Multifunctional Optoelectronics via Harnessing Defects

Advanced Functional Materials 29, 1901991 DOI: 10.1002/adfm.201901991

Citation Report

#	Article	IF	CITATIONS
1	Time and rate dependent synaptic learning in neuro-mimicking resistive memories. Scientific Reports, 2019, 9, 15404.	3.3	13
2	Two-dimensional Layered Materials for Artificial Synapse. , 2020, , .		1
3	Laser Writable Multifunctional van der Waals Heterostructures. Small, 2020, 16, e2003593.	10.0	13
4	<i>In Situ</i> Cleaning and Fluorination of Black Phosphorus for Enhanced Performance of Transistors with High Stability. ACS Applied Materials & amp; Interfaces, 2020, 12, 37375-37383.	8.0	20
5	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	21.0	66
7	Colorâ€Recognizing Siâ€Based Photonic Synapse for Artificial Visual System. Advanced Intelligent Systems, 2020, 2, 2000107.	6.1	21
8	Black Phosphorus Based Multicolor Light-Modulated Transparent Memristor with Enhanced Resistive Switching Performance. ACS Applied Materials & Interfaces, 2020, 12, 25108-25114.	8.0	32
9	Bidirectional Allâ€Optical Synapses Based on a 2D Bi ₂ O ₂ Se/Graphene Hybrid Structure for Multifunctional Optoelectronics. Advanced Functional Materials, 2020, 30, 2001598.	14.9	123
10	Recent Advances and a Roadmap to Wearable UV Sensor Technologies. Advanced Materials Technologies, 2020, 5, 1901036.	5.8	78
11	Super-Slippery Degraded Black Phosphorus/Silicon Dioxide Interface. ACS Applied Materials & Interfaces, 2020, 12, 7717-7726.	8.0	46
12	2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Materials, 2020, 7, 032001.	4.4	25
13	Polarizationâ€Dependent and Wavelengthâ€Tunable Optical Limiting and Transparency of Multilayer Seleniumâ€Doped Black Phosphorus. Advanced Optical Materials, 2021, 9, .	7.3	12
14	2D Material Based Synaptic Devices for Neuromorphic Computing. Advanced Functional Materials, 2021, 31, 2005443.	14.9	165
15	Recent Progress of Optoelectronic and Allâ€Optical Neuromorphic Devices: A Comprehensive Review of Device Structures, Materials, and Applications. Advanced Intelligent Systems, 2021, 3, 2000119.	6.1	38
16	Fully Light ontrolled Memory and Neuromorphic Computation in Layered Black Phosphorus. Advanced Materials, 2021, 33, e2004207.	21.0	147
17	Ultrathin oxysulfide semiconductors from liquid metal: a wet chemical approach. Journal of Materials Chemistry C, 2021, 9, 11815-11826.	5.5	19
18	Flexible Artificial Sensory Systems Based on Neuromorphic Devices. ACS Nano, 2021, 15, 3875-3899.	14.6	135
19	Tunable photocurrent switching behavior of a ZnO/Cu ₂ O heterojunction photodetector to realize bipolar binary photoresponse. Journal of Materials Chemistry C, 2021, 9, 6885-6893.	5.5	7

