Nanowires for Photonics

Chemical Reviews 119, 9153-9169

DOI: 10.1021/acs.chemrev.9b00240

Citation Report

#	Article	IF	CITATIONS
1	Study on the optimum conditions of preparing CdS1-Se with high crystallinity and photoluminescence. Materials Science in Semiconductor Processing, 2020, 105, 104743.	1.9	7
2	Semiconductor nanowires: to grow or not to grow?. Materials Today Nano, 2020, 9, 100058.	2.3	89
3	Orientationâ€Controlled 2D Anisotropic and Isotropic Photon Transport in Coâ€crystal Polymorph Microplates. Angewandte Chemie - International Edition, 2020, 59, 4456-4463.	7.2	77
4	Gallium Phosphide Nanowires in a Free-Standing, Flexible, and Semitransparent Membrane for Large-Scale Infrared-to-Visible Light Conversion. ACS Nano, 2020, 14, 10624-10632.	7.3	38
5	Vertically-aligned ZnO microrod for high-brightness light source. CrystEngComm, 2020, 22, 6453-6464.	1.3	1
6	Recent Advances in Vertically Aligned Nanowires for Photonics Applications. Micromachines, 2020, 11, 726.	1.4	14
7	Phase-Pure Wurtzite GaAs Nanowires Grown by Self-Catalyzed Selective Area Molecular Beam Epitaxy for Advanced Laser Devices and Quantum Disks. ACS Applied Nano Materials, 2020, 3, 11037-11047.	2.4	10
8	Dielectric Nanowire Hybrids for Plasmon-Enhanced Light–Matter Interaction in 2D Semiconductors. ACS Nano, 2020, 14, 11985-11994.	7.3	23
9	Inâ€plane Epitaxy of Bi ₂ S ₃ Nanowire Arrays for Ultrasensitive NIR Photodetectors. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000384.	1.2	16
10	Long and Ultrastable All-Inorganic Single-Crystal CsPbBr ₃ Microwires: One-Step Solution In-Plane Self-Assembly at Low Temperature and Application for High-Performance Photodetectors. Journal of Physical Chemistry Letters, 2020, 11, 7224-7231.	2.1	13
11	Calculation of Hole Concentrations in Zn Doped GaAs Nanowires. Nanomaterials, 2020, 10, 2524.	1.9	2
12	Schottkyâ€Contacted Nanowire Sensors. Advanced Materials, 2020, 32, e2000130.	11.1	108
13	Comparison of GaAs nanowire growth seeded by Ag and Au colloidal nanoparticles on silicon. Nanotechnology, 2020, 31, 374005.	1.3	2
14	Perovskite–Gallium Phosphide Platform for Reconfigurable Visible-Light Nanophotonic Chip. ACS Nano, 2020, 14, 8126-8134.	7.3	39
15	Organic–inorganic hybrid perovskite electronics. Physical Chemistry Chemical Physics, 2020, 22, 13347-13357.	1.3	23
16	Chiral-perovskite optoelectronics. Nature Reviews Materials, 2020, 5, 423-439.	23.3	445
17	Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires. Chemistry of Materials, 2020, 32, 2703-2741.	3.2	26
18	Nanoneedle Platforms: The Many Ways to Pierce the Cell Membrane. Advanced Functional Materials, 2020, 30, 1909890.	7.8	58

