Physical Review D, 2021, 103, .	1.6	41
94	HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nature Astronomy, 2021, 5, 378-384.	4.2	152
95	Multiwavelength Observations of Fast Radio Bursts. Universe, 2021, 7, 76.	0.9	20
96	Emission Mechanisms of Fast Radio Bursts. Universe, 2021, 7, 56.	0.9	58
97	Searching for gravitational waves with strongly lensed repeating fast radio bursts. Physical Review D, 2021, 103, .	1.6	11
98	Synthesising the repeating FRB population using frbpoppy. Astronomy and Astrophysics, 2021, 647, A30.	2.1	22
99	Possible Periodic Activity in the Short Bursts of SGR 1806-20: Connection to Fast Radio Bursts. Astrophysical Journal, 2021, 909, 83.	1.6	10
100	Highly polarized microstructure from the repeating FRB 20180916B. Nature Astronomy, 2021, 5, 594-603.	4.2	66
101	CRAFTS for Fast Radio Bursts: Extending the Dispersion–Fluence Relation with New FRBs Detected by FAST. Astrophysical Journal Letters, 2021, 909, L8.	3.0	31
102	Probing the Universe with Fast Radio Bursts. Universe, 2021, 7, 85.	0.9	16
103	LOFAR Detection of 110–188 MHz Emission and Frequency-dependent Activity from FRB 20180916B. Astrophysical Journal Letters, 2021, 911, L3.	3.0	99
104	Constraining Galaxy Halos from the Dispersion and Scattering of Fast Radio Bursts and Pulsars. Astrophysical Journal, 2021, 911, 102.	1.6	27
105	A deep study of the high–energy transient sky. Experimental Astronomy, 2021, 51, 1203-1223.	1.6	5
106	Effect of redshift distributions of fast radio bursts on cosmological constraints. Physical Review D, 2021, 103, .	1.6	8
107	Meet meets join: the interaction between pooled and common knowledge. International Journal of Game Theory, 2021, 50, 989-1019.	0.5	1
108	The AARTFAAC 60 MHz transients survey. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2966-2974.	1.6	5

#	Αρτιςι ε	IF	CITATIONS
109	Fast radio burst dispersion measure distribution as a probe of helium reionization. Physical Review D, 2021–103	1.6	14
110	FRBs Lensed by Point Masses I. Lens Mass Estimation for Doubly Imaged FRBs. Astrophysical Journal, 2021, 912, 134.	1.6	7
111	Neutron Tunneling: A New Mechanism to Power Explosive Phenomena in Neutron Stars, Magnetars, and Neutron Star Mergers. Astrophysical Journal, 2021, 912, 105.	1.6	1
112	The CHIME Pulsar Project: System Overview. Astrophysical Journal, Supplement Series, 2021, 255, 5.	3.0	40
113	Earth-mass primordial black hole mergers as sources for nonrepeating fast radio bursts. Physical Review D, 2021, 103, .	1.6	3
114	Multi-messenger astronomy with INTEGRAL. New Astronomy Reviews, 2021, 92, 101595.	5.2	6
115	Linear anisotropies in dispersion-measure-based cosmological observables. Physical Review D, 2021, 103,	1.6	3
116	The cosmic dispersion measure in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5356-5369.	1.6	5
117	Galactic Radio Explorer: An All-sky Monitor for Bright Radio Bursts. Publications of the Astronomical Society of the Pacific, 2021, 133, 075001.	1.0	9
118	Coherent Electromagnetic Emission from Relativistic Magnetized Shocks. Physical Review Letters, 2021, 127, 035101.	2.9	33
119	Observation of burst activity from SGR1935+2154 associated to first galactic FRB with H.E.S.S , 2021, , .		0
120	Multi-dimensional population modelling using frbpoppy: Magnetars can produce the observed fast radio burst sky. Astronomy and Astrophysics, 2021, 651, A63.	2.1	8
121	AGILE Observations of Fast Radio Bursts. Astrophysical Journal, 2021, 915, 102.	1.6	11
122	Implications of the lowest frequency detection of the persistent counterpart of FRB121102. Astronomy and Astrophysics, 2021, 655, A102.	2.1	9
123	Constraining mechanism associated with fast radio burst and glitch from SGR J1935. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2208-2219.	1.6	8
