Clinical-grade computational pathology using weakly still images

Nature Medicine 25, 1301-1309 DOI: 10.1038/s41591-019-0508-1

Citation Report

#	Article	IF	CITATIONS
1	Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks. Cancers, 2019, 11, 1579.	1.7	29
2	No pixel-level annotations needed. Nature Biomedical Engineering, 2019, 3, 855-856.	11.6	14
3	Augmented reality microscopes for cancer histopathology. Nature Medicine, 2019, 25, 1334-1336.	15.2	15
4	Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning. Journal of Clinical Medicine, 2019, 8, 1535.	1.0	27
5	Precision medicine for human cancers with Notch signaling dysregulation (Review). International Journal of Molecular Medicine, 2020, 45, 279-297.	1.8	105
6	Organ Donation and Transplantation in Latvia. Transplantation, 2019, 103, 2211-2213.	0.5	0
8	Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nature Medicine, 2019, 25, 1519-1525.	15.2	332
9	Deep learning enables pathologist-like scoring of NASH models. Scientific Reports, 2019, 9, 18454.	1.6	61
10	Development and validation of deep learning algorithms for scoliosis screening using back images. Communications Biology, 2019, 2, 390.	2.0	72
11	Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells. Laboratory Investigation, 2020, 100, 98-109.	1.7	74
12	Artificial intelligence in healthcare: An essential guide for health leaders. Healthcare Management Forum, 2020, 33, 10-18.	0.6	169
13	Next generation pathology: artificial intelligence enhances histopathology practice. Journal of Pathology, 2020, 250, 7-8.	2.1	22
14	Artificial intelligence in nephropathology. Nature Reviews Nephrology, 2020, 16, 4-6.	4.1	18
15	Society of Toxicologic Pathology Digital Pathology and Image Analysis Special Interest Group Article*: Opinion on the Application of Artificial Intelligence and Machine Learning to Digital Toxicologic Pathology. Toxicologic Pathology, 2020, 48, 277-294.	0.9	41
16	Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. Lancet Oncology, The, 2020, 21, 222-232.	5.1	364
17	Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncology, The, 2020, 21, 233-241.	5.1	407
18	The coming 15Âyears in gynaecological pathology: digitisation, artificial intelligence, and new technologies. Histopathology, 2020, 76, 171-177.	1.6	8
20	Assessment of individual tumor buds using keratin immunohistochemistry: moderate interobserver agreement suggests a role for machine learning. Modern Pathology, 2020, 33, 825-833.	2.9	28

			0
#	ARTICLE	IF	CITATIONS
21	grading through digital pathology. Neuro-Oncology Advances, 2020, 2, vdaa110.	0.4	17
22	Unsupervised Resolution of Histomorphologic Heterogeneity in Renal Cell Carcinoma Using a Brain Tumor–Educated Neural Network. JCO Clinical Cancer Informatics, 2020, 4, 811-821.	1.0	19
23	Deep Learning for Whole-Slide Tissue Histopathology Classification: A Comparative Study in the Identification of Dysplastic and Non-Dysplastic Barrett's Esophagus. Journal of Personalized Medicine, 2020, 10, 141.	1.1	19
24	Deep learning quantification of percent steatosis in donor liver biopsy frozen sections. EBioMedicine, 2020, 60, 103029.	2.7	32
26	Attitudes Toward Artificial Intelligence Within Dermatopathology: An International Online Survey. Frontiers in Medicine, 2020, 7, 591952.	1.2	21
27	Immunohistochemistry for prediction of response to immunotherapy. Diagnostic Histopathology, 2020, 26, 506-512.	0.2	0
28	Artificial Intelligence in Pathology: A Simple and Practical Guide. Advances in Anatomic Pathology, 2020, 27, 385-393.	2.4	10
29	Enhanced prognostic stratification of neoadjuvant treated lung squamous cell carcinoma by computationally-guided tumor regression scoring. Lung Cancer, 2020, 147, 49-55.	0.9	1
30	Artificial intelligence in pathology: an overview. Diagnostic Histopathology, 2020, 26, 513-520.	0.2	21
31	Fine-Grained Breast Cancer Classification With Bilinear Convolutional Neural Networks (BCNNs). Frontiers in Genetics, 2020, 11, 547327.	1.1	15
32	A descriptive framework for the field of deep learning applications in medical images. Knowledge-Based Systems, 2020, 210, 106445.	4.0	23
33	Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks. Medical Image Analysis, 2020, 65, 101789.	7.0	202
34	High-accuracy prostate cancer pathology using deep learning. Nature Machine Intelligence, 2020, 2, 411-418.	8.3	89
35	HEG1 Is a Highly Specific and Sensitive Marker of Epithelioid Malignant Mesothelioma. American Journal of Surgical Pathology, 2020, 44, 1143-1148.	2.1	25
36	An Update on Endocrine Mucin-producing Sweat Gland Carcinoma. American Journal of Surgical Pathology, 2020, 44, 1005-1016.	2.1	39
37	Comparison of Systemic EBV-positive T-Cell and NK-Cell Lymphoproliferative Diseases of Childhood Based on Classification Evolution. American Journal of Surgical Pathology, 2020, 44, 1061-1072.	2.1	6
38	The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. American Journal of Surgical Pathology, 2020, 44, e87-e99.	2.1	292
39	Early triage of critically ill COVID-19 patients using deep learning. Nature Communications, 2020, 11, 3543.	5.8	198

#	Article	IF	CITATIONS
40	Protecting the Pathology Commons in the Digital Era. Archives of Pathology and Laboratory Medicine, 2020, 144, 1037-1040.	1.2	3
41	Synthesis of diagnostic quality cancer pathology images by generative adversarial networks. Journal of Pathology, 2020, 252, 178-188.	2.1	53
42	JAMPI: Efficient Matrix Multiplication in Spark Using Barrier Execution Mode. Big Data and Cognitive Computing, 2020, 4, 32.	2.9	4
43	Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains. Nature Communications, 2020, 11, 5727.	5.8	126
44	From Scope to Screen: The Evolution of Histology Education. Advances in Experimental Medicine and Biology, 2020, 1260, 75-107.	0.8	19
45	Digital Pathology: Advantages, Limitations and Emerging Perspectives. Journal of Clinical Medicine, 2020, 9, 3697.	1.0	130
46	Challenges in the Development, Deployment, and Regulation of Artificial Intelligence in Anatomic Pathology. American Journal of Pathology, 2021, 191, 1684-1692.	1.9	43
47	A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals. Nature Communications, 2020, 11, 6004.	5.8	51
48	Effective Immunohistochemistry Pathology Microscopy Image Generation Using CycleGAN. Frontiers in Molecular Biosciences, 2020, 7, 571180.	1.6	8
49	Automatic discovery of clinically interpretable imaging biomarkers for Mycobacterium tuberculosis supersusceptibility using deep learning. EBioMedicine, 2020, 62, 103094.	2.7	18
50	A Multiscale Approach for Whole-Slide Image Segmentation of five Tissue Classes in Urothelial Carcinoma Slides. Technology in Cancer Research and Treatment, 2020, 19, 153303382094678.	0.8	19
51	Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Seminars in Cancer Biology, 2022, 84, 310-328.	4.3	34
52	A narrative review of digital pathology and artificial intelligence: focusing on lung cancer. Translational Lung Cancer Research, 2020, 9, 2255-2276.	1.3	59
53	Joint Imaging Platform for Federated Clinical Data Analytics. JCO Clinical Cancer Informatics, 2020, 4, 1027-1038.	1.0	39
54	Computer-aided diagnosis system of lung carcinoma using Convolutional Neural Networks. , 2020, , .		3
55	Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019. Frontiers in Bioengineering and Biotechnology, 2020, 8, 898.	2.0	60
56	Current and future applications of artificial intelligence in pathology: a clinical perspective. Journal of Clinical Pathology, 2021, 74, 409-414.	1.0	57
57	PROMETEO: A CNN-Based Computer-Aided Diagnosis System for WSI Prostate Cancer Detection. IEEE Access, 2020, 8, 128613-128628.	2.6	49

#	Article	IF	CITATIONS
58	An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. The Lancet Digital Health, 2020, 2, e407-e416.	5.9	163
59	Pan-cancer image-based detection of clinically actionable genetic alterations. Nature Cancer, 2020, 1, 789-799.	5.7	343
60	Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nature Cancer, 2020, 1, 800-810.	5.7	339
61	Deep learning links histology, molecular signatures and prognosis in cancer. Nature Cancer, 2020, 1, 755-757.	5.7	31
62	Capturing Cellular Topology in Multi-Gigapixel Pathology Images. , 2020, , .		35
63	Development and Validation of a Deep Learning Algorithm for Gleason Grading of Prostate Cancer From Biopsy Specimens. JAMA Oncology, 2020, 6, 1372.	3.4	119
64	Predicting Lymph Node Metastasis Using Histopathological Images Based on Multiple Instance Learning With Deep Graph Convolution. , 2020, , .		87
65	Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images. , 2020, , .		107
66	Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Scientific Reports, 2020, 10, 18802.	1.6	78
67	A deep learning algorithm with high sensitivity for the detection of basal cell carcinoma in Mohs micrographic surgery frozen sections. Journal of the American Academy of Dermatology, 2021, 85, 1285-1286.	0.6	14
68	A critical evaluation of visual proportion of Gleason 4 and maximum cancer core length quantified by histopathologists. Scientific Reports, 2020, 10, 17177.	1.6	4
69	SHIFT: speedy histological-to-immunofluorescent translation of a tumor signature enabled by deep learning. Scientific Reports, 2020, 10, 17507.	1.6	28
70	A Weak Supervision-based Framework for Automatic Lung Cancer Classification on Whole Slide Image. , 2020, 2020, 1372-1375.		7
71	Notable Papers and Trends from 2019 in Sensors, Signals, and Imaging Informatics. Yearbook of Medical Informatics, 2020, 29, 139-144.	0.8	3
73	Automated detection of cribriform growth patterns in prostate histology images. Scientific Reports, 2020, 10, 14904.	1.6	16
74	Detection of HER2 from Haematoxylin-Eosin Slides Through a Cascade of Deep Learning Classifiers via Multi-Instance Learning. Journal of Imaging, 2020, 6, 82.	1.7	15
75	Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nature Communications, 2020, 11, 4294.	5.8	156
76	Cancer Informatics in 2019: Deep Learning Takes Center Stage. Yearbook of Medical Informatics, 2020, 29, 243-246.	0.8	3

#	Article	IF	CITATIONS
77	Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer. Scientific Reports, 2020, 10, 14398.	1.6	40
78	Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer. Theranostics, 2020, 10, 11080-11091.	4.6	111
79	Machine Learningâ€Enabled Smart Sensor Systems. Advanced Intelligent Systems, 2020, 2, 2000063.	3.3	83
80	Class-Aware Image Search for Interpretable Cancer Identification. IEEE Access, 2020, 8, 197352-197362.	2.6	4
81	VISTA: VIsual Semantic Tissue Analysis for pancreatic disease quantification in murine cohorts. Scientific Reports, 2020, 10, 20904.	1.6	7
82	Deep Learning Predicts Underlying Features on Pathology Images with Therapeutic Relevance for Breast and Gastric Cancer. Cancers, 2020, 12, 3687.	1.7	34
83	Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images. Nature Communications, 2020, 11, 6367.	5.8	108
84	Parasitologist-level classification of apicomplexan parasites and host cell with deep cycle transfer learning (DCTL). Bioinformatics, 2020, 36, 4498-4505.	1.8	24
85	Decoding and Systematization of Medical Imaging Features of Multiple Human Malignancies. Radiology Imaging Cancer, 2020, 2, e190079.	0.7	5
86	Interrogating the microenvironmental landscape of tumors with computational image analysis approaches. Seminars in Immunology, 2020, 48, 101411.	2.7	5
87	New unified insights on deep learning in radiological and pathological images: Beyond quantitative performances to qualitative interpretation. Informatics in Medicine Unlocked, 2020, 19, 100329.	1.9	7
88	Novel artificial intelligence system increases the detection of prostate cancer in whole slide images of core needle biopsies. Modern Pathology, 2020, 33, 2058-2066.	2.9	101
89	Interpretable multimodal deep learning for real-time pan-tissue pan-disease pathology search on social media. Modern Pathology, 2020, 33, 2169-2185.	2.9	36
90	Assessment of associations between clinical and immune microenvironmental factors and tumor mutation burden in resected nonsmall cell lung cancer by applying machine learning to wholeâ€slide images. Cancer Medicine, 2020, 9, 4864-4875.	1.3	14
91	Unsupervised Machine Learning in Pathology. Surgical Pathology Clinics, 2020, 13, 349-358.	0.7	29
92	Automated gleason grading on prostate biopsy slides by statistical representations of homology profile. Computer Methods and Programs in Biomedicine, 2020, 194, 105528.	2.6	10
93	Development and Validation of a Deep Learning Model for Non–Small Cell Lung Cancer Survival. JAMA Network Open, 2020, 3, e205842.	2.8	125
94	Perineural Invasion is a Better Prognostic Indicator than Lymphovascular Invasion and a Potential Adjuvant Therapy Indicator for pNOMO Esophageal Squamous Cell Carcinoma. Annals of Surgical Oncology, 2020, 27, 4371-4381.	0.7	16

#	Article	IF	Citations
95	Weakly-supervised learning for lung carcinoma classification using deep learning. Scientific Reports, 2020, 10, 9297.	1.6	116
96	An innovative method for screening and evaluating the degree of diabetic retinopathy and drug treatment based on artificial intelligence algorithms. Pharmacological Research, 2020, 159, 104986.	3.1	8
97	Histologic tissue components provide major cues for machine learning-based prostate cancer detection and grading on prostatectomy specimens. Scientific Reports, 2020, 10, 9911.	1.6	22
98	Advances in tissue-based imaging: impact on oncology research and clinical practice. Expert Review of Molecular Diagnostics, 2020, 20, 1027-1037.	1.5	5
99	Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning. Gastroenterology, 2020, 159, 1406-1416.e11.	0.6	209
100	Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence. Npj Digital Medicine, 2020, 3, 31.	5.7	71
101	Artificial intelligence as the next step towards precision pathology. Journal of Internal Medicine, 2020, 288, 62-81.	2.7	212
102	Predicting treatment response to neoadjuvant chemoradiotherapy in local advanced rectal cancer by biopsy digital pathology image features. Clinical and Translational Medicine, 2020, 10, e110.	1.7	28
103	Using artificial intelligence to improve medical services in China. Annals of Translational Medicine, 2020, 8, 711-711.	0.7	5
104	Development of AI-based pathology biomarkers in gastrointestinal and liver cancer. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 591-592.	8.2	51
105	Explainable AI (xAI) for Anatomic Pathology. Advances in Anatomic Pathology, 2020, 27, 241-250.	2.4	46
106	Whole Slide Imaging: Technology and Applications. Advances in Anatomic Pathology, 2020, 27, 251-259.	2.4	63
107	Automatic T Staging Using Weakly Supervised Deep Learning for Nasopharyngeal Carcinoma on <scp>MR</scp> Images. Journal of Magnetic Resonance Imaging, 2020, 52, 1074-1082.	1.9	18
108	Integrating the Tumor Microenvironment into Cancer Therapy. Cancers, 2020, 12, 1677.	1.7	24
109	A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1MO. Radiotherapy and Oncology, 2020, 151, 1-9.	0.3	32
110	Pathologist at work. , 2020, , 161-186.		0
111	Perineural invasion in head and neck squamous cell carcinoma: background, mechanisms, and prognostic implications. Current Opinion in Otolaryngology and Head and Neck Surgery, 2020, 28, 90-95.	0.8	19
112	Digital Pathology and PD-L1 Testing in Non Small Cell Lung Cancer: A Workshop Record. Cancers, 2020, 12, 1800.	1.7	12