#	Article	IF	CITATIONS
20	Recent Progress in Transistorâ€Based Optoelectronic Synapses: From Neuromorphic Computing to Artificial Sensory System. Advanced Intelligent Systems, 2021, 3, 2000162.	6.1	97
21	Recent progress in two-dimensional Ruddlesden–Popper perovskite based heterostructures. 2D Materials, 2021, 8, 022006.	4.4	19
22	Polarizationâ€Resolved Broadband MoS ₂ /Black Phosphorus/MoS ₂ Optoelectronic Memory with Ultralong Retention Time and Ultrahigh Switching Ratio. Advanced Functional Materials, 2021, 31, 2100781.	14.9	33
23	Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems. Nano Research, 2021, 14, 4591-4600.	10.4	45
24	Broad-Spectrum Solvent-free Layered Black Phosphorus as a Rapid Action Antimicrobial. ACS Applied Materials & Interfaces, 2021, 13, 17340-17352.	8.0	24
25	A Visibleâ€Blind Photodetector and Artificial Optoelectronic Synapse Using Liquidâ€Metal Exfoliated ZnO Nanosheets. Advanced Optical Materials, 2021, 9, 2100449.	7.3	41
26	Antipathogenic properties and applications of low-dimensional materials. Nature Communications, 2021, 12, 3897.	12.8	63
27	Ambipolar Charge Storage in Type″ Core/Shell Semiconductor Quantum Dots toward Optoelectronic Transistorâ€Based Memories. Advanced Science, 2021, 8, e2100513.	11.2	9
28	Practical Non-Linear Responsivity Model and Outage Analysis for SLIPT/RF Networks. IEEE Transactions on Vehicular Technology, 2021, 70, 6778-6787.	6.3	2
29	Black Phosphorus—Diketopyrrolopyrrole Polymer Semiconductor Hybrid for Enhanced Charge Transfer and Photodetection. Advanced Photonics Research, 2021, 2, 2100150.	3.6	3
30	Largeâ€Area Pixelized Optoelectronic Neuromorphic Devices with Multispectral Lightâ€Modulated Bidirectional Synaptic Circuits. Advanced Materials, 2021, 33, e2105017.	21.0	45
31	Comparison of optical response from DFT random phase approximation and a low-energy effective model: Strained phosphorene. Physical Review B, 2021, 104, .	3.2	9
32	Large-area growth of SnS ₂ nanosheets by chemical vapor deposition for high-performance photodetectors. RSC Advances, 2021, 11, 29960-29964.	3.6	8
33	Extraordinary Temperature Dependent Second Harmonic Generation in Atomically Thin Layers of Transitionâ€Metal Dichalcogenides. Advanced Optical Materials, 2020, 8, 2000441.	7.3	30
34	Large-Scale and Flexible Optical Synapses for Neuromorphic Computing and Integrated Visible Information Sensing Memory Processing. ACS Nano, 2021, 15, 1497-1508.	14.6	210
35	An Image Memory Logic Unit Inspired by Human Retina. IEEE Electron Device Letters, 2021, 42, 1810-1813.	3.9	7
36	High Conductance Margin for Efficient Neuromorphic Computing Enabled by Stacking Nonvolatile van der Waals Transistors. Physical Review Applied, 2021, 16, .	3.8	8
37	Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta, 2022, 238, 123036.	5.5	3

#	Article	IF	CITATIONS
38	Mixed Ionicâ€Electronic Charge Transport in Layered Blackâ€Phosphorus for Lowâ€Power Memory. Advanced Functional Materials, 2022, 32, 2107068.	14.9	16
39	Illuminating the biochemical interaction of antimicrobial few-layer black phosphorus with microbial cells using synchrotron macro-ATR-FTIR. Journal of Materials Chemistry B, 2022, 10, 7527-7539.	5.8	8
40	Two-dimensional materials for artificial synapses: toward a practical application. Neuromorphic Computing and Engineering, 2022, 2, 012003.	5.9	7
41	Lightâ€operated Onâ€chip Autonomous Vision Using Lowâ€dimensional Material Systems. Advanced Materials Technologies, 2022, 7, .	5.8	5
42	Recent progress in optoelectronic memristive devices for in-sensor computing. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 148701.	0.5	3
43	Macroscopic and microscopic defect management in blue/green photodetectors for underwater wireless optical communication. Journal of Materials Chemistry C, 2022, 10, 5970-5980.	5.5	5
44	Bidirectional Photoresponse in Perovskiteâ€ZnO Heterostructure for Fully Optical ontrolled Artificial Synapse. Advanced Optical Materials, 2022, 10, .	7.3	30
45	Surface and interface control of black phosphorus. CheM, 2022, 8, 632-662.	11.7	28
46	Formation of black phosphorus quantum dots via shock-induced phase transformation. Applied Physics Letters, 2022, 120, .	3.3	3
47	Defect-Induced Different Band Alignment and Transport of All-Phosphorene Devices from First Principles. ACS Applied Electronic Materials, 2022, 4, 2070-2076.	4.3	4
48	Fully Printed Optoelectronic Synaptic Transistors Based on Quantum Dot–Metal Oxide Semiconductor Heterojunctions. ACS Nano, 2022, 16, 8651-8661.	14.6	70
49	Robust and Low-Power-Consumption Black Phosphorus–Graphene Artificial Synaptic Devices. ACS Applied Materials & Interfaces, 2022, 14, 21242-21252.	8.0	11
50	First-principles calculations to investigate strain-tunable electronic bandgap of black phosphorus-structured nitrogen with desirable optical and elastic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 281, 115745.	3.5	3
51	Bidirectionally Modulated Synaptic Plasticity with Optically Tunable Ionic Electrolyte Transistors. ACS Applied Electronic Materials, 2022, 4, 2629-2635.	4.3	6
52	Phosphorene. , 2022, , 121-148.		1
53	Reactive Oxygen Species Sequestration Induced Synthesis of β-PbO and Its Polymorphic Transformation to α-PbO at Atomically Thin Regimes. ACS Nano, 2022, 16, 10679-10691.	14.6	3
54	Neuromorphic Skin Based on Emerging Artificial Synapses. Advanced Materials Technologies, 2022, 7, .	5.8	11
55	Overview of Memristor-Based Neural Network Design and Applications. Frontiers in Physics, 0, 10, .	2.1	9