124	Gamma-ray and Optical Observations of Repeating Fast Radio Bursts with VERITAS. , 2021, , .		0
125	A High-resolution View of Fast Radio Burst Host Environments. Astrophysical Journal, 2021, 917, 75.	1.6	41
126	Signature of Collective Plasma Effects in Beam-Driven QED Cascades. Physical Review Letters, 2021, 127, 095001.	2.9	13

ARTICLE IF CITATIONS # Coherent curvature radiation: maximum luminosity and high-energy emission. Monthly Notices of the 127 1.2 17 Royal Astronomical Society: Letters, 2021, 508, L32-L36. Electromagnetic counterparts of gravitational-wave signals. Astronomy and Geophysics, 2021, 62, 0.1 4.15-4.21. 129 The BINGO project. Astronomy and Astrophysics, 2022, 664, A14. 2.1 25 Do the Periodic Activities of Repeating Fast Radio Bursts Represent the Spins of Neutron Stars?. Astrophysical Journal, 2021, 917, 2. Radiation by the superluminally moving current sheet in the magnetosphere of a neutron star. 131 1.6 4 Monthly Nótices of the Royal Ástronomical Society, 2021, 507, 4530-4563. Free–free absorption in hot relativistic flows: application to fast radio bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 508, L48-L52. 1.2 Spectral-temporal features of repeating and one-off fast radio bursts and axion star. Physical Review 133 1.6 4 D, 2021, 104, . Periodic Activities of Repeating Fast Radio Bursts from Be/X-Ray Binary Systems. Astrophysical Journal 134 26 Letters, 2021, 918, L5. Comparative Analysis of the Observational Properties of Fast Radio Bursts at the Frequencies of 111 135 0.2 4 and 1400 MHz. Astronomy Reports, 2021, 65, 776-804. Fast Radio Bursts and Their High-energy Counterparts from Magnetar Magnetospheres. Astrophysical 1.6 Journal, 2021, 919, 89. Periodic activity from fast radio burst FRB180916 explained in the frame of the orbiting asteroid 137 7 1.6 model. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2079-2089. Probing the anisotropic distribution of baryon matter in the Universe using fast radio bursts *. 138 1.5 Chinese Physics C, 2021, 45, 125101. Searching for TeV Gamma-Ray Emission from SGR 1935+2154 during Its 2020 X-Ray and Radio Bursting 139 1.6 6 Phase. Astrophysical Journal, 2021, 919, 106. Chronicling the Host Galaxy Properties of the Remarkable Repeating FRB 20201124A. Astrophysical Journal Letters, 2021, 919, L23. 140 A Bright Fast Radio Burst from FRB 20200120E with Sub-100 Nanosecond Structure. Astrophysical 141 3.0 44 Journal Letters, 2021, 919, L6. Intergalactic Medium Dispersion Measures of Fast Radio Bursts Estimated from IllustrisTNG 142 Simulation and Their Cosmological Applications. Astrophysical Journal, 2021, 906, 49. Search for Magnetars in the Galaxy M31 as Periodic X-ray Sources Based on XMM-Newton Data. 143 0.1 0 Astronomy Letters, 2021, 47, 12-18. The Dispersion Measure and Scattering of Fast Radio Bursts: Contributions from the Intergalactic 144 1.6 Medium, Foreground Halos, and Hosts. Astrophysical Journal, 2021, 906, 95.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
145	Unexpected emission pattern adds to the enigma of fast radio bursts. Nature, 2020, 58	2, 344-346.	13.7	11
146	A search for prompt <i>$\hat{1}^{3}$</i> -ray counterparts to fast radio bursts in the Insight-HXMT c and Astrophysics, 2020, 637, A69.	lata. Astronomy	2.1	20
147	A search for supernova-like optical counterparts to ASKAP-localised fast radio bursts. As Astrophysics, 2020, 639, A119.	tronomy and	2.1	12
148	Constraining the transient high-energy activity of FRB 180916.J0158+65 with Insightâ€ observations. Astronomy and Astrophysics, 2020, 642, A160.	"HXMT follow-up	2.1	9
149	Wave effects in the microlensing of pulsars and FRBs by point masses. Monthly Notices Astronomical Society, 2020, 497, 4956-4969.	of the Royal	1.6	23