#	Article	IF	CITATIONS
113	Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours. Scientific Reports, 2020, 10, 1504.	1.6	251
114	Intelligence artificielle et pathologistes, est-ce bien raisonnable ?. Revue Francophone Des Laboratoires, 2020, 2020, 34-39.	0.0	Ο
115	Multi-path x-D recurrent neural networks for collaborative image classification. Neurocomputing, 2020, 397, 48-59.	3.5	10
116	Tailored for Real-World: A Whole Slide Image Classification System Validated on Uncurated Multi-Site Data Emulating the Prospective Pathology Workload. Scientific Reports, 2020, 10, 3217.	1.6	68
117	Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning. Cancers, 2020, 12, 507.	1.7	31
118	Artificial Intelligence in Medicine: Today and Tomorrow. Frontiers in Medicine, 2020, 7, 27.	1.2	291
119	Softwareâ€assisted decision support in digital histopathology. Journal of Pathology, 2020, 250, 685-692.	2.1	47
120	Deep Learning Predicts Molecular Subtype of Muscle-invasive Bladder Cancer from Conventional Histopathological Slides. European Urology, 2020, 78, 256-264.	0.9	96
121	Artificial Intelligence in Dermatology: A Primer. Journal of Investigative Dermatology, 2020, 140, 1504-1512.	0.3	100
122	Artificial intelligence and machine learning in nephropathology. Kidney International, 2020, 98, 65-75.	2.6	57
123	Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Medical Image Analysis, 2020, 63, 101693.	7.0	473
124	Automated detection algorithm for C4d immunostaining showed comparable diagnostic performance to pathologists in renal allograft biopsy. Modern Pathology, 2020, 33, 1626-1634.	2.9	5
125	Artificial intelligence driven next-generation renal histomorphometry. Current Opinion in Nephrology and Hypertension, 2020, 29, 265-272.	1.0	20
126	Feasibility of a deep learning algorithm to distinguish large cell neuroendocrine from small cell lung carcinoma in cytology specimens. Cytopathology, 2020, 31, 426-431.	0.4	17
127	An artificial intelligence-based EEG algorithm for detection of epileptiform EEG discharges: Validation against the diagnostic gold standard. Clinical Neurophysiology, 2020, 131, 1174-1179.	0.7	60
128	Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma. Nature Communications, 2020, 11, 1778.	5.8	50
129	The 2019 Genitourinary Pathology Society (GUPS) White Paper on Contemporary Grading of Prostate Cancer. Archives of Pathology and Laboratory Medicine, 2021, 145, 461-493.	1.2	143
130	Segmentation of cellular patterns in confocal images of melanocytic lesions in vivo via a multiscale encoder-decoder network (MED-Net). Medical Image Analysis, 2021, 67, 101841.	7.0	20

#	Article	IF	CITATIONS
131	Digital pathology as a platform for primary diagnosis and augmentation via deep learning. , 2021, , 93-118.		1
132	Precision medicine in digital pathology via image analysis and machine learning. , 2021, , 149-173.		24
133	Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Modern Pathology, 2021, 34, 660-671.	2.9	84
134	Complexity in the use of artificial intelligence in anatomic pathology. , 2021, , 57-75.		1
135	Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. Neuro-Oncology, 2021, 23, 44-52.	0.6	57
136	Deep computational pathology in breast cancer. Seminars in Cancer Biology, 2021, 72, 226-237.	4.3	30
137	Deep neural network models for computational histopathology: A survey. Medical Image Analysis, 2021, 67, 101813.	7.0	331
138	Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathology images. Medical Image Analysis, 2021, 67, 101814.	7.0	52
139	Development of a prognostic model for mortality in COVID-19 infection using machine learning. Modern Pathology, 2021, 34, 522-531.	2.9	117
140	Guidelines for clinical trials using artificial intelligence – SPIRITâ€AI and CONSORTâ€AI â€. Journal of Pathology, 2021, 253, 14-16.	2.1	7
141	Closing the translation gap: Al applications in digital pathology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188452.	3.3	31
142	Development and evaluation of deep learning–based segmentation of histologic structures in the kidney cortex with multiple histologic stains. Kidney International, 2021, 99, 86-101.	2.6	103
143	Using artificial intelligence to assist radiologists in distinguishing COVID-19 from other pulmonary infections. Journal of X-Ray Science and Technology, 2021, 29, 1-17.	0.7	16
144	Deep learning in cancer pathology: a new generation of clinical biomarkers. British Journal of Cancer, 2021, 124, 686-696.	2.9	291
145	A hybrid network for automatic hepatocellular carcinoma segmentation in H&E-stained whole slide images. Medical Image Analysis, 2021, 68, 101914.	7.0	28
146	Artificial neural networks and pathologists recognize basal cell carcinomas based on different histological patterns. Modern Pathology, 2021, 34, 895-903.	2.9	20
147	Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut, 2021, 70, 1183-1193.	6.1	63
148	The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Computers in Biology and Medicine, 2021, 128, 104129.	3.9	139

#	Article	IF	CITATIONS
149	Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2021, 193, 559-573.	0.7	18
150	Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clinical Cancer Research, 2021, 27, 131-140.	3.2	93
151	Interpretable deep learning systems for multi-class segmentation and classification of non-melanoma skin cancer. Medical Image Analysis, 2021, 68, 101915.	7.0	85
152	Distinguishing lupus lymphadenitis from Kikuchi disease based on clinicopathological features and C4d immunohistochemistry. Rheumatology, 2021, 60, 1543-1552.	0.9	14
153	Deep Learning–Based Detection of Endothelial Tip Cells in the Oxygen-Induced Retinopathy Model. Toxicologic Pathology, 2021, 49, 862-871.	0.9	1
154	Using Deep Learning Artificial Intelligence Algorithms to Verify N-Nitroso-N-Methylurea and Urethane Positive Control Proliferative Changes in Tg-RasH2 Mouse Carcinogenicity Studies. Toxicologic Pathology, 2021, 49, 938-949.	0.9	7
155	An interpretable classifier for high-resolution breast cancer screening images utilizing weakly supervised localization. Medical Image Analysis, 2021, 68, 101908.	7.0	99
156	Academics as leaders in the cancer artificial intelligence revolution. Cancer, 2021, 127, 664-671.	2.0	10
157	Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images. Translational Oncology, 2021, 14, 100921.	1.7	34
158	Prediction of early recurrence of hepatocellular carcinoma after resection using digital pathology images assessed by machine learning. Modern Pathology, 2021, 34, 417-425.	2.9	61
159	Automatic Diagnostic Tool for Predicting Cancer Grade in Bladder Cancer Patients Using Deep Learning. IEEE Access, 2021, 9, 115813-115825.	2.6	9
160	Deep Learning Models for Gastric Signet Ring Cell Carcinoma Classification in Whole Slide Images. Technology in Cancer Research and Treatment, 2021, 20, 153303382110279.	0.8	25
162	Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures. Nanoscale Advances, 2021, 3, 6403-6414.	2.2	1
163	Kernel Self-Attention for Weakly-supervised Image Classification using Deep Multiple Instance Learning. , 2021, , .		21
164	Precision medicine. , 2021, , 139-157.		0
165	DT-MIL: Deformable Transformer forÂMulti-instance Learning onÂHistopathological Image. Lecture Notes in Computer Science, 2021, , 206-216.	1.0	40
166	MetaCon: Meta Contrastive Learning for Microsatellite Instability Detection. Lecture Notes in Computer Science, 2021, , 267-276.	1.0	2
167	Hybrid Supervision Learning for Pathology Whole Slide Image Classification. Lecture Notes in Computer Science, 2021, , 309-318.	1.0	7

		CITATION REPORT	
#	Article	IF	CITATIONS
168	Multimodal Brain Tumor Classification. Lecture Notes in Computer Science, 2021, , 475-486.	1.0	3
169	Glioma Classification Using Multimodal Radiology and Histology Data. Lecture Notes in Comp Science, 2021, , 508-518.	outer 1.0	3
170	Deep Learning-Based Cancer Region Segmentation from H&E Slides for HPV-Related Oro Squamous Cell Carcinomas. , 2021, , 137-147.	pharyngeal	0
171	Classification of Noisy Free-Text Prostate Cancer Pathology Reports Using Natural Language Processing. Lecture Notes in Computer Science, 2021, , 154-166.	1.0	3
172	Semi-supervised Learning with a Teacher-Student Paradigm for Histopathology Classification: Resource to Face Data Heterogeneity and Lack of Local Annotations. Lecture Notes in Compu Science, 2021, , 105-119.	A Iter 1.0	3
173	AIM in Surgical Pathology. , 2021, , 1-18.		Ο
174	TransforMesh: A Transformer Network for Longitudinal Modeling of Anatomical Meshes. Lectu Notes in Computer Science, 2021, , 209-218.	Jre 1.0	6
175	Artificial intelligence and computational pathology. Laboratory Investigation, 2021, 101, 412-	.422. 1.7	223
176	Weakly Supervised Pan-Cancer Segmentation Tool. Lecture Notes in Computer Science, 2021	.,,248-256. 1.0	3
177	Whole Slide Images are 2D Point Clouds: Context-Aware Survival Prediction Using Patch-Base Convolutional Networks. Lecture Notes in Computer Science, 2021, , 339-349.	d Graph 1.0	51
178	Multiple Instance Learning with Auxiliary Task Weighting for Multiple Myeloma Classification. Notes in Computer Science, 2021, , 786-796.	Lecture 1.0	4
179	Clinical Decision Support for Laboratory Testing. Clinical Chemistry, 2022, 68, 402-412.	1.5	11
180	Image analysis in drug discovery. , 2021, , 159-189.		0
181	Multi-class Tissue Classification in Colorectal Cancer with Handcrafted and Deep Features. Leo Notes in Computer Science, 2021, , 512-525.	cture 1.0	3
182	SuperHistopath: A Deep Learning Pipeline for Mapping Tumor Heterogeneity on Low-Resolutio Whole-Slide Digital Histopathology Images. Frontiers in Oncology, 2020, 10, 586292.	on 1.3	18
183	Accounting for Dependencies in Deep Learning Based Multiple Instance Learning for Whole S Imaging. Lecture Notes in Computer Science, 2021, , 329-338.	lide 1.0	16
184	Designing deep learning studies in cancer diagnostics. Nature Reviews Cancer, 2021, 21, 199	-211. 12.8	175
185	Deep Regional Metastases Segmentation for Patient-Level Lymph Node Status Classification. Access, 2021, 9, 129293-129302.	IEEE 2.6	6

#	Article	IF	CITATIONS
186	Automatic ganglion cell detection for improving the efficiency and accuracy of hirschprung disease diagnosis. Scientific Reports, 2021, 11, 3306.	1.6	10
187	Development and Validation of a Personalized Survival Prediction Model for Uterine Adenosarcoma: A Population-Based Deep Learning Study. Frontiers in Oncology, 2020, 10, 623818.	1.3	6
188	Quantitative analysis of abnormalities in gynecologic cytopathology with deep learning. Laboratory Investigation, 2021, 101, 513-524.	1.7	7
189	Computer Vision in the Operating Room: Opportunities and Caveats. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 2-10.	2.1	25
190	Deep learning detects genetic alterations in cancer histology generated by adversarial networks. Journal of Pathology, 2021, 254, 70-79.	2.1	31
191	An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning. Nature Communications, 2021, 12, 1193.	5.8	85
192	Aggregation of cohorts for histopathological diagnosis with deep morphological analysis. Scientific Reports, 2021, 11, 2876.	1.6	4
193	Semantic segmentation of reflectance confocal microscopy mosaics of pigmented lesions using weak labels. Scientific Reports, 2021, 11, 3679.	1.6	12
194	Biomarker-Based Classification and Localization of Renal Lesions Using Learned Representations of Histology—A Machine Learning Approach to Histopathology. Toxicologic Pathology, 2021, 49, 798-814.	0.9	4
195	Harnessing non-destructive 3D pathology. Nature Biomedical Engineering, 2021, 5, 203-218.	11.6	74
196	Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy. Scientific Reports, 2021, 11, 4037.	1.6	43
197	Artificial intelligence and pathology: From principles to practice and future applications in histomorphology and molecular profiling. Seminars in Cancer Biology, 2022, 84, 129-143.	4.3	41
198	Automatic Feature Selection for Improved Interpretability on Whole Slide Imaging. Machine Learning and Knowledge Extraction, 2021, 3, 243-262.	3.2	3
199	Performance Evaluation of Deep Learning-Based Prostate Cancer Screening Methods in Histopathological Images: Measuring the Impact of the Model's Complexity on Its Processing Speed. Sensors, 2021, 21, 1122.	2.1	13
200	Construction of Fuzzy ERP Data Analysis System based on Deep Learning. , 2021, , .		1
201	Editorial Computational Pathology. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 303-306.	3.9	2
202	Evaluation of the Use of Single- and Multi-Magnification Convolutional Neural Networks for the Determination and Quantitation of Lesions in Nonclinical Pathology Studies. Toxicologic Pathology, 2021, 49, 815-842.	0.9	10
203	Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management—Current Trends and Future Perspectives. Diagnostics, 2021, 11, 354.	1.3	64

#	Article	IF	CITATIONS
205	Machine Learning of Bone Marrow Histopathology Identifies Genetic and Clinical Determinants in Patients with MDS. Blood Cancer Discovery, 2021, 2, 238-249.	2.6	25
206	Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes. Nature Communications, 2021, 12, 1613.	5.8	114
207	Accurate diagnosis of colorectal cancer based on histopathology images using artificial intelligence. BMC Medicine, 2021, 19, 76.	2.3	63
208	HistoNet: A Deep Learning-Based Model of Normal Histology. Toxicologic Pathology, 2021, 49, 784-797.	0.9	15
209	Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma. Frontiers in Oncology, 2021, 11, 623382.	1.3	4
210	Diagnostic Regions Attention Network (DRA-Net) for Histopathology WSI Recommendation and Retrieval. IEEE Transactions on Medical Imaging, 2021, 40, 1090-1103.	5.4	18
211	Deep learning for computer-assisted diagnosis of hereditary diffuse gastric cancer. Journal of Pathology and Translational Medicine, 2021, 55, 118-124.	0.4	7
212	Development and evaluation of a deep neural network for histologic classification of renal cell carcinoma on biopsy and surgical resection slides. Scientific Reports, 2021, 11, 7080.	1.6	27
213	WeGleNet: A weakly-supervised convolutional neural network for the semantic segmentation of Gleason grades in prostate histology images. Computerized Medical Imaging and Graphics, 2021, 88, 101846.	3.5	32
214	Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning. Nature Communications, 2021, 12, 1637.	5.8	65
215	Artificial Intelligence and Early Detection of Pancreatic Cancer. Pancreas, 2021, 50, 251-279.	0.5	71
216	Deep learning-based six-type classifier for lung cancer and mimics from histopathological whole slide images: a retrospective study. BMC Medicine, 2021, 19, 80.	2.3	61
217	Whole Slide Images Based Cervical Cancer Classification Using Self-supervised Learning and Multiple Instance Learning. , 2021, , .		3
218	Radiomic and radiogenomic modeling for radiotherapy: strategies, pitfalls, and challenges. Journal of Medical Imaging, 2021, 8, 031902.	0.8	8
219	The Potential of Artificial Intelligence to Detect Lymphovascular Invasion in Testicular Cancer. Cancers, 2021, 13, 1325.	1.7	17
220	Fast discrimination of tumor and blood cells by label-free surface-enhanced Raman scattering spectra and deep learning. Journal of Applied Physics, 2021, 129, .	1.1	20
221	Biomarker Technologies to Support Early Clinical Immuno-oncology Development: Advances and Interpretation. Clinical Cancer Research, 2021, 27, 4147-4159.	3.2	5
222	An independent assessment of an artificial intelligence system for prostate cancer detection shows strong diagnostic accuracy. Modern Pathology, 2021, 34, 1588-1595.	2.9	53