#	Article	IF	CITATIONS
19	Crystallographic phase changes and damage thresholds of CsPbI ₃ microwire waveguides through continuous wave photoablation. Materials Advances, 2020, 1, 161-166.	2.6	0
20	Structure–property relationship of assembled nanowire materials. Materials Chemistry Frontiers, 2020, 4, 2881-2903.	3.2	24
21	Nanowire Growth without Catalysts: Applications and Mechanisms at the Atomic Scale. ACS Applied Nano Materials, 2020, 3, 7314-7324.	2.4	10
22	Characterization, Selection, and Microassembly of Nanowire Laser Systems. Nano Letters, 2020, 20, 1862-1868.	4.5	17
23	Geometric confinement governs toughness and strength in defective diamond nanowires. Physical Review B, 2020, 101, .	1.1	1
24	Orientationâ€Controlled 2D Anisotropic and Isotropic Photon Transport in Coâ€crystal Polymorph Microplates. Angewandte Chemie, 2020, 132, 4486-4493.	1.6	21
25	AlGaN Nanowires for Ultraviolet Light-Emitting: Recent Progress, Challenges, and Prospects. Micromachines, 2020, 11, 125.	1.4	42
26	Organic Printed Core–Shell Heterostructure Arrays: A Universal Approach to Allâ€Color Laser Display Panels. Angewandte Chemie - International Edition, 2020, 59, 11814-11818.	7.2	41
27	Organic Printed Core–Shell Heterostructure Arrays: A Universal Approach to All olor Laser Display Panels. Angewandte Chemie, 2020, 132, 11912-11916.	1.6	12
28	Optical property and lasing of GaAs-based nanowires. Science China Materials, 2020, 63, 1364-1381.	3.5	12
29	Model for nucleation of catalyst-free III-V nanowires on patterned substrates. Journal of Physics: Conference Series, 2020, 1482, 012030.	0.3	0
30	1D Organic Micro/Nanostructures for Photonics. Advanced Functional Materials, 2021, 31, 2008149.	7.8	46
31	Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Reviews Chemistry, 2021, 5, 21-45.	13.8	154
32	An electrically driven whispering gallery polariton microlaser. Nanoscale, 2021, 13, 5448-5459.	2.8	14
33	Frequency stable dielectric constant with reduced dielectric loss of one-dimensional ZnO–ZnS heterostructures. Nanoscale, 2021, 13, 15711-15720.	2.8	6
34	Plasmon-driven nanowire actuators for on-chip manipulation. Nature Communications, 2021, 12, 385.	5.8	28
35	Propagation of Short Pulses in Dispersion-Engineered Silicon Nanowires: Impact of Chirp Parameter. Silicon, 0, , 1.	1.8	1
36	Photoluminescence and Boosting Electron–Phonon Coupling in CdS Nanowires with Variable Sn(IV) Dopant Concentration. Nanoscale Research Letters, 2021, 16, 19.	3.1	2