150	Empirical estimates of the Galactic halo contribution to the dispersion measures of extr radio bursts using X-ray absorption. Monthly Notices of the Royal Astronomical Society, 655-662.	agalactic fast 2020, 500,	1.6	7
151	Extremely band-limited repetition from a fast radio burst source. Monthly Notices of the Astronomical Society, 2020, 500, 2525-2531.	? Royal	1.6	51
152	On the geometry and environment of repeating FRBs. Monthly Notices of the Royal Ast Society, 2020, 500, 4678-4684.	ronomical	1.6	8
153	Radio-emission of axion stars. Physical Review D, 2020, 102, .		1.6	47
154	Implications from ASKAP Fast Radio Burst Statistics. Astrophysical Journal, 2019, 883, 4	О.	1.6	61
155	Magnetars from Neutron Star–White Dwarf Mergers: Application to Fast Radio Bursts Journal, 2020, 893, 9.	s. Astrophysical	1.6	20
156	The Rarity of Repeating Fast Radio Bursts from Binary Neutron Star Mergers. Astrophysi 2020, 893, 44.	cal Journal,	1.6	7
157	A Distant Fast Radio Burst Associated with Its Host Galaxy by the Very Large Array. Astro Journal, 2020, 899, 161.	ophysical	1.6	62
158	Dispersion Measures of Fast Radio Burst Host Galaxies Derived from IllustrisTNG Simula Astrophysical Journal, 2020, 900, 170.	tion.	1.6	27
159	Simultaneous X-Ray and Radio Observations of the Repeating Fast Radio Burst FRB â^1/4 Astrophysical Journal, 2020, 901, 165.	180916.J0158+65.	1.6	38
160	Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Th Progenitors. Astrophysical Journal, 2020, 903, 152.	eir	1.6	148
161	Cosmological Parameter Estimation for Dynamical Dark Energy Models with Future Fast Observations. Astrophysical Journal, 2020, 903, 83.	: Radio Burst	1.6	30
162	First Discovery of a Fast Radio Burst at 350 MHz by the GBNCC Survey. Astrophysical Jo 92.	urnal, 2020, 904,	1.6	21

#	Article	IF	CITATIONS
163	Revisiting the Distance, Environment, and Supernova Properties of SNR G57.2+0.8 that Hosts SGR 1935+2154. Astrophysical Journal, 2020, 905, 99.	1.6	41
164	Repeating Fast Radio Bursts from Pulsar–Asteroid Belt Collisions: Frequency Drifting and Polarization. Astrophysical Journal, 2020, 905, 140.	1.6	5
165	Gamma-Ray and X-Ray Observations of the Periodic-repeater FRB 180916 during Active Phases. Astrophysical Journal Letters, 2020, 893, L42.	3.0	25
166	Detection of Repeating FRB 180916.J0158+65 Down to Frequencies of 300 MHz. Astrophysical Journal Letters, 2020, 896, L41.	3.0	70
167	A Magnetar-asteroid Impact Model for FRB 200428 Associated with an X-Ray Burst from SGR 1935+2154. Astrophysical Journal Letters, 2020, 897, L40.	3.0	34
168	INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophysical Journal Letters, 2020, 898, L29.	3.0	227
169	The X-Ray Reactivation of the Radio Bursting Magnetar SGR J1935+2154. Astrophysical Journal Letters, 2020, 902, L2.	3.0	22
170	A Comparative Study of Host Galaxy Properties between Fast Radio Bursts and Stellar Transients. Astrophysical Journal Letters, 2020, 899, L6.	3.0	45
171	Implications of a Fast Radio Burst from a Galactic Magnetar. Astrophysical Journal Letters, 2020, 899, L27.	3.0	106
172	Understanding FRB 200428 in the Synchrotron Maser Shock Model: Consistency and Possible Challenge. Astrophysical Journal Letters, 2020, 900, L26.	3.0	22
173	Constraining the X-Ray–Infrared Spectral Index of Second-timescale Flares from SGR 1935+2154Âwith Palomar Gattini-IR. Astrophysical Journal Letters, 2020, 901, L7.	3.0	14
174	Neutrino Counterparts of Fast Radio Bursts. Astrophysical Journal Letters, 2020, 902, L22.	3.0	11
175	On the Rate of Crustal Failures in Young Magnetars. Astrophysical Journal Letters, 2020, 902, L32.	3.0	17
176	Double-peaked Pulse Profile of FRB 200428: Synchrotron Maser Emission from Magnetized Shocks Encountering a Density Jump. Astrophysical Journal Letters, 2020, 904, L5.	3.0	14