#	Article	IF	Citations
224	GestAltNet: aggregation and attention to improve deep learning of gestational age from placental whole-slide images. Laboratory Investigation, 2021, 101, 942-951.	1.7	19
225	Data-efficient and weakly supervised computational pathology on whole-slide images. Nature Biomedical Engineering, 2021, 5, 555-570.	11.6	539
226	Wholeâ€slide margin control through deep learning in Mohs micrographic surgery for basal cell carcinoma. Experimental Dermatology, 2021, 30, 733-738.	1.4	18
227	Artificial Intelligence in Pathology. Deutsches Ärzteblatt International, 2021, 118, 194-204.	0.6	23
228	Deep Multi-Magnification Networks for multi-class breast cancer image segmentation. Computerized Medical Imaging and Graphics, 2021, 88, 101866.	3.5	69
229	Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning. Computerized Medical Imaging and Graphics, 2021, 88, 101861.	3.5	41
230	Perspectives in pathomics in head and neck cancer. Current Opinion in Oncology, 2021, 33, 175-183.	1.1	8
231	A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Scientific Reports, 2021, 11, 8110.	1.6	26
232	Role of AI and Histopathological Images in Detecting Prostate Cancer: A Survey. Sensors, 2021, 21, 2586.	2.1	26
233	Rapid Assisted Visual Search. , 2021, , .		7
235	Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology. Cells, 2021, 10, 787.	1.8	29
236	Deep learning–based molecular morphometrics for kidney biopsies. JCl Insight, 2021, 6, .	2.3	31
238	A deep learning model to detect pancreatic ductal adenocarcinoma on endoscopic ultrasound-guided fine-needle biopsy. Scientific Reports, 2021, 11, 8454.	1.6	37
239	Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural	3.3	25
240	ImmunoAlzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment. Cancers, 2021, 13, 1659.	1.7	19
241	Overcoming the limitations of patch-based learning to detect cancer in whole slide images. Scientific Reports, 2021, 11, 8894.	1.6	16
242	Image Quality Assessment of Fetal Brain <scp>MRI</scp> Using <scp>Multiâ€Instance</scp> Deep Learning Methods. Journal of Magnetic Resonance Imaging, 2021, 54, 818-829.	1.9	15
243	Evolution of the liver biopsy and its future. Translational Gastroenterology and Hepatology, 2021, 6, 20-20.	1.5	18

Сітат	ION REPORT	
	IF	CITATIONS
ophageal adenocarcinoma	15.2	65

244	Triage-driven diagnosis of Barrett's esophagus for early detection of esophageal adenocarcinoma using deep learning. Nature Medicine, 2021, 27, 833-841.	15.2	65
245	A multi-resolution model for histopathology image classification and localization with multiple instance learning. Computers in Biology and Medicine, 2021, 131, 104253.	3.9	54
247	Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discovery, 2021, 11, 900-915.	7.7	209
248	Convolutional Neural Network-Based Obstructive Sleep Apnea Identification. , 2021, , .		3
249	Independent realâ€world application of a clinicalâ€grade automated prostate cancer detection system. Journal of Pathology, 2021, 254, 147-158.	2.1	57
250	Artificial intelligence in prostate histopathology: where are we in 2021?. Current Opinion in Urology, 2021, 31, 430-435.	0.9	3
251	Deep Learning for the Classification of Non-Hodgkin Lymphoma on Histopathological Images. Cancers, 2021, 13, 2419.	1.7	24
252	Deep learning predicts gene expression as an intermediate data modality to identify susceptibility patterns in Mycobacterium tuberculosis infected Diversity Outbred mice. EBioMedicine, 2021, 67, 103388.	2.7	17
253	Weakly Supervised Histopathology Image Segmentation With Sparse Point Annotations. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1673-1685.	3.9	25
254	Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification. BMC Medical Imaging, 2021, 21, 77.	1.4	13
255	Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification. European Journal of Cancer, 2021, 149, 94-101.	1.3	57
256	Deep learning-based predictive identification of neural stem cell differentiation. Nature Communications, 2021, 12, 2614.	5.8	104
257	Multi-scale fully convolutional neural networks for histopathology image segmentation: From nuclear aberrations to the global tissue architecture. Medical Image Analysis, 2021, 70, 101996.	7.0	52
258	Fine-Tuning and training of densenet for histopathology image representation using TCGA diagnostic slides. Medical Image Analysis, 2021, 70, 102032.	7.0	80
259	The Potential of AI in Health Higher Education to Increase the Students' Learning Outcomes. TEM Journal, 2021, , 488-497.	0.4	11
260	A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens. Cancer Cytopathology, 2021, 129, 984-995.	1.4	22
261	Deep learning in histopathology: the path to the clinic. Nature Medicine, 2021, 27, 775-784.	15.2	355
263	Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov. International Journal of Environmental Research and Public Health, 2021, 18, 5072.	1.2	13

#

ARTICLE

#	Article	IF	CITATIONS
264	Classification of Diffuse Glioma Subtype from Clinical-Grade Pathological Images Using Deep Transfer Learning. Sensors, 2021, 21, 3500.	2.1	16
265	A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proceedings of the IEEE, 2021, 109, 820-838.	16.4	339
266	HEAL: an automated deep learning framework for cancer histopathology image analysis. Bioinformatics, 2021, 37, 4291-4295.	1.8	18
267	Machine learning of EEG spectra classifies unconsciousness during GABAergic anesthesia. PLoS ONE, 2021, 16, e0246165.	1.1	14
268	Al-based pathology predicts origins for cancers of unknown primary. Nature, 2021, 594, 106-110.	13.7	294
269	Deep-learning based classification distinguishes sarcomatoid malignant mesotheliomas from benign spindle cell mesothelial proliferations. Modern Pathology, 2021, 34, 2028-2035.	2.9	8
270	Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning. Npj Digital Medicine, 2021, 4, 99.	5.7	29
271	Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images. Modern Pathology, 2021, 34, 1901-1911.	2.9	30
272	Deep-Learning-Assisted Single-Molecule Tracking on a Live Cell Membrane. Analytical Chemistry, 2021, 93, 8810-8816.	3.2	18
273	Development and Validation of an Interpretable Artificial Intelligence Model to Predict 10-Year Prostate Cancer Mortality. Cancers, 2021, 13, 3064.	1.7	8
274	Ensemble machine learning approach for screening of coronary heart disease based on echocardiography and risk factors. BMC Medical Informatics and Decision Making, 2021, 21, 187.	1.5	8
275	Hybrid Al-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nature Communications, 2021, 12, 3541.	5.8	36
276	Weakly Supervised Deep Learning Approach to Breast MRI Assessment. Academic Radiology, 2021, , .	1.3	12
277	Requirements for implementation of artificial intelligence in the practice of gastrointestinal pathology. World Journal of Gastroenterology, 2021, 27, 2818-2833.	1.4	17
278	OCTID: a one-class learning-based Python package for tumor image detection. Bioinformatics, 2021, 37, 3986-3988.	1.8	8
279	Unsupervised Detection of Cancerous Regions in Histology Imagery using Image-to-Image Translation. , 2021, , .		6
281	Quality control stress test for deep learning-based diagnostic model in digital pathology. Modern Pathology, 2021, 34, 2098-2108.	2.9	72
282	Cervical Cancer Metastasis and Recurrence Risk Prediction Based on Deep Convolutional Neural Network. Current Bioinformatics, 2022, 17, 164-173.	0.7	26

#	Article	IF	CITATIONS
285	Deep Learning for Basal Cell Carcinoma Detection for Reflectance Confocal Microscopy. Journal of Investigative Dermatology, 2022, 142, 97-103.	0.3	28
287	Artificial Intelligence for Diagnosis and Gleason Grading of Prostate Cancer in Biopsies—Current Status and Next Steps. European Urology Focus, 2021, 7, 687-691.	1.6	18
288	Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research at a large academic medical center. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1874-1884.	2.2	39
289	Automatic keying algorithm for multi-category target recognition. Journal of Physics: Conference Series, 2021, 1982, 012122.	0.3	0
290	Graph algorithm optimization techniques for high-throughput computers in weakly supervised scenarios. Journal of Physics: Conference Series, 2021, 1982, 012123.	0.3	0
291	Second-order multi-instance learning model for whole slide image classification. Physics in Medicine and Biology, 2021, 66, 145006.	1.6	10
292	Deep learning classification of bacteria clones explained by persistence homology. , 2021, , .		3
293	Quantum Cascade Laser-Based Infrared Imaging as a Label-Free and Automated Approach to Determine Mutations in Lung Adenocarcinoma. American Journal of Pathology, 2021, 191, 1269-1280.	1.9	7
294	CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance. Scientific Reports, 2021, 11, 14358.	1.6	30
295	A Comprehensive Study of Data Augmentation Strategies for Prostate Cancer Detection in Diffusion-Weighted MRI Using Convolutional Neural Networks. Journal of Digital Imaging, 2021, 34, 862-876.	1.6	37
296	Automated identification of glomeruli and synchronised review of special stains in renal biopsies by machine learning and slide registration: a crossâ€institutional study. Histopathology, 2021, 79, 499-508.	1.6	7
297	Multi_Scale_Tools: A Python Library to Exploit Multi-Scale Whole Slide Images. Frontiers in Computer Science, 2021, 3, .	1.7	12
298	Automated tumor proportion score analysis for PD-L1 (22C3) expression in lung squamous cell carcinoma. Scientific Reports, 2021, 11, 15907.	1.6	14
299	Machine Learning Predictive Outcomes Modeling in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2022, 28, 819-829.	0.9	8
300	Low-count whole-body PET with deep learning in a multicenter and externally validated study. Npj Digital Medicine, 2021, 4, 127.	5.7	34
301	Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening. Medical Image Analysis, 2021, 72, 102105.	7.0	22
302	Self-Learning for Weakly Supervised Gleason Grading of Local Patterns. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3094-3104.	3.9	20
303	Interobserver variability between experienced and inexperienced observers in the histopathological analysis of Wilms tumors: a pilot study for future algorithmic approach. Diagnostic Pathology, 2021, 16, 77.	0.9	4

#	Article	IF	CITATIONS
304	Artificial intelligence in computational pathology – challenges and future directions. , 2021, 119, 103196.		25
305	The emerging role of artificial intelligence in the reporting of prostate pathology. Pathology, 2021, 53, 565-567.	0.3	0
306	Deep learning-based classification of breast cancer cells using transmembrane receptor dynamics. Bioinformatics, 2021, 38, 243-249.	1.8	6
308	A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study. EBioMedicine, 2021, 70, 103522.	2.7	48
309	Artificial intelligence for the next generation of precision oncology. Npj Precision Oncology, 2021, 5, 79.	2.3	13
312	Domain Adaptation-Based Deep Learning for Automated Tumor Cell (TC) Scoring and Survival Analysis on PD-L1 Stained Tissue Images. IEEE Transactions on Medical Imaging, 2021, 40, 2513-2523.	5.4	13
313	Weakly supervised annotationâ€free cancer detection and prediction of genotype in routine histopathology. Journal of Pathology, 2022, 256, 50-60.	2.1	48
314	Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx® Digital Spatial Profiler. Cancers, 2021, 13, 4456.	1.7	50
315	The utility of color normalization for <scp>AI</scp> â€based diagnosis of hematoxylin and eosinâ€stained pathology images. Journal of Pathology, 2022, 256, 15-24.	2.1	19
316	Resolution-based distillation for efficient histology image classification. Artificial Intelligence in Medicine, 2021, 119, 102136.	3.8	19
318	Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours. European Journal of Cancer, 2021, 154, 227-234.	1.3	36
319	Glomerular disease classification and lesion identification by machine learning. Biomedical Journal, 2022, 45, 675-685.	1.4	19
320	Artificial intelligence for solid tumour diagnosis in digital pathology. British Journal of Pharmacology, 2021, 178, 4291-4315.	2.7	14
321	Improved breast cancer histological grading using deep learning. Annals of Oncology, 2022, 33, 89-98.	0.6	76
322	A Hybrid Human–Machine Learning Approach for Screening Prostate Biopsies Can Improve Clinical Efficiency Without Compromising Diagnostic Accuracy. Archives of Pathology and Laboratory Medicine, 2022, 146, 727-734.	1.2	4
323	Recent advances in blood-based and artificial intelligence-enhanced approaches for gastrointestinal cancer diagnosis. World Journal of Gastroenterology, 2021, 27, 5666-5681.	1.4	4
324	Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia. Journal of Pathology, 2022, 256, 4-14.	2.1	18
326	Automatic whole slide pathology image diagnosis framework via unit stochastic selection and attention fusion. Neurocomputing, 2021, 453, 312-325.	3.5	17

~	~
(TITATION	REDUBL
CHARTON	

#	Article	IF	CITATIONS
327	Wide & Deep neural network model for patch aggregation in CNN-based prostate cancer detection systems. Computers in Biology and Medicine, 2021, 136, 104743.	3.9	9
328	Imageâ€based deep learning reveals the responses of human motor neurons to stress and <i>VCP</i> â€related ALS. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	4
329	Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Annals of Oncology, 2021, 32, 1178-1187.	0.6	51
330	Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture. Cell Reports Medicine, 2021, 2, 100382.	3.3	17
331	The role of artificial intelligence in cancer diagnostics - a review. Journal of Education, Health and Sport, 2021, 11, 113-122.	0.0	1
332	A Review of Artificial Intelligence in Precise Assessment of Programmed Cell Death-ligand 1 and Tumor-infiltrating Lymphocytes in Nonâ^'Small Cell Lung Cancer. Advances in Anatomic Pathology, 2021, 28, 439-445.	2.4	7
333	Deep-learning-assisted microscopy with ultraviolet surface excitation for rapid slide-free histological imaging. Biomedical Optics Express, 2021, 12, 5920.	1.5	19
336	Method of Tumor Pathological Micronecrosis Quantification Via Deep Learning From Label Fuzzy Proportions. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3288-3299.	3.9	9
337	Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Medical Image Analysis, 2021, 73, 102165.	7.0	30
338	Computer-aided diagnosis tool for cervical cancer screening with weakly supervised localization and detection of abnormalities using adaptable and explainable classifier. Medical Image Analysis, 2021, 73, 102167.	7.0	22
339	Generative Deep Learning in Digital Pathology Workflows. American Journal of Pathology, 2021, 191, 1717-1723.	1.9	7
340	Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of pathology images. Medical Image Analysis, 2021, 73, 102183.	7.0	22
341	Deep multiple-instance learning for abnormal cell detection in cervical histopathology images. Computers in Biology and Medicine, 2021, 138, 104890.	3.9	18
342	An Open Source Platform for Computational Histopathology. IEEE Access, 2021, 9, 73651-73661.	2.6	1
343	Streaming Convolutional Neural Networks for End-to-End Learning With Multi-Megapixel Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 1581-1590.	9.7	28
344	Detection of Prostate Cancer in Whole-Slide Images Through End-to-End Training With Image-Level Labels. IEEE Transactions on Medical Imaging, 2021, 40, 1817-1826.	5.4	48
345	Deep Transfer Learning for Interpretable Chest X-Ray Diagnosis. Lecture Notes in Computer Science, 2021, , 524-537.	1.0	1
346	Multi-View Attention-Guided Multiple Instance Detection Network for Interpretable Breast Cancer Histopathological Image Diagnosis. IEEE Access, 2021, 9, 79671-79684.	2.6	20

#	Article	IF	CITATIONS
347	Prognostic Prediction for Non-small-Cell Lung Cancer Based on Deep Neural Network and Multimodal Data. Lecture Notes in Computer Science, 2021, , 549-560.	1.0	1
349	Automatic Computer Analysis of Digital Images of Triple-Antibody-Stained Prostate Biopsies. Open Journal of Urology, 2021, 11, 17-29.	0.0	0
350	Contemporary application of artificial intelligence in prostate cancer: an i-TRUE study. Therapeutic Advances in Urology, 2021, 13, 175628722098664.	0.9	5
352	Development of a Deep Learning Model to Assist with Diagnosis of Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
353	Deep learning-enabled medical computer vision. Npj Digital Medicine, 2021, 4, 5.	5.7	469
354	High-Content Imaging to Phenotype Human Primary and iPSC-Derived Cells. Methods in Molecular Biology, 2021, 2185, 423-445.	0.4	4
355	A Deep Learning Based Pipeline for Efficient Oral Cancer Screening on Whole Slide Images. Lecture Notes in Computer Science, 2020, , 249-261.	1.0	15
356	A Weakly Supervised Deep Learning Approach for Detecting Malaria and Sickle Cells in Blood Films. Lecture Notes in Computer Science, 2020, , 226-235.	1.0	5
357	Attention Based Multiple Instance Learning for Classification of Blood Cell Disorders. Lecture Notes in Computer Science, 2020, , 246-256.	1.0	13
358	Weakly Supervised Multiple Instance Learning Histopathological Tumor Segmentation. Lecture Notes in Computer Science, 2020, , 470-479.	1.0	33
359	Multiple Instance Learning with Center Embeddings for Histopathology Classification. Lecture Notes in Computer Science, 2020, , 519-528.	1.0	43
360	Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning. American Journal of Pathology, 2020, 190, 1691-1700.	1.9	23
361	Deep-Hipo: Multi-scale receptive field deep learning for histopathological image analysis. Methods, 2020, 179, 3-13.	1.9	35
362	Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Scientific Reports, 2020, 10, 21899.	1.6	42
363	Pre-examinations Improve Automated Metastases Detection on Cranial MRI. Investigative Radiology, 2021, 56, 320-327.	3.5	5
375	Exploring prognostic indicators in the pathological images of hepatocellular carcinoma based on deep learning. Gut, 2021, 70, 951-961.	6.1	93
376	Hidden stratification causes clinically meaningful failures in machine learning for medical imaging. , 2020, 2020, 151-159.		152
377	Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]. Biomedical Optics Express, 2020, 11, 3195.	1.5	85