#	Article	IF	CITATIONS
37	Exciton funneling amplified photoluminescence anisotropy in organic radical-doped microcrystals. Journal of Materials Chemistry C, 2022, 10, 2551-2555.	2.7	11
38	Segmented Ag–Au–Ag Heterojunction Nanorods: Pressure-Assisted Aqueous-Phase Synthesis and Engineered Femtosecond-to-Nanosecond Dynamics. Journal of Physical Chemistry Letters, 2021, 12, 989-996.	2.1	9
39	Vertical Tip-to-Tip Interconnection p–n Silicon Nanowires for Plasmonic Hot Electron-Enhanced Broadband Photodetectors. ACS Applied Nano Materials, 2021, 4, 1567-1575.	2.4	11
40	Tunable Triplet-Mediated Multicolor Lasing from Nondoped Organic TADF Microcrystals. Nano Letters, 2021, 21, 3287-3294.	4.5	28
41	Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing. Advanced Materials, 2021, 33, e2100484.	11.1	25
42	Recent Progress on Optoplasmonic Whisperingâ€Galleryâ€Mode Microcavities. Advanced Optical Materials, 2021, 9, 2100143.	3.6	34
43	Free-Standing Single Ag Nanowires for Multifunctional Optical Probes. ACS Applied Materials & Interfaces, 2021, 13, 19023-19030.	4.0	8
44	Semiconductor nanowire arrays for optical sensing: a numerical insight on the impact of array periodicity and density. Nanotechnology, 2021, 32, 335502.	1.3	8
45	Laser-Driven Growth of Semiconductor Nanowires from Colloidal Nanocrystals. ACS Nano, 2021, 15, 8653-8662.	7.3	6
46	2D Carrier Localization at the Wurtzite-Zincblende Interface in Novel Layered InP Nanomembranes. ACS Photonics, 2021, 8, 1735-1745.	3.2	10
47	Well-aligned ZnO nanorod array covered with ruthenium layers for alternative counter electrodes in dye-sensitized solar cells. Applied Surface Science, 2021, 550, 149273.	3.1	5
48	Ubiquitous organic molecule-based free-standing nanowires with ultra-high aspect ratios. Nature Communications, 2021, 12, 4025.	5.8	5
49	The Measurement of the Elastic Modulus and Kinetic Friction Coefficient of Long Nanowires by the Micro-force Probe in the SEM Combined with Finite Element Simulation. , 2021, , .		2
50	Synthesis, properties and uses of ZnO nanorods: a mini review. International Nano Letters, 2022, 12, 153-168.	2.3	41
51	Plasmonic enhancement of current-driven whispering gallery polariton device of single microwire based heterojunction via Rh nanocubes deposition. Journal of Luminescence, 2021, 235, 118016.	1.5	7
52	Tailoring Morphology and Vertical Yield of Self-Catalyzed GaP Nanowires on Template-Free Si Substrates. Nanomaterials, 2021, 11, 1949.	1.9	8
53	Mapping of Fabry–Perot and whispering gallery modes in GaN microwires by nonlinear imaging. Nanotechnology, 2021, 32, 40LT01.	1.3	3
54	Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays. Nanomaterials, 2021, 11, 2079.	1.9	17

#	Article	IF	Citations
55	On the kinetics of the early stage of growth of III-V nanowires. Journal of Crystal Growth, 2021, 568-569, 126187.	0.7	2
56	Enhanced optical nonlinearity in β-MnO2 nanowire network decorated with Ag nanoparticles. Optical Materials, 2021, 118, 111226.	1.7	12
57	Flexoelectricity in composition-graded InGaN nanowires. Journal Physics D: Applied Physics, 2021, 54, 465101.	1.3	0
58	Nanowire Transistors: A Next Step for the Low-Power Digital Technology. IETE Journal of Research, 0, , 1-17.	1.8	1
59	Progress in one-dimensional nanostructures. Materials Characterization, 2021, 179, 111373.	1.9	19
60	Surface-enhanced Raman Scattering of Self-assembled Superstructures. Chemical Research in Chinese Universities, 2021, 37, 989-1007.	1.3	6
61	Van der Waals heterostructures with one-dimensional atomic crystals. Progress in Materials Science, 2021, 122, 100856.	16.0	29
62	A comprehensive review of template-synthesized multi-component nanowires: From interfacial design to sensing and actuation applications. Sensors and Actuators Reports, 2021, 3, 100029.	2.3	15
63	Continuous-wave operation of an electrically pumped single microribbon based Fabry-Perot microlaser. Optics Express, 2021, 29, 983.	1.7	4
64	Red-to-Blue Photon Upconversion Enabled by One-Dimensional CdTe Nanorods. Chemistry of Materials, 2021, 33, 452-458.	3.2	27
65	Nanostructured alloys light the way to silicon-based photonics. Nature, 2020, 580, 188-189.	13.7	8
66	Full characterization and modeling of graded interfaces in a high lattice-mismatch axial nanowire heterostructure. Physical Review Materials, 2020, 4, .	0.9	5
67	Fluorescent incandescent light sources from individual quadrilateral ZnO microwire via Ga-incorporation. Optics Express, 2019, 27, 33298.	1.7	16
68	Nonlinear optical absorption properties of InP nanowires and applications as a saturable absorber. Photonics Research, 2020, 8, 1035.	3.4	10
69	Ligand-Free Processable Perovskite Semiconductor Ink. Nano Letters, 2021, 21, 8856-8862.	4.5	16
70	Restructuring of ultra-thin branches in multi-nucleated silicon nanowires. Pure and Applied Chemistry, 2020, 92, 1921-1928.	0.9	1
71	Semiconductor Nanowireâ€Based Cellular and Subcellular Interfaces. Advanced Functional Materials, 2022, 32, 2107997.	7.8	7
72	Giant polarization anisotropic optical response from anodic aluminum oxide templates embedded with plasmonic metamaterials. Optics Express, 2020, 28, 29513.	1.7	1