177	Fast Radio Burst Breakouts from Magnetar Burst Fireballs. Astrophysical Journal Letters, 2020, 904, L15.	3.0	22
178	Multiwavelength Radio Observations of Two Repeating Fast Radio Burst Sources: FRBÂ121102 and FRBÂ180916.J0158+65. Astrophysical Journal Letters, 2020, 905, L27.	3.0	20
179	Confronting the Magnetar Interpretation of Fast Radio Bursts through Their Host Galaxy Demographics. Astrophysical Journal Letters, 2020, 905, L30.	3.0	16
180	Origin of Sources of Repeating Fast Radio Bursts with Periodicity in Close Binary Systems. Research Notes of the AAS, 2020, 4, 98.	0.3	6

#	Article	IF	CITATIONS
181	Optical Transients from Fast Radio Bursts Heating Companion Stars in Close Binary Systems. Astrophysical Journal, 2021, 920, 34.	1.6	4
182	An Arecibo Search for Fast Radio Transients from M87. Astrophysical Journal, 2021, 920, 16.	1.6	1
183	Are There Magnetars in High-mass X-Ray Binaries?*. Research in Astronomy and Astrophysics, 2022, 22, 015005.	0.7	2
184	INTEGRAL Limits on Past High-energy Activity from FRB 20200120E in M81. Astrophysical Journal Letters, 2021, 921, L3.	3.0	9
185	A bimodal burst energy distribution of a repeating fast radio burst source. Nature, 2021, 598, 267-271.	13.7	129
186	High-energy gamma-ray emission from SNR G57.2+0.8 hosting SGR J1935+2154. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 023.	1.9	4
187	Observational Effects of Banded Repeating FRBs. Astrophysical Journal Letters, 2021, 920, L18.	3.0	19
188	Fourier-domain dedispersion. Astronomy and Astrophysics, 2022, 657, A46.	2.1	5
189	Asymmetric H i 21 cm Lines of Fast Radio Burst Hosts: Connection with Galaxy Interaction. Astrophysical Journal Letters, 2021, 920, L21.	3.0	6
190	Binary Comb Models for FRB 121102. Astrophysical Journal, 2021, 920, 54.	1.6	20
191	Statistical properties of fast radio bursts elucidate their origins: magnetars are favored over gamma-ray bursts. Research in Astronomy and Astrophysics, 2021, 21, 211.	0.7	3
192	Similar Scale-invariant Behaviors between Soft Gamma-Ray Repeaters and an Extreme Epoch from FRB 121102. Astrophysical Journal, 2021, 920, 153.	1.6	14
193	Energy and Waiting Time Distributions of FRB 121102 Observed by FAST. Astrophysical Journal Letters, 2021, 920, L23.	3.0	16
194	Estimating fast transient detection pipeline efficiencies at UTMOST via real-time injection of mock FRBs. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2316-2326.	1.6	15
195	Summary and Prospects. Astronomy and Astrophysics Library, 2020, , 459-474.	0.2	0
196	The Remnant of Neutron Star-White Dwarf Merger and the Repeating Fast Radio Bursts. International Journal of Astronomy and Astrophysics, 2020, 10, 28-38.	0.2	4
197	4–8 GHz Spectrotemporal Emission from the Galactic Center Magnetar PSR J1745–2900. Astrophysical Journal, 2021, 921, 101.	1.6	7
198	Quark-Novae in the outskirts of galaxies: an explanation of the fast radio burst phenomenon. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4414-4421.	1.6	3

? Τ

#	Article	IF	CITATIONS
199	Development of an optical photon-counting imager with a monolithic Geiger Avalanche Photodiode array. Publication of the Astronomical Society of Japan, 2021, 73, 66-77.	1.0	1
201	On the double-plane plasma lensing. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5872-5881.	1.6	5
202	Dual-frequency single-pulse study of PSR B0950+08. Astronomy and Astrophysics, 2022, 658, A143.	2.1	12
203	An Accreting Stellar Binary Model for Active Periodic Fast Radio Bursts. Astrophysical Journal, 2021, 922, 98.	1.6	15
204	Magnetogenesis and the Cosmic Web: A Joint Challenge for Radio Observations and Numerical Simulations. Galaxies, 2021, 9, 109.	1.1	20
205	CHIME/FRB Catalog 1 Results: Statistical Cross-correlations with Large-scale Structure. Astrophysical Journal, 2021, 922, 42.	1.6	40