#	Article	IF	CITATIONS
378	Automatic Grading of Stroke Symptoms for Rapid Assessment Using Optimized Machine Learning and 4-Limb Kinematics: Clinical Validation Study. Journal of Medical Internet Research, 2020, 22, e20641.	2.1	23
379	Automated Smart Home Assessment to Support Pain Management: Multiple Methods Analysis. Journal of Medical Internet Research, 2020, 22, e23943.	2.1	16
380	Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Frontiers in Digital Health, 2020, 2, 569178.	1.5	32
381	Deep Learning to Estimate Human Epidermal Growth Factor Receptor 2 Status from Hematoxylin and Eosin-Stained Breast Tissue Images. Journal of Pathology Informatics, 2020, 11, 19.	0.8	32
382	A Regulatory Science Initiative to Harmonize and Standardize Digital Pathology and Machine Learning Processes to Speed up Clinical Innovation to Patients. Journal of Pathology Informatics, 2020, 11, 22.	0.8	19
383	Clinical-grade Computational Pathology: Alea lacta Est. Journal of Pathology Informatics, 2019, 10, 38.	0.8	6
384	TissueWand, a Rapid Histopathology Annotation Tool. Journal of Pathology Informatics, 2020, 11, 27.	0.8	9
385	Introduction to digital pathology and computer-aided pathology. Journal of Pathology and Translational Medicine, 2020, 54, 125-134.	0.4	75
386	Radiologist-like artificial intelligence for grade group prediction of radical prostatectomy for reducing upgrading and downgrading from biopsy. Theranostics, 2020, 10, 10200-10212.	4.6	22
387	Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks. PeerJ, 2019, 7, e8242.	0.9	39
388	Positive-unlabeled learning in bioinformatics and computational biology: a brief review. Briefings in Bioinformatics, 2022, 23, .	3.2	26
389	Scope2Screen: Focus+Context Techniques for Pathology Tumor Assessment in Multivariate Image Data. IEEE Transactions on Visualization and Computer Graphics, 2022, 28, 259-269.	2.9	9
390	Robust whole slide image analysis for cervical cancer screening using deep learning. Nature Communications, 2021, 12, 5639.	5.8	58
391	A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images. Scientific Reports, 2021, 11, 20486.	1.6	15
392	A non-invasive diabetes diagnosis method based on novel scleral imaging instrument and Al. , 2021, , .		2
393	Classification of Basal Cell Carcinoma in ExÂVivo Confocal Microscopy Images from Freshly Excised Tissues Using a Deep Learning Algorithm. Journal of Investigative Dermatology, 2022, 142, 1291-1299.e2.	0.3	11
394	A digital score of tumourâ€associated stroma infiltrating lymphocytes predicts survival in head and neck squamous cell carcinoma. Journal of Pathology, 2022, 256, 174-185.	2.1	20
395	Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study. The Lancet Digital Health, 2021, 3, e763-e772.	5.9	128

#	Article	IF	CITATIONS
396	Qualitative Histopathological Classification of Primary Bone Tumors Using Deep Learning: A Pilot Study. Frontiers in Oncology, 2021, 11, 735739.	1.3	4
397	Harnessing multimodal data integration to advance precision oncology. Nature Reviews Cancer, 2022, 22, 114-126.	12.8	168
398	Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling. Frontiers in Oncology, 2021, 11, 734015.	1.3	5
399	The cultivation of supply side data science in medical imaging: an opportunity to define the future of global health. European Journal of Nuclear Medicine and Molecular Imaging, 2021, , 1.	3.3	1
400	Deep embeddings and logistic regression for rapid active learning in histopathological images. Computer Methods and Programs in Biomedicine, 2021, 212, 106464.	2.6	7
401	Self-supervised driven consistency training for annotation efficient histopathology image analysis. Medical Image Analysis, 2022, 75, 102256.	7.0	55
403	Automated Diagnosis and Localization of Melanoma from Skin Histopathology Slides Using Deep Learning: A Multicenter Study. Journal of Healthcare Engineering, 2021, 2021, 1-6.	1.1	8
404	Vessel-CAPTCHA: An efficient learning framework for vessel annotation and segmentation. Medical Image Analysis, 2022, 75, 102263.	7.0	15
405	Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides. Frontiers in Oncology, 2021, 11, 759007.	1.3	20
408	Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumors. Artificial Intelligence in Medicine, 2021, 121, 102194.	3.8	14
409	Artificial Intelligence in Anatomic Pathology. Advances in Molecular Pathology, 2021, 4, 145-171.	0.2	6
410	An attention-based weakly supervised framework for spitzoid melanocytic lesion diagnosis in whole slide images. Artificial Intelligence in Medicine, 2021, 121, 102197.	3.8	18
411	Characterization of tissue types in basal cell carcinoma images via generative modeling and concept vectors. Computerized Medical Imaging and Graphics, 2021, 94, 101998.	3.5	2
414	Self-similarity Student for Partial Label Histopathology Image Segmentation. Lecture Notes in Computer Science, 2020, , 117-132.	1.0	9
418	Inteligencia artificial y aprendizaje automático en medicina. Revista Medica Sinergia, 2020, 5, e557.	0.0	6
421	Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning. Cancers, 2021, 13, 5368.	1.7	15
422	Deep Learning and Pathomics Analyses Reveal Cell Nuclei as Important Features for Mutation Prediction of BRAF-Mutated Melanomas. Journal of Investigative Dermatology, 2022, 142, 1650-1658.e6.	0.3	22
423	Whole slide cervical image classification based on convolutional neural network and random forest. International Journal of Imaging Systems and Technology, 0, , .	2.7	2

#	Article	IF	CITATIONS
425	The Impact of Histological Annotations for Accurate Tissue Classification Using Mass Spectrometry Imaging. Metabolites, 2021, 11, 752.	1.3	8
426	Automated annotations of epithelial cells and stroma in <scp>hematoxylin–eosin</scp> â€stained wholeâ€slide images using cytokeratin reâ€staining. Journal of Pathology: Clinical Research, 2022, 8, 129-142.	1.3	2
427	Deep Learning-Based Artificial Intelligence System for Automatic Assessment of Glomerular Pathological Findings in Lupus Nephritis. Diagnostics, 2021, 11, 1983.	1.3	14
428	NECScanNet: Novel Method for Cervical Neuroendocrine Cancer Screening from Whole Slide Images. Security and Communication Networks, 2021, 2021, 1-12.	1.0	2
429	Deep Learning in Cancer Diagnosis and Prognosis Prediction: A Minireview on Challenges, Recent Trends, and Future Directions. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-28.	0.7	55
431	On Transferability of Histological Tissue Labels in Computational Pathology. Lecture Notes in Computer Science, 2020, , 453-469.	1.0	5
432	Diagnosing 12 prostate needle cores within an hour of biopsy via open-top light-sheet microscopy. Journal of Biomedical Optics, 2020, 25, .	1.4	15
435	Characterizing Immune Responses in Whole Slide Images of Cancer With Digital Pathology and Pathomics. Current Pathobiology Reports, 2020, 8, 133-148.	1.6	5
436	Hidden clues in prostate cancer – Lessons learned from clinical and pre-clinical approaches on diagnosis and risk stratification. Cancer Letters, 2022, 524, 182-192.	3.2	3
437	Deep learning for bone marrow cell detection and classification on whole-slide images. Medical Image Analysis, 2022, 75, 102270.	7.0	54
438	Human-Centered AI for Medical Imaging. Human-computer Interaction Series, 2021, , 539-570.	0.4	0
439	Deep Interpretable Classification and Weakly-Supervised Segmentation of Histology Images via Max-Min Uncertainty. IEEE Transactions on Medical Imaging, 2022, 41, 702-714.	5.4	22
441	Image Synthesis as a Pretext for Unsupervised Histopathological Diagnosis. Lecture Notes in Computer Science, 2020, , 174-183.	1.0	3
442	Improving Interpretability for Computer-Aided Diagnosis Tools on Whole Slide Imaging with Multiple Instance Learning and Gradient-Based Explanations. Lecture Notes in Computer Science, 2020, , 43-53.	1.0	0
444	Corruption-Robust Enhancement of Deep Neural Networks for Classification of Peripheral Blood Smear Images. Lecture Notes in Computer Science, 2020, , 372-381.	1.0	2
445	Black Box Nature of Deep Learning for Digital Pathology: Beyond Quantitative to Qualitative Algorithmic Performances. Lecture Notes in Computer Science, 2020, , 95-101.	1.0	5
447	Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning. , 2021, 2021, 14318-14328.		216
448	Task-Aware Variational Adversarial Active Learning. , 2021, , .		46

#	Article	IF	CITATIONS
449	Multiple Instance Captioning: Learning Representations from Histopathology Textbooks and Articles. , 2021, , .		20
451	ЦÐ־ÐÐОВЕÐYÐТОЛОГІÐ־Ð' ÐОБОТІ МЕДÐ־ЧÐОЇ ЛÐБОÐÐТОÐІЇ. / ÐÐÐÐ	›Ð†ÐxtÐ~Ч	ĐĐõĐ™ ОГ
452	Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images. Nature Communications, 2021, 12, 6311.	5.8	51
453	Deep learning is widely applicable to phenotyping embryonic development and disease. Development (Cambridge), 2021, 148, .	1.2	16
454	Self supervised contrastive learning for digital histopathology. Machine Learning With Applications, 2022, 7, 100198.	3.0	56
458	Automatic cancer detection on digital histopathology images of mid-gland radical prostatectomy specimens. Journal of Medical Imaging, 2020, 7, 1.	0.8	2
461	Accurate segmentation of prostate cancer histomorphometric features using a weakly supervised convolutional neural network. Journal of Medical Imaging, 2020, 7, 057501.	0.8	5
462	Automated Classification of Acute Rejection from Endomyocardial Biopsies. , 2020, , .		6
463	Classification of Glomeruli with Membranous Nephropathy on Renal Digital Pathological Images with Deep Learning. , 2020, , .		3
464	Exploring the College of American Pathologists Electronic Cancer Checklists: What They Are and What They Can Do for You. Archives of Pathology and Laboratory Medicine, 2021, 145, 392-398.	1.2	8
465	Challenges and opportunities of digital health in a post-COVID19 world. Journal of Research in Medical Sciences, 2021, 26, 11.	0.4	4
466	Selection of Representative Histologic Slides in Interobserver Reproducibility Studies: Insights from Expert Review for Ovarian Carcinoma Subtype Classification. Journal of Pathology Informatics, 2021, 12, 15.	0.6	Ο
467	End-to-End Deep Learning for Detecting Metastatic Breast Cancer in Axillary Lymph Node from Digital Pathology Images. Lecture Notes in Computer Science, 2021, , 343-353.	1.0	0
468	A Pathology Deep Learning System Capable of Triage of Melanoma Specimens Utilizing Dermatopathologist Consensus as Ground Truth. , 2021, , .		11
469	Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology. , 2021, , .		15
470	Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification. , 2021, , .		50
471	Deep Learning Models for Poorly Differentiated Colorectal Adenocarcinoma Classification in Whole Slide Images Using Transfer Learning. Diagnostics, 2021, 11, 2074.	1.3	18
472	Deep Learning Technology in Pathological Image Analysis of Breast Tissue. Journal of Healthcare Engineering, 2021, 2021, 1-12.	1.1	2

#	Article	IF	CITATIONS
473	Automatic estimation of ulcerative colitis severity from endoscopy videos using ordinal multi-instance learning. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2022, 10, 425-433.	1.3	8
474	Understanding the ethical and legal considerations of Digital Pathology. Journal of Pathology: Clinical Research, 2022, 8, 101-115.	1.3	7
475	Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study. Journal of Clinical Medicine, 2021, 10, 5326.	1.0	28
476	Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes. Diabetologia, 2022, 65, 457-466.	2.9	24
477	The Role of Machine Learning in Cardiovascular Pathology. Canadian Journal of Cardiology, 2022, 38, 234-245.	0.8	9
478	Evaluation of an Artificial Intelligence–Augmented Digital System for Histologic Classification of Colorectal Polyps. JAMA Network Open, 2021, 4, e2135271.	2.8	14
480	Digital Pathology Transformation in a Supraregional Germ Cell Tumour Network. Diagnostics, 2021, 11, 2191.	1.3	8
482	Lung cancer subtype classification using histopathological images based on weakly supervised multi-instance learning. Physics in Medicine and Biology, 2021, 66, 235013.	1.6	7
483	Development of a Deep Learning Model to Assist With Diagnosis of Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 762733.	1.3	6
485	Hard Sample Aware Noise Robust Learning for Histopathology Image Classification. IEEE Transactions on Medical Imaging, 2022, 41, 881-894.	5.4	29
487	Deep Learning Approaches and Applications in Toxicologic Histopathology: Current Status and Future Perspectives. Journal of Pathology Informatics, 2021, 12, 42.	0.8	8
488	Machine Learning Based Classification from Whole-Slide Histopathological Images Enables Reliable and Interpretable Diagnosis of Inverted Urothelial Papilloma. SSRN Electronic Journal, 0, , .	0.4	0
489	A Pathologist-Annotated Dataset for Validating Artificial Intelligence: A Project Description and Pilot Study. Journal of Pathology Informatics, 2021, 12, 45.	0.8	17
490	Accurate Prognostic Prediction for Breast Cancer Based on Histopathological Images by Artificial Intelligence. SSRN Electronic Journal, 0, , .	0.4	0
491	Integrating morphologic and molecular histopathological features through whole slide image registration and deep learning. Neuro-Oncology Advances, 2022, 4, vdac001.	0.4	3
492	A survey on graph-based deep learning for computational histopathology. Computerized Medical Imaging and Graphics, 2022, 95, 102027.	3.5	36
493	Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using Deep Learning. Scientific Reports, 2022, 12, 481.	1.6	21
494	From What to Why, the Growing Need for a Focus Shift Toward Explainability of AI in Digital Pathology. Frontiers in Physiology, 2021, 12, 821217.	1.3	7