#	Article	IF	CITATIONS
56	A minireview on 2D materials-enabled optoelectronic artificial synaptic devices. APL Materials, 2022, 10, .	5.1	12
57	Tunable Biâ€directional Photoresponse in Hybrid PtSe _{2â^'} <i>_x</i> Thin Films Based on Precisely Controllable Selenization Engineering. Advanced Functional Materials, 2022, 32, .	14.9	14
58	Strain Modulation of Optoelectronic Properties in Nanolayered Black Phosphorus: Implications for Strain-Engineered 2D Material Systems. ACS Applied Nano Materials, 2022, 5, 12189-12195.	5.0	6
59	Artificial synapses enabled neuromorphic computing: From blueprints to reality. Nano Energy, 2022, 103, 107744.	16.0	20
60	Defect Engineering in Layered Black Phosphorus for Multi-Functional Optoelectronics. RSC Nanoscience and Nanotechnology, 2022, , 33-52.	0.2	0
61	Intelligent Optoelectronic Devices for Nextâ€Generation Artificial Machine Vision. Advanced Electronic Materials, 2022, 8, .	5.1	6
62	Printable Coffeeâ€Ring Structures for Highly Uniform Allâ€Oxide Optoelectronic Synaptic Transistors. Advanced Optical Materials, 2022, 10, .	7.3	10
63	Bioinspired interactive neuromorphic devices. Materials Today, 2022, 60, 158-182.	14.2	55
64	Realizing the Switching of Optoelectronic Memory and Ultrafast Detector in Functionalizedâ€Black Phosphorus/MoS ₂ Heterojunction. Laser and Photonics Reviews, 2023, 17, .	8.7	9
65	Ferroelectric van der Waals heterostructures of CuInP ₂ S ₆ for non-volatile memory device applications. Nanotechnology, 2023, 34, 065701.	2.6	5
66	Polarization-induced photocurrent switching effect in heterojunction photodiodes. Nano Research, 2023, 16, 5503-5510.	10.4	3
67	Triboelectric Nanogenerators for Interactive Neuromorphic Devices and Systems. , 2023, , 1-34.		0
68	All-Optically Controlled Artificial Synapses Based on Light-Induced Adsorption and Desorption for Neuromorphic Vision. ACS Applied Materials & amp; Interfaces, 2023, 15, 9584-9592.	8.0	12
69	Operating Principle and Device Configuration Driven Mechanisms in Lowâ€Dimensional Materials for Neuromorphics. Advanced Intelligent Systems, 2023, 5, .	6.1	0
70	Bright and Efficient Lightâ€Emitting Devices Based on 2D Transition Metal Dichalcogenides. Advanced Materials, 2023, 35, .	21.0	10
71	Simulating tactile and visual multisensory behaviour in humans based on an MoS2 field effect transistor. Nano Research, 0, , .	10.4	3
72	2D-Material-Based Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. , 2023, 5, 1109-1135.		9
73	Organic Photonic Synaptic Devices with UVâ€Stimulated Inhibition and Adaptive Shortâ€Term Plasticity. Advanced Materials Technologies, 2023, 8, .	5.8	1