206	Can a Strong Radio Burst Escape the Magnetosphere of a Magnetar?. Astrophysical Journal Letters, 2021, 922, L7.	3.0	21
207	The fast radio burst FRB 20201124A in a star-forming region: Constraints to the progenitor and multiwavelength counterparts. Astronomy and Astrophysics, 2021, 656, L15.	2.1	30
208	Detecting dispersed radio transients in real time using convolutional neural networks. Astronomy and Computing, 2022, 38, 100512.	0.8	1
209	Coherent Emission in Pulsars, Magnetars, and Fast Radio Bursts: Reconnection-driven Free Electron Laser. Astrophysical Journal, 2021, 922, 166.	1.6	29
210	Scintillation Timescales of Bright FRBs Detected by CHIME/FRB. Research Notes of the AAS, 2021, 5, 271.	0.3	7
211	Reconciling the 16.35-day Period of FRB 20180916B with Jet Precession. Astrophysical Journal, 2021, 921, 147.	1.6	4
212	Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy. Astrophysical Journal, 2021, 922, 173.	1.6	31
213	Apertif: Phased array feeds for the Westerbork Synthesis Radio Telescope. Astronomy and Astrophysics, 2022, 658, A146.	2.1	26
214	Three aspects of the radius-to-frequency mapping in fast radio bursts. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
215	Probing gravitational slip with strongly lensed fast radio bursts. Physical Review D, 2021, 104, .	1.6	6
216	The periodic origin of fast radio bursts. Astronomy and Astrophysics, 2022, 658, A163.	2.1	10
217	New insights into the criterion of fast radio burst in the light of FRB 20121102A. Astronomy and Astrophysics, 2022, 657, L7.	2.1	11

#	Article	IF	CITATIONS
218	Fast radio burst distributions consistent with the first CHIME/FRB catalog. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 040.	1.9	10
219	Systematic evaluation of variability detection methods for eROSITA. Astronomy and Astrophysics, 2022, 661, A18.	2.1	6
220	Is FRB 191001 embedded in a supernova remnant?. Monthly Notices of the Royal Astronomical Society: Letters, 0, , .	1.2	1
222	Coherent Inverse Compton Scattering by Bunches in Fast Radio Bursts. Astrophysical Journal, 2022, 925, 53.	1.6	27
223	Propagation Effects in the FRB 20121102A Spectra. Astrophysical Journal, 2022, 925, 109.	1.6	3
224	Localizing FRBs through VLBI with the Algonquin Radio Observatory 10 m Telescope. Astronomical Journal, 2022, 163, 65.	1.9	12
225	A Toy Model for the Time–Frequency Structure of Fast Radio Bursts: Implications for the CHIME/FRB Burst Dichotomy. Astrophysical Journal, 2022, 925, 135.	1.6	5
226	Gravitational wave timing array. Physical Review D, 2022, 105, .	1.6	9
227	FRBs Lensed by Point Masses. II. The Multipeaked FRBs from the Point View of Microlensing. Astrophysical Journal, 2021, 923, 117.	1.6	5
228	Transients from ONe white dwarf – neutron star/black hole mergers. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3758-3777.	1.6	24
229	Fast Radio Burst Morphology in the First CHIME/FRB Catalog. Astrophysical Journal, 2021, 923, 1.	1.6	109
230	Burst timescales and luminosities as links between young pulsars and fast radio bursts. Nature Astronomy, 2022, 6, 393-401.	4.2	46
231	A repeating fast radio burst source in a globular cluster. Nature, 2022, 602, 585-589.	13.7	110
232	Fast Radio Bursts as Crustal Dynamical Events Induced by Magnetic Field Evolution in Young Magnetars. Research in Astronomy and Astrophysics, 2022, 22, 035004.	0.7	2
233	FRB 121102: Drastic changes in the burst polarization contrasts with the stability of the persistent emission. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6033-6041.	1.6	21
234	Can a Single Population Account for the Discriminant Properties in Fast Radio Bursts?. Astrophysical Journal, 2022, 926, 206.	1.6	14
235	On the Fast Radio Burst and Persistent Radio Source Populations. Astrophysical Journal, 2022, 927, 55.	1.6	19