#	Article	IF	CITATIONS
495	Performance Evaluation of State-of-the-Art Edge Computing Devices for DNN Inference. , 2020, , .		4
496	Unsupervised Learning of Deep-Learned Features from Breast Cancer Images. , 2020, , .		0
497	Improving Self-supervised Learning with Hardness-aware Dynamic Curriculum Learning: An Application to Digital Pathology. , 2021, , .		6
498	Generalizing Few-Shot Classification of Whole-Genome Doubling Across Cancer Types. , 2021, , .		4
499	An investigation of attention mechanisms in histopathology whole-slide-image analysis for regression objectives. , 2021, , .		7
500	Automated Diagnosis of Melanoma Histopathological Images Based on Deep Learning Using Trust Counting Method. , 2021, , .		1
502	Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on <scp>DNA</scp> methylation. Journal of Pathology, 2022, 256, 378-387.	2.1	19
503	Development and Validation of an Artificial Intelligence-Based Image Classification Method for Pathological Diagnosis in Patients With Extramammary Paget's Disease. Frontiers in Oncology, 2021, 11, 810909.	1.3	4
504	Genopathomic Profiling Identifies Signatures for Immunotherapy Response of Lung Cancer Via Confounder-Aware Representation Learning. SSRN Electronic Journal, 0, , .	0.4	0
505	Semantic annotation for computational pathology: multidisciplinary experience and best practice recommendations. Journal of Pathology: Clinical Research, 2022, 8, 116-128.	1.3	20
506	A deep learning model for breast ductal carcinoma in situ classification in whole slide images. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2022, 480, 1009-1022.	1.4	16
507	Development and Validation of a Pathomic Biomarker for Immunotherapy Response via Confounder-Aware Representation Learning. SSRN Electronic Journal, 0, , .	0.4	0
508	Evaluating generic AutoML tools for computational pathology. Informatics in Medicine Unlocked, 2022, 29, 100853.	1.9	5
509	Semi-automated validation and quantification of CTLA-4 in 90 different tumor entities using multiple antibodies and artificial intelligence. Laboratory Investigation, 2022, 102, 650-657.	1.7	5
511	Deep convolutional neural network-based classification of cancer cells on cytological pleural effusion images. Modern Pathology, 2022, 35, 609-614.	2.9	29
512	Forensic bone age estimation of adolescent pelvis X-rays based on two-stage convolutional neural network. International Journal of Legal Medicine, 2022, 136, 797-810.	1.2	8
513	Efficient Cancer Classification by Coupling Semi Supervised and Multiple Instance Learning. IEEE Access, 2022, 10, 9763-9773.	2.6	8
515	Quantifying the cell morphology and predicting biological behavior of signet ring cell carcinoma using deep learning. Scientific Reports, 2022, 12, 183.	1.6	9

#	Article	IF	CITATIONS
516	Diagnosis of lymph node metastasis in head and neck squamous cell carcinoma using deep learning. Laryngoscope Investigative Otolaryngology, 2022, 7, 161-169.	0.6	9
517	Al in health and medicine. Nature Medicine, 2022, 28, 31-38.	15.2	638
518	Automated quantification of levels of breast terminal duct lobular (TDLU) involution using deep learning. Npj Breast Cancer, 2022, 8, 13.	2.3	6
519	Artificial intelligence for dermatopathology: Current trends and the road ahead. Seminars in Diagnostic Pathology, 2022, 39, 298-304.	1.0	13
520	A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches. Artificial Intelligence Review, 2022, 55, 4809-4878.	9.7	77
521	Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Reports, 2022, 4, 100443.	2.6	60
522	HEROHE Challenge: Assessing HER2 Status in Breast Cancer Without Immunohistochemistry or <i>In Situ</i> Hybridization. SSRN Electronic Journal, 0, , .	0.4	3
523	Study protocol: retrospectively mining multisite clinical data to presymptomatically predict seizure onset for individual patients with Sturge-Weber. BMJ Open, 2022, 12, e053103.	0.8	2
524	Obtaining spatially resolved tumor purity maps using deep multiple instance learning in a pan-cancer study. Patterns, 2022, 3, 100399.	3.1	6
526	Deep Learning and Its Applications in Computational Pathology. BioMedInformatics, 2022, 2, 159-168.	1.0	7
527	A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer. Scientific Reports, 2022, 12, 2222.	1.6	45
528	Deep learning-based fully automated diagnosis of melanocytic lesions by using whole slide images. Journal of Dermatological Treatment, 2022, 33, 2571-2577.	1.1	5
529	Subtype classification of malignant lymphoma using immunohistochemical staining pattern. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 1379-1389.	1.7	2
530	Current applications and challenges of artificial intelligence in pathology. Human Pathology Reports, 2022, 27, 300596.	0.1	7
531	Progress on deep learning in digital pathology of breast cancer: a narrative review. Gland Surgery, 2022, 11, 751-766.	0.5	7
532	A Fully Automatic Evaluation Model of Difficult Airway Based on Semi-Supervised Deep Learning with a Few Labeled Samples. SSRN Electronic Journal, 0, , .	0.4	0
533	Understanding the Research Landscape of Deep Learning in Biomedical Science: Scientometric Analysis. Journal of Medical Internet Research, 2022, 24, e28114.	2.1	3
534	AIM in Surgical Pathology. , 2022, , 521-538.		0

#	Article	IF	CITATIONS
535	Using Multi-Scale Convolutional Neural Network Based on Multi-Instance Learning to Predict the Efficacy of Neoadjuvant Chemoradiotherapy for Rectal Cancer. IEEE Journal of Translational Engineering in Health and Medicine, 2022, 10, 1-8.	2.2	12
537	A Deep Learning Model for Cervical Cancer Screening on Liquid-Based Cytology Specimens in Whole Slide Images. Cancers, 2022, 14, 1159.	1.7	22
538	Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review. International Journal of Molecular Sciences, 2022, 23, 2462.	1.8	15
539	Prediction of lymph node metastasis in early colorectal cancer based on histologic images by artificial intelligence. Scientific Reports, 2022, 12, 2963.	1.6	18
541	Deep Learning-Based Classification of Cancer Cell in Leptomeningeal Metastasis on Cytomorphologic Features of Cerebrospinal Fluid. Frontiers in Oncology, 2022, 12, 821594.	1.3	4
542	Artificial intelligence to identify genetic alterations in conventional histopathology. Journal of Pathology, 2022, 257, 430-444.	2.1	49
543	A deep learning model for molecular label transfer that enables cancer cell identification from histopathology images. Npj Precision Oncology, 2022, 6, 14.	2.3	17
546	Al for prostate cancer diagnosis — hype or today's reality?. Nature Reviews Urology, 2022, 19, 261-262.	1.9	5
547	Scrutinizing highâ€risk patients from ASCâ€US cytology via a deep learning model. Cancer Cytopathology, 2022, 130, 407-414.	1.4	4
548	Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer with Deep Learning. BME Frontiers, 2022, 2022, .	2.2	6
549	Artificial Intelligence in Pediatric Pathology: The Extinction of a Medical Profession or the Key to a Bright Future?. Pediatric and Developmental Pathology, 2022, , 109352662110598.	0.5	4
550	Deep learning for evaluation of microvascular invasion in hepatocellular carcinoma from tumor areas of histology images. Hepatology International, 2022, 16, 590-602.	1.9	10
551	Deep learning models in medical image analysis. Journal of Oral Biosciences, 2022, 64, 312-320.	0.8	49
552	A Deep Learning Model for Prostate Adenocarcinoma Classification in Needle Biopsy Whole-Slide Images Using Transfer Learning. Diagnostics, 2022, 12, 768.	1.3	16
553	Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies. Nature Medicine, 2022, 28, 575-582.	15.2	44
554	A Weakly Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker. Cancers, 2022, 14, 1651.	1.7	18
555	Application of Artificial Intelligence in Lung Cancer. Cancers, 2022, 14, 1370.	1.7	38
556	Quantification of Hepatocellular Mitoses in a Toxicological Study in Rats Using a Convolutional Neural Network. Toxicologic Pathology, 2022, , 019262332210835.	0.9	1

#	Article	IF	CITATIONS
557	Prostate-Specific Membrane Antigen Is a Biomarker for Residual Disease following Neoadjuvant Intense Androgen Deprivation Therapy in Prostate Cancer. Journal of Urology, 2022, 208, 90-99.	0.2	2
558	Computational pathology for musculoskeletal conditions using machine learning: advances, trends, and challenges. Arthritis Research and Therapy, 2022, 24, 68.	1.6	8
559	Artificial Intelligence–Powered Spatial Analysis of Tumor-Infiltrating Lymphocytes as Complementary Biomarker for Immune Checkpoint Inhibition in Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2022, 40, 1916-1928.	0.8	94
560	Multiâ€instance inflated 3D CNN for classifying urine red blood cells from multiâ€focus videos. IET Image Processing, 2022, 16, 2114-2123.	1.4	1
561	The Role of Artificial Intelligence in Early Cancer Diagnosis. Cancers, 2022, 14, 1524.	1.7	71
562	Dual resolution deep learning network with self-attention mechanism for classification and localisation of colorectal cancer in histopathological images. Journal of Clinical Pathology, 2023, 76, 524-530.	1.0	3
563	Al-enabled in silico immunohistochemical characterization for Alzheimer's disease. Cell Reports Methods, 2022, 2, 100191.	1.4	9
564	Detection of lung cancer metastases in lymph nodes using a multiple instance learning approach. , 2022, , .		0
565	Drug response prediction using deep neural network trained by adaptive resampling of histopathological images. , 2022, , .		0
566	Assessment of deep learning assistance for the pathological diagnosis of gastric cancer. Modern Pathology, 2022, 35, 1262-1268.	2.9	21
567	Deep Learning-Based Model for Identifying Tumors in Endoscopic Images From Patients With Locally Advanced Rectal Cancer Treated With Total Neoadjuvant Therapy. Diseases of the Colon and Rectum, 2023, 66, 383-391.	0.7	6
568	Mathematical Model of Neural Network Development for Morphological Assessment of Repair and Remodeling of Bone Defect. Mathematical Models and Computer Simulations, 2022, 14, 281-288.	0.1	0
569	The future of artificial intelligence in digital pathology – results of a survey across stakeholder groups. Histopathology, 2022, 80, 1121-1127.	1.6	16
570	When artificial intelligence meets PD-1/PD-L1 inhibitors: Population screening, response prediction and efficacy evaluation. Computers in Biology and Medicine, 2022, 145, 105499.	3.9	7
571	An artificial intelligence deep learning platform achieves high diagnostic accuracy for Covid-19 pneumonia by reading chest X-ray images. IScience, 2022, 25, 104031.	1.9	11
572	Investigating intra-tumor heterogeneity in non-small cell lung cancer using multiplexed immunohistochemistry and deep learning. , 2022, , .		0
574	Quantitative evaluation of color difference between actual specimens and whole-slide imaging-scanned images calibrated with commercial color charts. , 2022, , .		1
576	Instance importance-Aware graph convolutional network for 3D medical diagnosis. Medical Image Analysis, 2022, 78, 102421.	7.0	11

#	Article	IF	CITATIONS
577	NaroNet: Discovery of tumor microenvironment elements from highly multiplexed images. Medical Image Analysis, 2022, 78, 102384.	7.0	15
578	Explainable artificial intelligenceÂin skin cancer recognition: A systematic review. European Journal of Cancer, 2022, 167, 54-69.	1.3	42
579	Deep Gaussian processes for multiple instance learning: Application to CT intracranial hemorrhage detection. Computer Methods and Programs in Biomedicine, 2022, 219, 106783.	2.6	12
580	Sparse-shot Learning with Exclusive Cross-Entropy for Extremely Many Localisations. , 2021, , .		1
581	Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images. , 2021, , \cdot		67
582	A generative adversarial approach to facilitate archival-quality histopathologic diagnoses from frozen tissue sections. Laboratory Investigation, 2022, 102, 554-559.	1.7	9
583	Building Tools for Machine Learning and Artificial Intelligence in Cancer Research: Best Practices and a Case Study with the PathML Toolkit for Computational Pathology. Molecular Cancer Research, 2022, 20, 202-206.	1.5	24
584	Labels in a haystack: Approaches beyond supervised learning in biomedical applications. Patterns, 2021, 2, 100383.	3.1	9
585	Deep learning for the detection of microsatellite instability from histology images in colorectal cancer: A systematic literature review. ImmunoInformatics, 2021, 3-4, 100008.	1.2	21
586	Al in spotting high-risk characteristics of medical imaging and molecular pathology. Precision Clinical Medicine, 2021, 4, 271-286.	1.3	2
588	The histological diagnosis of breast cancer by employing scale invariant ResNet 18 with spatial supervised technique. , 2021, , .		0
589	Artificial intelligence in pathological evaluation of gastrointestinal cancers. Artificial Intelligence in Gastroenterology, 2021, 2, 141-156.	0.2	1
591	Intraoperative Glioma Grading Using Neural Architecture Search and Multi-Modal Imaging. IEEE Transactions on Medical Imaging, 2022, 41, 2570-2581.	5.4	8
592	PDBL: Improving Histopathological Tissue Classification With Plug-and-Play Pyramidal Deep-Broad Learning. IEEE Transactions on Medical Imaging, 2022, 41, 2252-2262.	5.4	20
593	Neural Network Assisted Pathology Case Identification. Journal of Pathology Informatics, 2022, 13, 100008.	0.8	1
594	Automated Detection of Portal Fields and Central Veins in Whole-Slide Images of Liver Tissue. Journal of Pathology Informatics, 2022, 13, 100001.	0.8	1
595	Breast Cancer Molecular Subtype Prediction on Pathological Images with Discriminative Patch Selection and Multi-Instance Learning. Frontiers in Oncology, 2022, 12, 858453.	1.3	5
597	Attention2majority: Weak multiple instance learning for regenerative kidney grading on whole slide images. Medical Image Analysis, 2022, 79, 102462.	7.0	19

		CITATION REPORT		
#	Article		IF	CITATIONS
598	Al Model for Prostate Biopsies Predicts Cancer Survival. Diagnostics, 2022, 12, 1031.		1.3	2
611	Artificial intelligence-enabled decision support in nephrology. Nature Reviews Nephrolo 452-465.	bgy, 2022, 18,	4.1	21
612	Swarm learning for decentralized artificial intelligence in cancer histopathology. Natur 2022, 28, 1232-1239.	e Medicine,	15.2	77
613	Selection of Representative Histologic Slides in Interobserver Reproducibility Studies: I Expert Review for Ovarian Carcinoma Subtype Classification. Journal of Pathology Info 12, 15.	nsights from rmatics, 2021,	0.8	2
614	Challenges and opportunities of digital health in a post-COVID19 world. Journal of Res Medical Sciences, 2021, 26, 11.	earch in	0.4	30
615	Multi-task deep learning-based survival analysis on the prognosis of late AMD using the data in AREDS AMIA Annual Symposium proceedings, 2021, 2021, 506-515.	e longitudinal	0.2	0
616	Lymph Node Metastasis Prediction From Whole Slide Images With Transformer-Guided Learning and Knowledge Transfer. IEEE Transactions on Medical Imaging, 2022, 41, 27	1 Multiinstance 77-2787.	5.4	15
617	Digital Pathology and Artificial Intelligence Applications in Pathology. Brain Tumor Res Treatment, 2022, 10, 76.	earch and	0.4	5
618	Weakly Supervised Classification using Multi-Level Instance-Aware Optimization on Ce Image. , 2022, , .	ervical Cytologic		0
619	Recent Updates and Technological Developments in Evaluating Cardiac Syncope in the Department. Current Cardiology Reviews, 2022, 18, .	e Emergency	0.6	1
620	Developing image analysis methods for digital pathology. Journal of Pathology, 2022, 2	257, 391-402.	2.1	26
621	Artificial intelligence system shows performance at the level of uropathologists for the and grading of prostate cancer in core needle biopsy: an independent external validation Modern Pathology, 2022, 35, 1449-1457.	detection on study.	2.9	5
622	DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classificatio H&E whole-slide images in colorectal and breast cancer. Medical Image Analysis, 2	n directly from 2022, 79, 102464.	7.0	43
623	Deep learning from multiple experts improves identification of amyloid neuropatholog Neuropathologica Communications, 2022, 10, 66.	ies. Acta	2.4	12
624	Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer. 2022, 22, 494.	3MC Cancer,	1.1	8
625	Lessons from a breast cell annotation competition series for school pupils. Scientific R 12, 7792.	eports, 2022,	1.6	1
626	Multi-scale Multi-instance Multi-feature Joint Learning Broad Network (M3JLBN) for ga metaplasia subtype classification. Knowledge-Based Systems, 2022, 249, 108960.	stric intestinal	4.0	3
627	A novel deep learning prognostic system improves survival predictions for stage III nor cancer. Cancer Medicine, 2022, , .	â€small cell lung	1.3	5