#	Article	IF	CITATIONS
73	On-wire axial perovskite heterostructures for monolithic dual-wavelength laser. Nano Energy, 2022, 92, 106778.	8.2	10
74	Directional Lasing from Nanopatterned Halide Perovskite Nanowire. Nano Letters, 2021, 21, 10019-10025.	4.5	32
75	Lattice Dynamics and Optoelectronic Properties of Vacancy-Ordered Double Perovskite Cs ₂ TeX ₆ (X = Cl [–] , Br [–] , I [–]) Single Crystals. Journal of Physical Chemistry C, 2021, 125, 25126-25139.	1.5	17
76	Single Nanowire Integrated Microfiber Devices. Results in Optics, 2021, , 100199.	0.9	Ο
77	Current progress in plant pathogen detection enabled by nanomaterials-based (bio)sensors. Sensors and Actuators Reports, 2022, 4, 100068.	2.3	18
78	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	2.5	9
79	Oriented Attachment: A Unique Mechanism for the Colloidal Synthesis of Metal Nanostructures. ChemNanoMat, 2022, 8, .	1.5	9
80	Vapor–liquid–solid growth of highly stoichiometric gallium phosphide nanowires on silicon: restoration of chemical balance, congruent sublimation and maximization of band-edge emission. European Physical Journal: Special Topics, 0, , 1.	1.2	1
81	Wrinkleâ€Assisted Capillary Bridging for the Directed Assembly of Single‣evel DNA Nanowire Arrays. Advanced Materials Interfaces, 2022, 9, .	1.9	3
82	New insights into structure/optical waveguide behavior relationships in linear bisethynylbenzenes. Journal of Materials Chemistry C, 2022, 10, 6411-6418.	2.7	8
83	Ultrafast Photoacoustic Nanometrology of InAs Nanowires Mechanical Properties. Journal of Physical Chemistry C, 2022, 126, 6361-6372.	1.5	13
84	Driving forces and molecular interactions in the self-assembly of block copolymers to form fiber-like micelles. Applied Physics Reviews, 2022, 9, .	5.5	11
85	Direction―and Polarizationâ€Resolved Radiation of Coupled Plasmon Modes on Silver Nanowires. Advanced Photonics Research, 2022, 3, 2100300.	1.7	0
86	Probing lattice dynamics in ST 12 phase germanium nanowires by Raman spectroscopy. Applied Physics Letters, 2021, 119, .	1.5	3
87	0D chiral hybrid indium(<scp>iii</scp>) halides for second harmonic generation. Dalton Transactions, 2022, 51, 8593-8599.	1.6	14
88	Orthorhombic Nonâ€Perovskite CsPbl ₃ Microwires for Stable Highâ€Resolution Xâ€Ray Detectors. Advanced Optical Materials, 2022, 10, .	3.6	14
89	Selective, Anisotropic, or Consistent Polarizedâ€Photon Outâ€Coupling of 2D Organic Microcrystals. Angewandte Chemie, 0, , .	1.6	0
90	Selective, Anisotropic, or Consistent Polarizedâ€Photon Outâ€Coupling of 2D Organic Microcrystals. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15