236	Search for correlations between host properties and DM _{host} of fast radio bursts: constraints on the baryon mass fraction in IGM *. Chinese Physics C, 2022, 46, 075102.	1.5	1

#	Article	IF	CITATIONS
237	Fast radio bursts at the dawn of the 2020s. Astronomy and Astrophysics Review, 2022, 30, .	9.1	113
238	Magnetospheric Curvature Radiation by Bunches as Emission Mechanism for Repeating Fast Radio Bursts. Astrophysical Journal, 2022, 927, 105.	1.6	36
239	Fast radio bursts as probes of feedback from active galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 512, L49-L53.	1.2	1
240	Modeling Fast Radio Burst Dispersion and Scattering Properties in the First CHIME/FRB Catalog. Astrophysical Journal, 2022, 927, 35.	1.6	29
241	Search for low-energy signals from fast radio bursts with the Borexino detector. European Physical Journal C, 2022, 82, 1.	1.4	0
242	An 8Âper cent determination of the Hubble constant from localized fast radio bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 515, L1-L5.	1.2	31
243	Temporal Scattering, Depolarization, and Persistent Radio Emission from Magnetized Inhomogeneous Environments near Repeating Fast Radio Burst Sources. Astrophysical Journal Letters, 2022, 928, L16.	3.0	18
244	Milliarcsecond Localization of the Repeating FRB 20201124A. Astrophysical Journal Letters, 2022, 927, L3.	3.0	28
245	Millisecond Magnetars. Astrophysics and Space Science Library, 2022, , 245-280.	1.0	5
246	Periodicity Search on X-Ray Bursts of SGR J1935+2154 Using 8.5 yr of Fermi/GBM Data. Astrophysical Journal Letters, 2021, 923, L30.	3.0	11
247	Spectrum Sharing via Collaborative RFI Cancellation for Radio Astronomy. , 2021, , .		4
248	Sudden discharge of young charged magnetars as a new model for FRBs. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5357-5364.	1.6	0
249	Can primordial black holes as all dark matter explain fast radio bursts?. Physical Review D, 2021, 104, .	1.6	8
250	The Low Frequency Perspective on Fast Radio Bursts. Universe, 2022, 8, 9.	0.9	4
251	Gradient-Guided Attentional Network for Radio Transient Localization With the Cluster-Feed Telescope. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	1
252	Periodic Repeating Fast Radio Bursts: Interaction between a Magnetized Neutron Star and Its Planet in an Eccentric Orbit. Astrophysical Journal, 2022, 928, 94.	1.6	5
253	Empirical Assessment of Aperiodic and Periodic Radio Bursts from Young Precessing Magnetars. Astrophysical Journal, 2022, 929, 97.	1.6	3
254	Effects of Gravitational-wave Radiation of Eccentric Neutron Star–White Dwarf Binaries on the Periodic Activity of Fast Radio Burst Sources. Astrophysical Journal, 2022, 929, 114.	1.6	2

#	Article	IF	CITATIONS
255	AT2020hur: A Possible Optical Counterpart of FRB 180916B. Astrophysical Journal, 2022, 929, 139.	1.6	8
256	Breaking baryon-cosmology degeneracy with the electron density power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 046.	1.9	11
257	MASTER Real-Time Multi-Message Observations of High Energy Phenomena. Universe, 2022, 8, 271.	0.9	7
258	Circular Polarization of Fast Radio Bursts in the Curvature Radiation Scenario. Research in Astronomy and Astrophysics, 2022, 22, 075013.	0.7	9
259	Constraining primordial black hole dark matter with CHIME fast radio bursts. Physical Review D, 2022, 105, .	1.6	7
260	Initial periods and magnetic fields of neutron stars. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4606-4619.	1.6	11
261	Formation of periodic FRB in binary systems with eccentricity. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4217-4228.	1.6	6
262	Scattering of Ultrastrong Electromagnetic Waves by Magnetized Particles. Physical Review Letters, 2022, 128, .	2.9	10