#	Article	IF	CITATIONS
628	Benchmarking weakly-supervised deep learning pipelines for whole slide classification in computational pathology. Medical Image Analysis, 2022, 79, 102474.	7.0	64
629	Self-rule to multi-adapt: Generalized multi-source feature learning using unsupervised domain adaptation for colorectal cancer tissue detection. Medical Image Analysis, 2022, 79, 102473.	7.0	11
630	End-to-End diagnosis of breast biopsy images with transformers. Medical Image Analysis, 2022, 79, 102466.	7.0	12
631	DWT-CV: Dense weight transfer-based cross validation strategy for model selection in biomedical data analysis. Future Generation Computer Systems, 2022, 135, 20-29.	4.9	3
632	Cytomorphometric and flow cytometric analyses using liquidâ€based cytology materials in subtypes of lung adenocarcinoma. Diagnostic Cytopathology, 2022, , .	0.5	3
633	Nucleus classification in histology images using message passing network. Medical Image Analysis, 2022, 79, 102480.	7.0	13
634	Generalisation effects of predictive uncertainty estimation in deep learning for digital pathology. Scientific Reports, 2022, 12, 8329.	1.6	10
635	NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation in breast cancer. GigaScience, 2022, 11, .	3.3	33
638	Automated Cancer Diagnostics via Analysis of Optical and Chemical Images by Deep and Shallow Learning. Metabolites, 2022, 12, 455.	1.3	0
639	SlideGraph <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.svg"><mml:msup><mml:mrow></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:math> : Whole slide image level graphs to predict HER2 status in breast cancer. Medical Image Analysis, 2022, 80, 102486.	7.0	39
640	Spatial heterogeneity and organization of tumor mutation burden with immune infiltrates within tumors based on whole slide images correlated with patient survival in bladder cancer. Journal of Pathology Informatics, 2022, 13, 100105.	0.8	9
641	Weakly supervised segmentation on neural compressed histopathology with self-equivariant regularization. Medical Image Analysis, 2022, 80, 102482.	7.0	6
642	A tool for federated training of segmentation models on whole slide images. Journal of Pathology Informatics, 2022, 13, 100101.	0.8	2
643	General Roadmap and Core Steps for the Development of Al Tools in Digital Pathology. Diagnostics, 2022, 12, 1272.	1.3	4
645	Weakly-supervised tumor purity prediction from frozen H&E stained slides. EBioMedicine, 2022, 80, 104067.	2.7	8
646	A review: The detection of cancer cells in histopathology based on machine vision. Computers in Biology and Medicine, 2022, 146, 105636.	3.9	19
647	DEEMD: Drug Efficacy Estimation Against SARS-CoV-2 Based on Cell Morphology With Deep Multiple Instance Learning. IEEE Transactions on Medical Imaging, 2022, 41, 3128-3145.	5.4	3
648	The Clinical Implication and Translational Research of OSCC Differentiation. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
649	Pyramid Tokens-to-Token Vision Transformer for Thyroid Pathology Image Classification. , 2022, , .		4
651	DigestPath: A benchmark dataset with challenge review for the pathological detection and segmentation of digestive-system. Medical Image Analysis, 2022, 80, 102485.	7.0	27
652	iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images. Cancers, 2022, 14, 2489.	1.7	10
653	Deep learning-based fully automated differential diagnosis of eyelid basal cell and sebaceous carcinoma using whole slide images. Quantitative Imaging in Medicine and Surgery, 2022, 12, 4166-4175.	1.1	8
654	Deep Learning for Predicting Pediatric Crohn's Disease Using Histopathological Imaging. , 2022, , .		0
658	Karl Jaspers and artificial neural nets: on the relation of explaining and understanding artificial intelligence in medicine. Ethics and Information Technology, 2022, 24, .	2.3	2
659	Deep Learning Model for Predicting the Pathological Complete Response to Neoadjuvant Chemoradiotherapy of Locally Advanced Rectal Cancer. Frontiers in Oncology, 0, 12, .	1.3	7
661	A Novel Hybrid Convolutional Neural Network Approach for the Stomach Intestinal Early Detection Cancer Subtype Classification. Computational Intelligence and Neuroscience, 2022, 2022, 1-9.	1.1	4
662	Using deep learning to detect patients at risk for prostate cancer despite benign biopsies. IScience, 2022, 25, 104663.	1.9	5
663	Efficient and Highly Accurate Diagnosis of Malignant Hematological Diseases Based on Whole-Slide Images Using Deep Learning. Frontiers in Oncology, 0, 12, .	1.3	4
664	Classification of Tissue Types in Histology Images Using Graph Convolutional Networks. , 2022, , .		0
665	Multimodal data analysis reveals that pancreatobiliary-type ampullary adenocarcinoma resembles pancreatic adenocarcinoma and differs from cholangiocarcinoma. Journal of Translational Medicine, 2022, 20, .	1.8	2
666	Deep neural network trained on gigapixel images improves lymph node metastasis detection in clinical settings. Nature Communications, 2022, 13, .	5.8	21
667	Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma. Romanian Journal of Morphology and Embryology, 2022, 62, 1017-1028.	0.4	8
668	Prediction of Treatment Response in Triple Negative Breast Cancer From Whole Slide Images. Frontiers in Signal Processing, 0, 2, .	1.2	2
669	Clinical actionability of triaging DNA mismatch repair deficient colorectal cancer from biopsy samples using deep learning. EBioMedicine, 2022, 81, 104120.	2.7	9
670	Weakly-supervised deep learning models in computational pathology. EBioMedicine, 2022, 81, 104117.	2.7	0
671	Weakly supervised deep learning for prediction of treatment effectiveness on ovarian cancer from histopathology images. Computerized Medical Imaging and Graphics, 2022, 99, 102093.	3.5	17

#	Article	IF	CITATIONS
672	Proportion constrained weakly supervised histopathology image classification. Computers in Biology and Medicine, 2022, 147, 105714.	3.9	3
673	Malignant Mesothelioma Subtyping of Tissue Images via Sampling Driven Multiple Instance Prediction. Lecture Notes in Computer Science, 2022, , 263-272.	1.0	1
677	Improving feature extraction from histopathological images through a fine-tuning ImageNet model. Journal of Pathology Informatics, 2022, 13, 100115.	0.8	10
678	What Works Where and How for Uptake and Impact of Artificial Intelligence in Pathology: Review of Theories for a Realist Evaluation. Journal of Medical Internet Research, 0, 25, e38039.	2.1	4
679	Quantifying the effect of color processing on blood and damaged tissue detection in Whole Slide Images. , 2022, , .		11
680	DEMoS: a deep learning-based ensemble approach for predicting the molecular subtypes of gastric adenocarcinomas from histopathological images. Bioinformatics, 2022, 38, 4206-4213.	1.8	5
682	Nodular and Micronodular Basal Cell Carcinoma Subtypes Are Different Tumors Based on Their Morphological Architecture and Their Interaction with the Surrounding Stroma. Diagnostics, 2022, 12, 1636.	1.3	2
683	A Comparison Between Single- and Multi-Scale Approaches for Classification of Histopathology Images. Frontiers in Public Health, 0, 10, .	1.3	5
684	HistoML, a markup language for representation and exchange of histopathological features in pathology images. Scientific Data, 2022, 9, .	2.4	2
685	Comparative analysis of high- and low-level deep learning approaches in microsatellite instability prediction. Scientific Reports, 2022, 12, .	1.6	3
686	Constrained multiple instance learning for ulcerative colitis prediction using histological images. Computer Methods and Programs in Biomedicine, 2022, 224, 107012.	2.6	7
687	Application of deep learning methods: From molecular modelling to patient classification. Experimental Cell Research, 2022, 418, 113278.	1.2	3
688	Impact of scanner variability on lymph node segmentation in computational pathology. Journal of Pathology Informatics, 2022, 13, 100127.	0.8	7
689	Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity. Nature Communications, 2022, 13, .	5.8	11
690	Artificial intelligence for prostate cancer histopathology diagnostics. Canadian Urological Association Journal, 2022, 16, .	0.3	1
691	A survey on artificial intelligence in histopathology image analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12,	4.6	15
692	Editorial: Machine Learning in Action: Stroke Diagnosis and Outcome Prediction. Frontiers in Neurology, 0, 13, .	1.1	2
693	A Multi-Task Multiple Instance Learning Algorithm to Analyze Large Whole Slide Images from Bright Challenge 2022. , 2022, , .		1

#	Article	IF	CITATIONS
694	An Improved Method of Extracting and Classifying DLBCL Information Genes. , 2022, , .		1
695	Intratumoral Resolution of Driver Gene Mutation Heterogeneity in Renal Cancer Using Deep Learning. Cancer Research, 2022, 82, 2792-2806.	0.4	10
696	Multi stain graph fusion for multimodal integration in pathology. , 2022, , .		7
697	Histologic Screening of Malignant Melanoma, Spitz, Dermal and Junctional Melanocytic Nevi Using a Deep Learning Model. American Journal of Dermatopathology, 2022, 44, 650-657.	0.3	3
698	A multi-view deep learning model for pathology image diagnosis. Applied Intelligence, 0, , .	3.3	0
699	Deep Learning-Based Recognition of Different Thyroid Cancer Categories Using Whole Frozen-Slide Images. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
700	Unleashing the potential of digital pathology data by training computer-aided diagnosis models without human annotations. Npj Digital Medicine, 2022, 5, .	5.7	23
701	Cultivating Clinical Clarity through Computer Vision: A Current Perspective on Whole Slide Imaging and Artificial Intelligence. Diagnostics, 2022, 12, 1778.	1.3	5
702	HEROHE Challenge: Predicting HER2 Status in Breast Cancer from Hematoxylin–Eosin Whole-Slide Imaging. Journal of Imaging, 2022, 8, 213.	1.7	10
703	Contrastive learning-based computational histopathology predict differential expression of cancer driver genes. Briefings in Bioinformatics, 2022, 23, .	3.2	8
704	Computational pathology in ovarian cancer. Frontiers in Oncology, 0, 12, .	1.3	0
705	Survival prediction in triple negative breast cancer using multiple instance learning of histopathological images. Scientific Reports, 2022, 12, .	1.6	8
706	Current Developments of Artificial Intelligence in Digital Pathology and Its Future Clinical Applications in Gastrointestinal Cancers. Cancers, 2022, 14, 3780.	1.7	18
707	Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology. Journal of Digital Imaging, 2022, 35, 1719-1737.	1.6	8
708	Using Sparse Patch Annotation for Tumor Segmentation in Histopathological Images. Sensors, 2022, 22, 6053.	2.1	2
709	The evolving role of morphology in endometrial cancer diagnostics: From histopathology and molecular testing towards integrative data analysis by deep learning. Frontiers in Oncology, 0, 12, .	1.3	4
710	Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell, 2022, 40, 865-878.e6.	7.7	109
711	Exploring pathological signatures for predicting the recurrence of early-stage hepatocellular carcinoma based on deepÂlearning. Frontiers in Oncology, 0, 12, .	1.3	9

#	ARTICLE	IF	CITATIONS
712	Integrating context for superior cancer prognosis. Nature Biomedical Engineering, 2022, 6, 1323-1325.	11.6	2
713	Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nature Biomedical Engineering, 0, , .	11.6	24
714	A framework for falsifiable explanations of machine learning models with an application in computational pathology. Medical Image Analysis, 2022, 82, 102594.	7.0	4
716	Artificial Intelligence in Colorectal Cancer Surgery: Present and Future Perspectives. Cancers, 2022, 14, 3803.	1.7	12
717	Identification of misdiagnosis by deep neural networks on a histopathologic review of breast cancer lymph node metastases. Scientific Reports, 2022, 12, .	1.6	8
718	Transformer-based unsupervised contrastive learning for histopathological image classification. Medical Image Analysis, 2022, 81, 102559.	7.0	70
719	Attention-based multiple-instance learning for Pediatric bone age assessment with efficient and interpretable. Biomedical Signal Processing and Control, 2023, 79, 104028.	3.5	2
720	Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images. Scientific Reports, 2022, 12, .	1.6	30
722	IDA-MIL: Classification of Glomerular with Spike-like Projections via Multiple Instance Learning with Instance-level Data Augmentation. Computer Methods and Programs in Biomedicine, 2022, 225, 107106.	2.6	2
723	Diagnose Like A Pathologist: Weakly-Supervised Pathologist-Tree Network for Slide-Level Immunohistochemical Scoring. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 47-54.	3.6	9
724	Detection and Classification of Lung Cancer Cells Using Swin Transformer. Journal of Cancer Therapy, 2022, 13, 464-475.	0.1	3
725	Stain Based Contrastive Co-training forÂHistopathological Image Analysis. Lecture Notes in Computer Science, 2022, , 106-116.	1.0	0
726	Abstraction inÂPixel-wise Noisy Annotations Can Guide Attention toÂImprove Prostate Cancer Grade Assessment. Lecture Notes in Computer Science, 2022, , 23-31.	1.0	0
727	Kernel Attention Transformer (KAT) for Histopathology Whole Slide Image Classification. Lecture Notes in Computer Science, 2022, , 283-292.	1.0	5
728	Predicting Molecular Traits fromÂTissue Morphology Through Self-interactive Multi-instance Learning. Lecture Notes in Computer Science, 2022, , 130-139.	1.0	2
729	Comprehensive Al Model Development for Gleason Grading: From Scanning, Cloud-Based Annotation to Pathologist-Al Interaction. SSRN Electronic Journal, 0, , .	0.4	3
730	Federated Stain Normalization for Computational Pathology. Lecture Notes in Computer Science, 2022, , 14-23.	1.0	1
731	SETMIL: Spatial Encoding Transformer-Based Multiple Instance Learning forÂPathological Image Analysis. Lecture Notes in Computer Science, 2022, , 66-76.	1.0	9

D

#	Article	IF	CITATIONS
732	ReMix: A General andÂEfficient Framework forÂMultiple Instance Learning Based Whole Slide Image Classification. Lecture Notes in Computer Science, 2022, , 35-45.	1.0	8
733	Anomaly-Aware Multiple Instance Learning forÂRare Anemia Disorder Classification. Lecture Notes in Computer Science, 2022, , 341-350.	1.0	1
734	Gigapixel Whole-Slide Images Classification Using Locally Supervised Learning. Lecture Notes in Computer Science, 2022, , 192-201.	1.0	6
735	DGMIL: Distribution Guided Multiple Instance Learning for Whole Slide Image Classification. Lecture Notes in Computer Science, 2022, , 24-34.	1.0	12
736	Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images. IEEE Transactions on Medical Imaging, 2022, 41, 3952-3968.	5.4	7
737	MLCN: Metric Learning Constrained Network forÂWhole Slide Image Classification withÂBilinear Gated Attention Mechanism. Lecture Notes in Computer Science, 2022, , 35-46.	1.0	0
738	Histology segmentation using active learning on regions of interest in oral cavity squamous cell carcinoma. Journal of Pathology Informatics, 2022, 13, 100146.	0.8	2
739	RTN: Reinforced Transformer Network forÂCoronary CT Angiography Vessel-level Image Quality Assessment. Lecture Notes in Computer Science, 2022, , 644-653.	1.0	10
740	Characterizing Continual Learning Scenarios forÂTumor Classification inÂHistopathology Images. Lecture Notes in Computer Science, 2022, , 177-187.	1.0	0
741	Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification. IEEE Access, 2022, 10, 93960-93970.	2.6	2
742	Artificial intelligence as a tool for diagnosis in digital pathology whole slide images: A systematic review. Journal of Pathology Informatics, 2022, 13, 100138.	0.8	14
743	Incorporating Intratumoral Heterogeneity intoÂWeakly-Supervised Deep Learning Models viaÂVariance Pooling. Lecture Notes in Computer Science, 2022, , 387-397.	1.0	1
744	Research Progress of Artificial Intelligence in Early Diagnosis of Prostate Cancer. Advances in Clinical Medicine, 2022, 12, 8035-8042.	0.0	0
745	Identify Representative Samples by Conditional Random Field of Cancer Histology Images. IEEE Transactions on Medical Imaging, 2022, 41, 3835-3848.	5.4	6
746	Feature Re-calibration Based Multiple Instance Learning forÂWhole Slide Image Classification. Lecture Notes in Computer Science, 2022, , 420-430.	1.0	3
747	End-to-End Learning forÂlmage-Based Detection ofÂMolecular Alterations inÂDigital Pathology. Lecture Notes in Computer Science, 2022, , 88-98.	1.0	2
748	Investigation ofÂTraining Multiple Instance Learning Networks withÂInstance Sampling. Lecture Notes in Computer Science, 2022, , 95-104.	1.0	0
749	Multiple-Instance Learning with Efficient Transformer for Breast Tumor Image Classification in Bright Challenge. , 2022, , .		0