#	Article	IF	CITATIONS
91	Semi-Implantable Bioelectronics. Nano-Micro Letters, 2022, 14, .	14.4	14
92	Second-harmonic generation tuning by stretching arrays of GaAs nanowires. Nanoscale, 2022, 14, 8858-8864.	2.8	3
93	Materials for ultra-efficient, high-speed optoelectronics. MRS Bulletin, 2022, 47, 475-484.	1.7	7
94	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
95	High Sensitivity Refractive Index Sensor Based on Indium Antimonide Terahertz Plasmonic Ring Resonator. IEEE Sensors Journal, 2022, 22, 15916-15922.	2.4	3
97	Facetâ€Driven Vapor Phase Growth of Directional Tinâ€Doped CdS Nanowires on Sapphire Surface for Photodetectors. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	Ο
98	Optical trapping and manipulation of nanowires using multi-hotspot dielectric nanononamers. AIP Advances, 2022, 12, .	0.6	2
99	On-wire bandgap engineering via a magnetic-pulled CVD approach and optoelectronic applications of one-dimensional nanostructures. Nanotechnology, 2022, 33, 432002.	1.3	Ο
100	3D Meniscusâ€Guided Evaporative Assembly for Rapid Templateâ€Free Synthesis of Highly Crystalline Perovskite Nanowire Arrays. Advanced Functional Materials, 2022, 32, .	7.8	5
101	Room-Temperature Broad-Wavelength-Tunable Single-Mode Lasing from Alloyed CdS _{1–<i>x</i>} Se _{<i>x</i>} Nanotripods. ACS Nano, 2022, 16, 12767-12776.	7.3	3
102	Misfit strain induced out-of-interface prismatic dislocation loops in axially inhomogeneous hybrid nanowires. Extreme Mechanics Letters, 2022, 56, 101861.	2.0	1
103	Structural engineering of single-crystal-like perovskite nanocrystals for ultrasensitive photodetector applications. Journal of Materials Chemistry C, 2022, 10, 11401-11411.	2.7	6
104	A Library of Rare Earth Oxide Ultrathin Nanowires with Polymer‣ike Behaviors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
105	Revealing the Aqueous Sequential Growth Mechanism between Au and Ag Nanocrystals of Segmented Ag-Au-Ag Heterojunction Nanorods <i>via</i> Redox Reaction Kinetics. Journal of Physical Chemistry C, 2022, 126, 16556-16562.	1.5	0
107	Research Progress of Nanomaterials-Based Sensors for Food Safety. Journal of Analysis and Testing, 2022, 6, 431-440.	2.5	10
108	A Library of Rare Earth Oxide Ultrathin Nanowires with Polymer‣ike Behaviors. Angewandte Chemie, 0, , .	1.6	0
110	Electrically tunable spectral response in vertical nanowire arrays. Applied Physics Letters, 2022, 121, 132102.	1.5	1
111	Highâ€Resolution Electron Tomography of Ultrathin Boerdijk–Coxeter–Bernal Nanowire Enabled by Superthin Metal Surface Coating, Small, 2022, 18	5.2	4