263	Detecting Dispersed Radio Transients in Real Time using Convolutional Neural Networks. , 2022, , .		0
264	The Statistical Similarity of Repeating and Non-Repeating Fast Radio Bursts. Universe, 2022, 8, 355.	0.9	4
265	Faraday Conversion in Pair-symmetric Winds of Magnetars and Fast Radio Bursts. Astrophysical Journal Letters, 2022, 933, L6.	3.0	4
266	Repeating fast radio bursts: Coherent circular polarization by bunches. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	13
267	Luminosity distribution of fast radio bursts from CHIME/FRB Catalog 1 by means of the updated Macquart relation. Astrophysics and Space Science, 2022, 367, .	0.5	6
268	A search technique based on deep learning for fast radio bursts and initial results for FRB 20201124A with the NSRT. Research in Astronomy and Astrophysics, 0, , .	0.7	0
269	Arecibo observations of a burst storm from FRBÂ20121102A in 2016. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3577-3596.	1.6	28
270	A possible subclassification of fast radio bursts. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 010.	1.9	5
271	The effects of plasma on the magnification and time delay of strongly lensed fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2218-2222.	1.6	11
272	Constraining primordial black holes using fast radio burst gravitational-lens interferometry with CHIME/FRB. Physical Review D, 2022, 106, .	1.6	16

#	Article	IF	CITATIONS
273	Pulsar Magnetospheres and Their Radiation. Annual Review of Astronomy and Astrophysics, 2022, 60, 495-558.	8.1	33
274	Four new fast radio bursts discovered in the Parkes 70-cm pulsar survey archive. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3698-3702.	1.6	2
275	Hints of a universal width–energy relation for classified fast radio bursts. Astronomy and Astrophysics, 2022, 667, A26.	2.1	3
276	A fast radio burst source at a complex magnetized site in a barred galaxy. Nature, 2022, 609, 685-688.	13.7	64
277	Repeating fast radio burst 20201124A originates from a magnetar/Be star binary. Nature Communications, 2022, 13, .	5.8	26
278	Radio Nebulae from Hyperaccreting X-Ray Binaries as Common-envelope Precursors and Persistent Counterparts of Fast Radio Bursts. Astrophysical Journal, 2022, 937, 5.	1.6	20
279	Repeating Ultraluminous X-Ray Bursts and Repeating Fast Radio Bursts: A Possible Association?. Astrophysical Journal, 2022, 937, 9.	1.6	3
280	Search and identification of transient and variable radio sources using MeerKAT observations: a case study on the MAXI J1820+070 field. Monthly Notices of the Royal Astronomical Society, 2022, 517, 2894-2911.	1.6	6
281	BURSTT: Bustling Universe Radio Survey Telescope in Taiwan. Publications of the Astronomical Society of the Pacific, 2022, 134, 094106.	1.0	12
282	Repeating fast radio bursts with high burst rates by plate collisions in neutron star crusts. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4612-4619.	1.6	3
283	Passive Amplification and Noise Mitigation of Optical Signals Through Talbot Processing. Journal of Lightwave Technology, 2023, 41, 797-814.	2.7	3
284	Polarization of magnetospheric curvature radiation in repeating fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5080-5089.	1.6	11
285	FAST Observations of an Extremely Active Episode of FRB 20201124A: I. Burst Morphology. Research in Astronomy and Astrophysics, 2022, 22, 124001.	0.7	25
286	Strongly Lensed Transient Sources: A Review. Chinese Physics Letters, 2022, 39, 119801.	1.3	20
287	The plasma suppression effect can be ignored in realistic FRB models invoking bunched coherent radio emission. Monthly Notices of the Royal Astronomical Society, 2022, 518, 66-74.	1.6	7
288	One-off and Repeating Fast Radio Bursts: A Statistical Analysis. Astrophysical Journal, 2022, 939, 27.	1.6	4