#	Article	IF	CITATIONS
750	Breast Tumor Image Classification in Bright Challenge VIA Multiple Instance Learning and Deep Transformers. , 2022, , .		0
751	Node-aligned Graph Convolutional Network for Whole-slide Image Representation and Classification. , 2022, , .		19
752	DTFD-MIL: Double-Tier Feature Distillation Multiple Instance Learning for Histopathology Whole Slide Image Classification. , 2022, , .		73
753	Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning. , 2022, , .		114
754	Efficient Classification of Very Large Images with Tiny Objects. , 2022, , .		13
755	Prevention and diagnosis of neurodegenerative diseases using machine learning models. , 2023, , 289-304.		1
756	How to learn with intentional mistakes: NoisyEnsembles to overcome poor tissue quality for deep learning in computational pathology. Frontiers in Medicine, 0, 9, .	1.2	2
757	High-Resolution Histopathological Image Classification Model Based on Fused Heterogeneous Networks with Self-Supervised Feature Representation. BioMed Research International, 2022, 2022, 1-10.	0.9	4
758	Deep Learning Using Endobronchial-Ultrasound-Guided Transbronchial Needle Aspiration Image to Improve the Overall Diagnostic Yield of Sampling Mediastinal Lymphadenopathy. Diagnostics, 2022, 12, 2234.	1.3	4
759	Application of Artificial Intelligence Techniques to Predict Risk of Recurrence of Breast Cancer: A Systematic Review. Journal of Personalized Medicine, 2022, 12, 1496.	1.1	8
760	Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. International Journal of Molecular Sciences, 2022, 23, 11326.	1.8	7
761	Interpretable deep learning of myelin histopathology in age-related cognitive impairment. Acta Neuropathologica Communications, 2022, 10, .	2.4	13
762	Recommendations on compiling test datasets for evaluating artificial intelligence solutions in pathology. Modern Pathology, 2022, 35, 1759-1769.	2.9	24
763	Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Modern Pathology, 2022, 35, 1983-1990.	2.9	15
764	Use of digital pathology and artificial intelligence for the diagnosis of Helicobacter pylori in gastric biopsies. Pathologica, 2022, 114, 295-303.	1.3	7
765	Pan-tumor CAnine cuTaneous Cancer Histology (CATCH) dataset. Scientific Data, 2022, 9, .	2.4	9
766	Multi-modality artificial intelligence in digital pathology. Briefings in Bioinformatics, 2022, 23, .	3.2	7
768	Deep Morphology Learning Enhances <i>Ex Vivo</i> Drug Profiling-Based Precision Medicine. Blood Cancer Discovery, 2022, 3, 502-515.	2.6	9

#	Article	IF	CITATIONS
770	Towards label-efficient automatic diagnosis and analysis: a comprehensive survey of advanced deep learning-based weakly-supervised, semi-supervised and self-supervised techniques in histopathological image analysis. Physics in Medicine and Biology, 2022, 67, 20TR01.	1.6	17
772	Diagnostic Assessment of Deep Learning Algorithms for Frozen Tissue Section Analysis in Women with Breast Cancer. Cancer Research and Treatment, 2023, 55, 513-522.	1.3	1
773	Big data in basic and translational cancer research. Nature Reviews Cancer, 2022, 22, 625-639.	12.8	67
775	Self-supervised learning mechanism for identification of eyelid malignant melanoma in pathologic slides with limited annotation. Frontiers in Medicine, 0, 9, .	1.2	2
777	Transfer Learning for Adenocarcinoma Classifications in the Transurethral Resection of Prostate Whole-Slide Images. Cancers, 2022, 14, 4744.	1.7	3
779	Prediction of Adverse Pathology at Radical Prostatectomy in Grade Group 2 and 3 Prostate Biopsies Using Machine Learning. JCO Clinical Cancer Informatics, 2022, , .	1.0	0
780	Preoperative CT-based deep learning model for predicting overall survival in patients with high-grade serous ovarian cancer. Frontiers in Oncology, 0, 12, .	1.3	0
781	Survival prediction of stomach cancer using expression data and deep learning models with histopathological images. Cancer Science, 2023, 114, 690-701.	1.7	3
782	Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nature Cancer, 2022, 3, 1026-1038.	5.7	115
783	Al in Health Science: A Perspective. Current Pharmaceutical Biotechnology, 2023, 24, 1149-1163.	0.9	4
784	RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval. Medical Image Analysis, 2023, 83, 102645.	7.0	49
785	A unique biomimetic modification endows polyetherketoneketone scaffold with osteoinductivity by activating cAMP/PKA signaling pathway. Science Advances, 2022, 8, .	4.7	10
786	Semantic segmentation of low magnification effusion cytology images: A semi-supervised approach. Computers in Biology and Medicine, 2022, 150, 106179.	3.9	1
787	Differentiable Zooming forÂMultiple Instance Learning onÂWhole-Slide Images. Lecture Notes in Computer Science, 2022, , 699-715.	1.0	14
788	A Dataset Generation Framework forÂEvaluating Megapixel Image Classifiers and Their Explanations. Lecture Notes in Computer Science, 2022, , 422-442.	1.0	0
789	Empowering digital pathology applications through explainable knowledge extraction tools. Journal of Pathology Informatics, 2022, 13, 100139.	0.8	8
790	A review of artificial intelligence in prostate cancer detection on imaging. Therapeutic Advances in Urology, 2022, 14, 175628722211287.	0.9	12
791	Integrative Histology-Genomic Analysis Predicts Hepatocellular Carcinoma Prognosis Using Deep Learning. Genes, 2022, 13, 1770.	1.0	5

		CITATION REPOR	Т	
#	ARTICLE	IF	Сітаті	ONS
792	Artificial intelligence for multimodal data integration in oncology. Cancer Cell, 2022, 40, 1095	-1110. 7.7	115	
793	Artificial Intelligence and Corneal Confocal Microscopy: The Start of a Beautiful Relationship. Journal of Clinical Medicine, 2022, 11, 6199.	1.0) 7	
794	Using Deep Learning to Predict Final HER2 Status in Invasive Breast Cancers That are Equivoca Immunohistochemistry. Applied Immunohistochemistry and Molecular Morphology, 0, Publish of Print, .	l (2+) by Ahead o.c	5 0	
795	Deep Domain Adversarial Learning for Species-Agnostic Classification of Histologic Subtypes o Osteosarcoma. American Journal of Pathology, 2023, 193, 60-72.	f 1.9	5	
797	Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of E Cells in Culture. Calcified Tissue International, 2023, 112, 1-12.	3one 1.5	5 2	
798	Shuffle Attention Multiple Instances Learning for Breast Cancer Whole Slide Image Classificati 2022, , .	on.,	0	
799	Weakly supervised learning and interpretability for endometrial whole slide image diagnosis. Experimental Biology and Medicine, 2022, 247, 2025-2037.	1.1	. 6	
800	Artificial intelligence-derived neurofibrillary tangle burden is associated with antemortem cogn impairment. Acta Neuropathologica Communications, 2022, 10, .	itive 2.4	17	
801	Multiple-instance-learning-based detection of coeliac disease in histological whole-slide images Journal of Pathology Informatics, 2022, 13, 100151.	j. O.8	37	
803	Fast and scalable search of whole-slide images via self-supervised deep learning. Nature Biome Engineering, 2022, 6, 1420-1434.	dical 11.	6 32	
804	A Self-Training Weakly-Supervised Framework for Pathologist-Like Histopathological Image An 2022, , .	alysis. ,	0	
806	Genopathomic profiling identifies signatures for immunotherapy response of lung adenocarcir via confounder-aware representation learning. IScience, 2022, 25, 105382.	ioma 1.9	0	
807	<scp>MIST</scp> : multiple instance learning network based on Swin Transformer for whole sli image classification of colorectal adenomas. Journal of Pathology, 2023, 259, 125-135.	de 2.1	. 11	
808	Computer-Assisted Annotation of Digital H&E/SOX10 Dual Stains Generates High-Perforn Convolutional Neural Network for Calculating Tumor Burden in H&E-Stained Cutaneous Melanoma. International Journal of Environmental Research and Public Health, 2022, 19, 1432	hing 1.2 7.	3	
809	A semi-supervised multi-task learning framework for cancer classification with weak annotation whole-slide images. Medical Image Analysis, 2023, 83, 102652.	n in 7.C) 17	
810	Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathologin breast cancer. Nature Communications, 2022, 13, .	gy images 5.8	3 31	
811	Predicting Molecular Subtype and Survival of Rhabdomyosarcoma Patients Using Deep Learnir H&E Images: A Report from the Children's Oncology Group. Clinical Cancer Research, 202 364-378.	ig of :3, 29, 3.2	2 0	
812	GC-EnC: A Copula based ensemble of CNNs for malignancy identification in breast histopathol cytology images. Computers in Biology and Medicine, 2023, 152, 106329.	bgy and 3.9) 4	

#	Article	IF	CITATIONS
813	Deep learning-based framework for slide-based histopathological image analysis. Scientific Reports, 2022, 12, .	1.6	2
814	Application of Artificial Intelligence in Pathology: Trends and Challenges. Diagnostics, 2022, 12, 2794.	1.3	22
815	The key to an effective Al-powered digital pathology: Establishing a symbiotic workflow between pathologists and machine. Journal of Pathology Informatics, 2022, 13, 100156.	0.8	2
816	Toxicologic Pathology Forum: A Roadmap for Building State-of-the-Art Digital Image Data Resources for Toxicologic Pathology in the Pharmaceutical Industry. Toxicologic Pathology, 0, , 019262332211327.	0.9	0
817	Unsupervised domain adaptive tumor region recognition for Ki67 automated assisted quantification. International Journal of Computer Assisted Radiology and Surgery, 2023, 18, 629-640.	1.7	1
818	Computer-aided detection and prognosis of colorectal cancer on whole slide images using dual resolution deep learning. Journal of Cancer Research and Clinical Oncology, 2023, 149, 91-101.	1.2	3
819	Deep learning-based quantification of NAFLD/NASH progression in human liver biopsies. Scientific Reports, 2022, 12, .	1.6	10
820	Differentiation of Urothelial Carcinoma in Histopathology Images Using Deep Learning and Visualisation. Journal of Pathology Informatics, 2022, , 100155.	0.8	3
821	Editorial: Weakly supervised deep learning-based methods for brain image analysis. Frontiers in Neuroinformatics, 0, 16, .	1.3	0
822	Applications of Digital and Computational Pathology and Artificial Intelligence in Genitourinary Pathology Diagnostics. Surgical Pathology Clinics, 2022, 15, 759-785.	0.7	1
823	Uncertainty Ordinal Multi-Instance Learning for Breast Cancer Diagnosis. Healthcare (Switzerland), 2022, 10, 2300.	1.0	0
824	An Algorithm as a Biomarker for Response to Immune Checkpoint Inhibitor Therapy. JAMA Oncology, 0, ,	3.4	0
825	Opportunities and challenges in interpretable deep learning for drug sensitivity prediction of cancer cells. Frontiers in Bioinformatics, 0, 2, .	1.0	4
827	Enhancing Local Context ofÂHistology Features inÂVision Transformers. Lecture Notes in Computer Science, 2022, , 154-163.	1.0	3
828	High-fidelity detection, subtyping, and localization of five skin neoplasms using supervised and semi-supervised learning. Journal of Pathology Informatics, 2023, 14, 100159.	0.8	1
829	Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation. Journal of Pathology Informatics, 2023, 14, 100160.	0.8	7
830	Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treatment Reviews, 2023, 112, 102498.	3.4	13
831	Automatic diagnosis and grading of Prostate Cancer with weakly supervised learning on whole slide images. Computers in Biology and Medicine, 2023, 152, 106340.	3.9	9

#	Article	IF	CITATIONS
832	Interpretable classification of pathology whole-slide images using attention based context-aware graph convolutional neural network. Computer Methods and Programs in Biomedicine, 2023, 229, 107268.	2.6	6
833	Bilateral adaptive graph convolutional network on CT based Covid-19 diagnosis with uncertainty-aware consensus-assisted multiple instance learning. Medical Image Analysis, 2023, 84, 102722.	7.0	10
834	Weakly Supervised Learning for Poorly Differentiated Adenocarcinoma Classification in GastricEndoscopic Submucosal Dissection Whole Slide Images. Technology in Cancer Research and Treatment, 2022, 21, 153303382211426.	0.8	4
835	MuRCL: Multi-Instance Reinforcement Contrastive Learning for Whole Slide Image Classification. IEEE Transactions on Medical Imaging, 2023, 42, 1337-1348.	5.4	2
836	Federating Unlabeled Samples: A Semi-supervised Collaborative Framework forÂWhole Slide Image Analysis. Lecture Notes in Computer Science, 2022, , 64-72.	1.0	0
837	Whole Slide Image Quality in Digital Pathology: Review and Perspectives. IEEE Access, 2022, 10, 131005-131035.	2.6	3
838	Positional Multi-Cross-Attention for Bone Age Estimation Using Deep Multiple Instance Learning. , 2022, , .		0
839	Graph Neural Networks for Colorectal Histopathological Image Classification. , 2022, , .		2
840	Development of a Novel Deep Learning-Based Prediction Model for the Prognosis of Operable Cervical Cancer. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-14.	0.7	2
841	Weakly supervised learning for multi-organ adenocarcinoma classification in whole slide images. PLoS ONE, 2022, 17, e0275378.	1.1	1
842	Weakly Supervised Convolutional Neural Network for Automatic Gleason Grading of Prostate Cancer. , 2022, , .		0
843	Breast Cancer Dataset, Classification and Detection Using Deep Learning. Healthcare (Switzerland), 2022, 10, 2395.	1.0	10
844	Diagnose Like Doctors: Weakly Supervised Fine-Grained Classification of Breast Cancer. ACM Transactions on Intelligent Systems and Technology, 2023, 14, 1-17.	2.9	1
845	Predicting neoadjuvant chemotherapy benefit using deep learning from stromal histology in breast cancer. Npj Breast Cancer, 2022, 8, .	2.3	5
846	Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels. Cancers, 2022, 14, 5778.	1.7	10
847	Predicting multipotency of human adult stem cells derived from various donors through deep learning. Scientific Reports, 2022, 12, .	1.6	5
849	Clinical Validation of Artificial Intelligence–Augmented Pathology Diagnosis Demonstrates Significant Gains in Diagnostic Accuracy in Prostate Cancer Detection. Archives of Pathology and Laboratory Medicine, 2023, 147, 1178-1185.	1.2	16
851	Risk-aware survival time prediction from whole slide pathological images. Scientific Reports, 2022, 12,	1.6	5