ARTICLE IF CITATIONS Nanoimprinted halide perovskite nanowires with directly-written gratings. Photonics and 112 1.0 0 Nanostructures - Fundamentals and Applications, 2023, 53, 101103. Nanoscale Electric Field Probing in a Single Nanowire with Raman Spectroscopy and Elastic Strain. 4.5 Nano Letters, 2022, 22, 9523-9528. Insight into refractive index modulation as route to enhanced light coupling in semiconductor 114 1.7 2 nanowires. Optics Letters, 2023, 48, 227. Colloidal Synthesis of Metal Nanocrystals: From Asymmetrical Growth to Symmetry Breaking. Chemical Reviews, 2023, 123, 3693-3760. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as 116 1.8 1 an Efficient SERS-Active Substrate. International Journal of Molecular Sciences, 2023, 24, 106. Numerical Study of GaP Nanowires: Individual and Coupled Optical Waveguides and Resonant Phenomena. Nanomaterials, 2023, 13, 56. Oriented Assembled Prussian Blue Analogue Framework for Confined Catalytic Decomposition of 118 5.2 8 Ammonium Perchlorate. Small, 2023, 19, . P–n junctions in planar GaAs nanowires. CrystEngComm, 2023, 25, 1374-1382. 119 1.3 Metal Halide Perovskite Nanowires: Controllable Synthesis, Mechanism, and Application in 120 1.9 5 Optoelectronic Devices. Nanomaterials, 2023, 13, 419. Twoâ€Step Magneticâ€Pulling Chemical Vapor Deposition Growth of CdS _{1â^ <i>x</i>} Se _{<i>x</i>>} Lateral Nanoribbon Heterostructures for Highâ€Performance Photodetectors. 1.7 Advanced Photonics Research, 0, , 2200166. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and 122 23.0 23 Applications. Chemical Reviews, 2023, 123, 3329-3442. Insights into the mechanism of the symmetry dependent SHG properties in low dimensional 3.0 KNbO₃ structures. Inorganic Chemistry Frontiers, 0, , . Metal selenide nanomaterials for biomedical applications. Colloids and Surfaces B: Biointerfaces, 124 2.5 6 2023, 225, 113220. Photoactive materials and devices for energy-efficient soft wearable optoelectronic systems. Nano 8.2 Energy, 2023, 110, 108379. Recent Developments of Electrically Pumped Nanolasers. Laser and Photonics Reviews, 2023, 17, . 126 4.4 5 Unique 2D Face Topologies in Naphthylâ€Appended Naphtho[k]fluorantheneâ€Based 3D Crystals for Optical 127 3.6 Waveguide. Advanced Öptical Materials, 2023, 11, . Retrieving the subwavelength cross-section of dielectric nanowires with asymmetric excitation of 128 1.30 Bloch surface waves. Physical Chemistry Chemical Physics, 2023, 25, 7711-7718. Secondary ion mass spectrometry quantification of boron distribution in an array of silicon 129 nanowires. Measurement: Journal of the International Measurement Confederation, 2023, 211, 112630.

#	Article	IF	CITATIONS
130	Twoâ€Dimensional Organic Crystals Enabling Anisotropic Photon Transport and Dualâ€Color Orthogonally Polarized Laser. Advanced Optical Materials, 2023, 11, .	3.6	2
131	Experimental observation of geometric effect on the electron diffraction of quasi-one-dimensional nanostructures. Materials Today Physics, 2023, 33, 101048.	2.9	2
132	Selective Area Growth of GaAs Nanowires and Microplatelet Arrays on Silicon by Hydride Vapor-Phase Epitaxy. Crystal Growth and Design, 2023, 23, 2120-2127.	1.4	3
133	Internal Stresses and Structural Defects in Nanowires. Mechanics of Solids, 2022, 57, 1987-2004.	0.3	1
134	Degradation phenomena of quantum dot light-emitting diodes induced by high electric field. Nanotechnology, 2023, 34, 265705.	1.3	1
135	Water-Assisted Transformation of Aluminum Alloys to Ceramic Nanowires and Aerogels. , 0, , .		0
148	Nanoclusters as Synthons for Unit-Cell-Size Comparable One-Dimensional Nanostructures. Chemical Research in Chinese Universities, 2023, 39, 568-579.	1.3	1
152	Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nature Reviews Materials, 2023, 8, 587-603.	23.3	124
154	Gas-phase materials synthesis in environmental transmission electron microscopy. MRS Bulletin, 2023, 48, 833-841.	1.7	1
155	Excitation of semiconductor nanowires using individually addressable micro-LED arrays. , 2023, , .		0
166	Advanced nanostructured material-based biosensors in clinical and forensic diagnosis. , 2024, , 429-461.		0
168	Nanosensors for point-of-care diagnosis. , 2024, , 101-129.		0
172	Scalable optical excitation and modulation of semiconductor nanowire emitters. , 2023, , .		0