289	The dispersion measure of Fast Radio Bursts host galaxies: estimation from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 518, 539-561.	1.6	3
290	Image plane detection of FRB121102 with the MeerKAT radio telescope. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3462-3474.	1.6	2

#	Article	IF	CITATIONS
291	Detecting cosmic strings with lensed fast radio bursts. Physical Review D, 2022, 106, .	1.6	5
292	Finding the Missing Baryons in the Intergalactic Medium with Localized Fast Radio Bursts. Astrophysical Journal Letters, 2022, 940, L29.	3.0	10
293	Power-law Distribution and Scale-invariant Structure from the First CHIME/FRB Fast Radio Burst Catalog. Research in Astronomy and Astrophysics, 2023, 23, 025002.	0.7	3
294	Machine learning classification of CHIME fast radio bursts – II. Unsupervised methods. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1823-1836.	1.6	4
295	Magnetar spin-down glitch clearing the way for FRB-like bursts and a pulsed radio episode. Nature Astronomy, 2023, 7, 339-350.	4.2	13
296	Bursts from High-magnetic-field Pulsars Swift J1818.0-1607 and PSR J1846.4-0258. Astrophysical Journal, 2023, 942, 8.	1.6	1
297	Optimization and commissioning of the EPIC commensal radio transient imager for the long wavelength array. Monthly Notices of the Royal Astronomical Society, 2023, 520, 1928-1937.	1.6	0
298	A burst storm from the repeating FRBÂ20200120E in an M81 globular cluster. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2281-2305.	1.6	22
299	Fast Radio Bursts. , 2023, , 1-38.		0
300	Collaboration With Cellular Networks for RFI Cancellation at Radio Telescope. IEEE Transactions on Cognitive Communications and Networking, 2023, 9, 765-778.	4.9	1
301	Baryonic post-processing of <i>N</i> -body simulations, with application to fast radio bursts. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3626-3640.	1.6	2
302	The INTEGRAL Mission. , 2023, , 1-46.		0
303	Cosmological-model-independent Determination of Hubble Constant from Fast Radio Bursts and Hubble Parameter Measurements. Astrophysical Journal Letters, 2023, 946, L49.	3.0	6
304	Multiplane lensing in wave optics. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2995-3006.	1.6	2
305	Saturation of the Filamentation Instability and Dispersion Measure of Fast Radio Bursts. Astrophysical Journal Letters, 2023, 943, L21.	3.0	3
306	The Apertif Radio Transient System (ARTS): Design, commissioning, data release, and detection of the first five fast radio bursts. Astronomy and Astrophysics, 2023, 672, A117.	2.1	1
307	Fundamental Physics with Neutron Stars. , 2023, , 1-53.		0
308	Probing the baryon mass fraction in IGM and its redshift evolution with fast radio bursts using Bayesian inference method. Monthly Notices of the Royal Astronomical Society, 2023, 520, 6237-6244.	1.6	1

#	Article	IF	CITATIONS
309	Are fast radio bursts produced by large glitches of anomalous x-ray pulsars?. Physics & Astronomy International Journal, 2023, 7, 1-5.	0.1	0
310	A Measurement of Circumgalactic Gas around Nearby Galaxies Using Fast Radio Bursts. Astrophysical Journal, 2023, 945, 87.	1.6	5
311	Stellar prospects for FRB gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4024-4038.	1.6	8
312	Localization Method for the Pointing Observation with the Collimated Telescopes of Insight-HXMT. Research in Astronomy and Astrophysics, 2023, 23, 055004.	0.7	0
313	Polarization of fast radio bursts: radiation mechanisms and propagation effects. Monthly Notices of the Royal Astronomical Society, 2023, 522, 2448-2477.	1.6	7
314	Dark photon superradiance: Electrodynamics and multimessenger signals. Physical Review D, 2023, 107,	1.6	7
364	Fast Radio Bursts. , 2024, , 5151-5187.		0
366	The INTEGRAL Mission. , 2024, , 2307-2352.		0
367	Fundamental Physics with Neutron Stars. , 2024, , 4177-4229.		0