#	Article	IF	CITATIONS
74	Repairing and Preventing Photooxidation of Few-Layer Black Phosphorus with β-Carotene. ACS Nano, 2023, 17, 8083-8097.	14.6	2
75	Weak Lightâ€Stimulated Synaptic Transistors Based on MoS ₂ /Organic Semiconductor Heterojunction for Neuromorphic Computing. Advanced Materials Technologies, 2023, 8, .	5.8	2
76	Low-dimensional optoelectronic synaptic devices for neuromorphic vision sensors. Materials Futures, 2023, 2, 032301.	8.4	0
77	Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. Advanced Materials, 2023, 35, .	21.0	5
78	Bidirectionally Photoresponsive Optoelectronic Transistors with Dual Photogates for Allâ€Optical onfigured Neuromorphic Vision. Advanced Functional Materials, 2023, 33, .	14.9	4
79	Bidirectional Synaptic Phototransistor Based on Two-Dimensional Ferroelectric Semiconductor for Mixed Color Pattern Recognition. ACS Nano, 2023, 17, 12499-12509.	14.6	3
80	Bioinspired Vertical Transistors from Artificial Synapse to Neuromorphic System. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	2.4	1
81	Contributions of Light to Novel Logic Concepts Using Optoelectronic Materials. Small Methods, 2024, 8, .	8.6	2
82	Boolean Logic Computing Based on Neuromorphic Transistor. Advanced Functional Materials, 2023, 33,	14.9	1
83	Manufacturing of graphene based synaptic devices for optoelectronic applications. International Journal of Extreme Manufacturing, 2023, 5, 042006.	12.7	8
84	Recent advancement of surface modification techniques of 2-D nanomaterials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 297, 116817.	3.5	4
85	Triboelectric Nanogenerators for Interactive Neuromorphic Devices and Systems. , 2023, , 1843-1876.		Ο
86	p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. Nano-Micro Letters, 2023, 15, .	27.0	2
87	Layered Black Phosphorus Nanoflakes Reduce Bacterial Burden and Enhance Healing of Murine Infected Wounds. Advanced Therapeutics, 2023, 6, .	3.2	4
88	Technology and Integration Roadmap for Optoelectronic Memristor. Advanced Materials, 2024, 36, .	21.0	2
89	Electrostatic aid-free photo-floating gate two dimensional MoS2 synaptic transistors. Applied Physics Letters, 2023, 123, .	3.3	Ο
90	In-sensor Computing Based on Two-terminal Optoelectronic Memristors. , 2023, , 339-372.		0
91	Working Dynamics in Low-dimensional Material-based Neuromorphic Devices. , 2023, , 458-497.		0

#	Article	IF	CITATIONS
92	Bidirectional Invisible Photoresponse Implemented in a Traps Matrix-Combination toward Fully Optical Artificial Synapses. ACS Applied Materials & Interfaces, 2023, 15, 55916-55924.	8.0	1
93	Artificial Neuron Devices. Chemical Reviews, 2023, 123, 13796-13865.	47.7	7
94	Emerging multimodal memristors for neuromorphic perception applications. Materials Futures, 0, , .	8.4	0
95	A Review on Potential Mechanically Resistant Materials for Optical Multifunctional Surfaces: Bioinspired Surfaces with Advanced Properties. Advanced Materials Interfaces, 0, , .	3.7	1
96	Self-Rectifying All-Optical Modulated Optoelectronic Multistates Memristor Crossbar Array for Neuromorphic Computing. Nano Letters, 2024, 24, 1667-1672.	9.1	0
97	Artificial Retina Based on Organic Heterojunction Transistors for Mobile Recognition. Nano Letters, 2024, 24, 3204-3212.	9.1	0