#	Article	IF	CITATIONS
852	Histological evaluation of PAXgene tissue fixation in Barrett's esophagus and esophageal adenocarcinoma diagnostics. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 0, , .	1.4	0
853	Deep transformation models for functional outcome prediction after acute ischemic stroke. Biometrical Journal, 0, , .	0.6	1
854	Validation and real-world clinical application of an artificial intelligence algorithm for breast cancer detection in biopsies. Npj Breast Cancer, 2022, 8, .	2.3	18
857	Deep learning identifies morphological patterns of homologous recombination deficiency in luminal breast cancers from whole slide images. Cell Reports Medicine, 2022, 3, 100872.	3.3	19
858	Artificial intelligence for basal cell carcinoma: diagnosis and distinction from histological mimics. Pathology, 2023, 55, 342-349.	0.3	1
859	Vision transformer-based weakly supervised histopathological image analysis of primary brain tumors. IScience, 2023, 26, 105872.	1.9	13
860	Performance of Automated Classification of Diagnostic Entities in Dermatopathology Validated on Multisite Data Representing the Real-World Variability of Pathology Workload. Archives of Pathology and Laboratory Medicine, 2023, 147, 1093-1098.	1.2	2
861	Independencyâ€enhancing adversarial active learning. IET Image Processing, 2023, 17, 1427-1437.	1.4	0
862	Computationally Efficient AdaptiveDecompression for Whole Slide ImageProcessing. Biomedical Optics Express, 0, , .	1.5	0
863	An Al-assisted tool for efficient prostate cancer diagnosis in low-grade and low-volume cases. Patterns, 2022, 3, 100642.	3.1	1
864	Application of Deep Learning in Histopathology Images of Breast Cancer: A Review. Micromachines, 2022, 13, 2197.	1.4	11
865	Detection of Colorectal Adenocarcinoma and Grading Dysplasia on Histopathologic Slides Using Deep Learning. American Journal of Pathology, 2023, 193, 332-340.	1.9	2
866	A deep-learning model for transforming the style of tissue images from cryosectioned to formalin-fixed and paraffin-embedded. Nature Biomedical Engineering, 2022, 6, 1407-1419.	11.6	14
869	CT-based COPD identification using multiple instance learning with two-stage attention. Computer Methods and Programs in Biomedicine, 2023, 230, 107356.	2.6	2
870	Annotating for Artificial Intelligence Applications in Digital Pathology: A Practical Guide for Pathologists and Researchers. Modern Pathology, 2023, 36, 100086.	2.9	4
871	Harnessing the Power of Artificial Intelligence. , 2022, , 241-244.		0
872	Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images. Medical Image Analysis, 2023, 85, 102748.	7.0	6
873	Detection of thinâ€cap fibroatheroma in <scp>IVOCT</scp> images based on weakly supervised learning and domain knowledge. Journal of Biophotonics, 2023, 16, .	1.1	2

#	Article	IF	CITATIONS
874	Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Current Oncology, 2023, 30, 1363-1380.	0.9	1
875	Stimulated Raman Scattering Microscopy Enables Gleason Scoring of Prostate Core Needle Biopsy by a Convolutional Neural Network. Cancer Research, 2023, 83, 641-651.	0.4	29
876	Inference of core needle biopsy whole slide images requiring definitive therapy for prostate cancer. BMC Cancer, 2023, 23, .	1.1	0
877	Ensemble biomarkers for guiding antiâ€angiogenesis therapy for ovarian cancer using deep learning. Clinical and Translational Medicine, 2023, 13, .	1.7	1
878	An update on computational pathology tools for genitourinary pathology practice: A review paper from the Genitourinary Pathology Society (GUPS). Journal of Pathology Informatics, 2023, 14, 100177.	0.8	2
879	Data-driven color augmentation for H&E stained images in computational pathology. Journal of Pathology Informatics, 2023, 14, 100183.	0.8	9
880	Evaluation of automatic discrimination between benign and malignant prostate tissue in the era of high precision digital pathology. BMC Bioinformatics, 2023, 24, .	1.2	6
881	Hierarchical multimodal fusion framework based on noisy label learning and attention mechanism for cancer classification with pathology and genomic features. Computerized Medical Imaging and Graphics, 2023, 104, 102176.	3.5	3
882	Al in Computational Pathology of Cancer: Improving Diagnostic Workflows and Clinical Outcomes?. Annual Review of Cancer Biology, 2023, 7, 57-71.	2.3	6
883	Applications of artificial intelligence in prostate cancer histopathology. Urologic Oncology: Seminars and Original Investigations, 2024, 42, 37-47.	0.8	2
884	Artificial intelligence and inflammatory bowel disease: Where are we going?. World Journal of Gastroenterology, 0, 29, 508-520.	1.4	11
885	Prostate Cancer Grading Using Multistage Deep Neural Networks. Lecture Notes in Electrical Engineering, 2023, , 271-283.	0.3	1
886	Classifying Cervical Histopathological Whole Slide Images via Deep Multi-Instance Transfer Learning. , 2022, , .		1
887	Attention multiple instance learning with Transformer aggregation for breast cancer whole slide image classification. , 2022, , .		2
888	Artificial intelligence based model for establishing the histopathological diagnostic of the cutaneous basal cell carcinoma. Acta Marisiensis - Seria Medica, 2022, 68, 164-171.	0.2	1
889	Machine learning can aid in prediction of IDH mutation from H&E-stained histology slides in infiltrating gliomas. Scientific Reports, 2022, 12, .	1.6	8
890	Space and Level Cooperation Framework for Pathological Cancer Grading. , 2022, , .		0
891	A Context-Guided Attention Method for Integrating Features of Histopathological Patches. , 2022, , .		0

ARTICLE IF CITATIONS Deep Multi-Instance Learning with Adaptive Recurrent Pooling for Medical Image Classification., 2022, 892 1 Distilling Knowledge from Ensembles of Cluster-Constrained-Attention Multiple-Instance Learners 894 for Whole Slide Image Classification., 2022,,. 895 End-to-end Multiple Instance Learning with Gradient Accumulation., 2022,,. 1 Automated <scp>Ki</scp> $\hat{a}\in 67$ labeling index assessment in prostate cancer using artificial intelligence 2.1 and multiplex fluorescence immunohistochemistry. Journal of Pathology, 2023, 260, 5-16. PathNarratives: Data annotation for pathological human-AI collaborative diagnosis. Frontiers in 898 1.2 3 Medicine, 0, 9, . Deep learning applications in visual data for benign and malignant hematological conditions: a 1.7 systematic review and visual glossary. Haematologica, 0, , . CWC-transformer: a visual transformer approach for compressed whole slide image classification. 900 3.2 4 Neural Computing and Applications, 0, , Deep Learning-Based Classification and Targeted Gene Alteration Prediction from Pleural Effusion 901 1.7 Cell Block Whole-Slide Images. Cancers, 2023, 15, 752. Using Whole Slide Image Representations fromÂSelf-supervised Contrastive Learning forÂMelanoma 902 1.0 0 Concordance Regression. Lecture Notes in Computer Science, 2023, , 442-456. Federated learning for predicting histological response to neoadjuvant chemotherapy in 15.2 triple-negative breast cancer. Nature Medicine, 2023, 29, 135-146. Bayesian Collaborative Learning for Whole-Slide Image Classification. IEEE Transactions on Medical 904 2 5.4Imaging, 2023, 42, 1809-1821. Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy 2.3 responses from multi-stain histopathologic images. Npj Precision Oncology, 2023, 7, . A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers, 2023, 15, 843. 907 1.7 7 Development and Validation of a Machine Learning Model for Detection and Classification of Tertiary Lymphoid Structures in Gastrointestinal Cancers. JAMA Network Open, 2023, 6, e2252553. 908 2.8 Automatic Grading of ACervical Biopsies by ACombining Full and ASelf-supervision. Lecture Notes in 909 1.0 0 Computer Science, 2023, , 408-423. Multi-scale Attention-Based Multiple Instance Learning forÂClassification ofÂMulti-gigapixel Histology Images. Lecture Notes in Computer Science, 2023, , 635-647. An End-to-End Data-Adaptive Pancreas Segmentation System with an Image Quality Control Toolbox. 911 1.1 0 Journal of Healthcare Engineering, 2023, 2023, 1-12. Annotation-Free Deep Learning-Based Prediction of Thyroid Molecular Cancer Biomarker BRAF (V600E) 1.8 from Cytological Slides. International Journal of Molecular Sciences, 2023, 24, 2521.

#	Article	IF	CITATIONS
913	MS-CLAM: Mixed supervision for the classification and localization of tumors in Whole Slide Images. Medical Image Analysis, 2023, 85, 102763.	7.0	3
914	Application of Artificial Intelligence in Gastrointestinal Cancer. Advances in Clinical Medicine, 2023, 13, 3942-3952.	0.0	0
915	PKA ² -Net: Prior Knowledge-Based Active Attention Network for Accurate Pneumonia Diagnosis on Chest X-Ray Images. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 3513-3524.	3.9	2
916	Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning. Scientific Reports, 2023, 13, .	1.6	4
917	Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta, 2023, 135, 43-50.	0.7	3
918	A comparative study of the inter-observer variability on Gleason grading against Deep Learning-based approaches for prostate cancer. Computers in Biology and Medicine, 2023, 159, 106856.	3.9	6
919	Biological insights and novel biomarker discovery through deep learning approaches in breast cancer histopathology. Npj Breast Cancer, 2023, 9, .	2.3	6
920	Interpretable attention-based deep learning ensemble for personalized ovarian cancer treatment without manual annotations. Computerized Medical Imaging and Graphics, 2023, 107, 102233.	3.5	2
921	Integration of clinical features and deep learning on pathology for the prediction of breast cancer recurrence assays and risk of recurrence. Npj Breast Cancer, 2023, 9, .	2.3	9
922	Diagnosis of Alzheimer Disease and Tauopathies on Whole-Slide Histopathology Images Using a Weakly Supervised Deep Learning Algorithm. Laboratory Investigation, 2023, 103, 100127.	1.7	6
923	Multilayer outperforms single-layer slide scanning in AI-based classification of whole slide images with low-burden acid-fast mycobacteria (AFB). Computer Methods and Programs in Biomedicine, 2023, 234, 107518.	2.6	0
924	Predicting gene mutation status via artificial intelligence technologies based on multimodal integration (MMI) to advance precision oncology. Seminars in Cancer Biology, 2023, 91, 1-15.	4.3	12
925	Thyroid Cytopathology Cancer Diagnosis from Smartphone Images Using Machine Learning. Modern Pathology, 2023, 36, 100129.	2.9	3
926	Automatic generation of pathological benchmark dataset from hyperspectral images of double stained tissues. Optics and Laser Technology, 2023, 163, 109331.	2.2	13
927	Deep Metric Learning for Transparent Classification of Covid-19 X-Ray Images. , 2022, , .		2
928	A CAD system for automatic dysplasia grading on H&E cervical whole-slide images. Scientific Reports, 2023, 13, .	1.6	3
929	Artificial intelligence-assisted selection and efficacy prediction of antineoplastic strategies for precision cancer therapy. Seminars in Cancer Biology, 2023, 90, 57-72.	4.3	11
930	Handcrafted Histological Transformer (H2T): Unsupervised representation of whole slide images. Medical Image Analysis, 2023, 85, 102743.	7.0	7

#	Article	IF	CITATIONS
931	Deep-learning based breast cancer detection for cross-staining histopathology images. Heliyon, 2023, 9, e13171.	1.4	3
932	Continual learning strategies for cancer-independent detection of lymph node metastases. Medical Image Analysis, 2023, 85, 102755.	7.0	8
933	A robust and lightweight deep attention multiple instance learning algorithm for predicting genetic alterations. Computerized Medical Imaging and Graphics, 2023, 105, 102189.	3.5	2
934	Case-based similar image retrieval for weakly annotated large histopathological images of malignant lymphoma using deep metric learning. Medical Image Analysis, 2023, 85, 102752.	7.0	6
935	FEZ: Flexible and Efficient Zoom-In for Ultra-Large Image Classification. , 2022, , .		0
936	PlexusNet: A neural network architectural concept for medical image classification. Computers in Biology and Medicine, 2023, 154, 106594.	3.9	8
937	Computer-Assisted Diagnosis of Lymph Node Metastases in Colorectal Cancers Using Transfer Learning With an Ensemble Model. Modern Pathology, 2023, 36, 100118.	2.9	9
938	Hardware-software co-design of an open-source automatic multimodal whole slide histopathology imaging system. Journal of Biomedical Optics, 2023, 28, .	1.4	0
939	sPhaseStation: a whole slide quantitative phase imaging system based on dual-view transport of intensity phase microscopy. Applied Optics, 2023, 62, 1886.	0.9	1
941	Restaining-based annotation for cancer histology segmentation to overcome annotation-related limitations among pathologists. Patterns, 2023, 4, 100688.	3.1	5
943	Digital pathology and artificial intelligence as the next chapter in diagnostic hematopathology. Seminars in Diagnostic Pathology, 2023, 40, 88-94.	1.0	11
945	Quantitative analysis of artificial intelligence on liver cancer: A bibliometric analysis. Frontiers in Oncology, 0, 13, .	1.3	5
946	Weakly supervised identification of microscopic human breast cancer-related optical signatures from normal-appearing breast tissue. Biomedical Optics Express, 2023, 14, 1339.	1.5	0
947	Artificial intelligence for clinical oncology: current status and future outlook. Science Bulletin, 2023, 68, 448-451.	4.3	0
949	Artificial intelligence in liver cancers: Decoding the impact of machine learning models in clinical diagnosis of primary liver cancers and liver cancer metastases. Pharmacological Research, 2023, 189, 106706.	3.1	13
950	Colorectal cancer lymph node metastasis prediction with weakly supervised transformer-based multi-instance learning. Medical and Biological Engineering and Computing, 2023, 61, 1565-1580.	1.6	5
951	Artificial intelligence–assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2023, 482, 595-604.	1.4	9
952	Generalized pancreatic cancer diagnosis via multiple instance learning and anatomically-guided shape normalization. Medical Image Analysis, 2023, 86, 102774.	7.0	0

#	Article	IF	CITATIONS
953	The devil is in the details: a small-lesion sensitive weakly supervised learning framework for prostate cancer detection and grading. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2023, 482, 525-538.	1.4	3
954	Childhood Leukemia Classification via Information Bottleneck Enhanced Hierarchical Multi-Instance Learning. IEEE Transactions on Medical Imaging, 2023, 42, 2348-2359.	5.4	0
955	The New Landscape of Diagnostic Imaging with the Incorporation of Computer Vision. Artificial Intelligence, 0, , .	2.0	1
957	Deep learning in digital pathology for personalized treatment plans of cancer patients. Seminars in Diagnostic Pathology, 2023, 40, 109-119.	1.0	4
958	Development of Prognostic Biomarkers by TMB-Guided WSI Analysis: A Two-Step Approach. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 1780-1789.	3.9	3
959	Cytological characteristics of histological types of lung cancer by cytomorphometric and flow cytometric analyses using liquidâ€based cytology materials. Diagnostic Cytopathology, 0, , .	0.5	0
960	Triplet-Net Classification of Contiguous Stem Cell Microscopy Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 2314-2327.	1.9	1
961	Nondestructive 3D Pathology with Light-Sheet Fluorescence Microscopy for Translational Research and Clinical Assays. Annual Review of Analytical Chemistry, 2023, 16, 231-252.	2.8	6
962	Targeting tumor heterogeneity: multiplex-detection-based multiple instance learning for whole slide image classification. Bioinformatics, 2023, 39, .	1.8	2
963	A Two-Stage End-to-End Deep Learning Framework for Pathologic Examination in Skin Tumor Diagnosis. American Journal of Pathology, 2023, , .	1.9	1
964	Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning. European Heart Journal Digital Health, 2023, 4, 265-274.	0.7	9
965	Enhancing deep learning techniques for the diagnosis of the novel coronavirus (COVID-19) using X-ray images. Cogent Engineering, 2023, 10, .	1.1	3
966	A deep learning-based histopathology classifier for Focal Cortical Dysplasia. Neural Computing and Applications, 2023, 35, 12775-12792.	3.2	1
967	From patterns to patients: Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell, 2023, 186, 1772-1791.	13.5	54
968	Deep Learning Prediction of TERT Promoter Mutation Status in Thyroid Cancer Using Histologic Images. Medicina (Lithuania), 2023, 59, 536.	0.8	2
969	Histological diagnosis of unprocessed breast core-needle biopsy via stimulated Raman scattering microscopy and multi-instance learning. Theranostics, 2023, 13, 1342-1354.	4.6	2
970	Computational Pathology Fusing Spatial Technologies. Clinical Journal of the American Society of Nephrology: CJASN, 2023, 18, 675-677.	2.2	0
971	Explainable AI identifies diagnostic cells of genetic AML subtypes. , 2023, 2, e0000187.		5

#	Article	IF	CITATIONS
972	Predicting EGFR mutational status from pathology images using a real-world dataset. Scientific Reports, 2023, 13, .	1.6	4
973	Overcoming the challenges to implementation of artificial intelligence in pathology. Journal of the National Cancer Institute, 2023, 115, 608-612.	3.0	12
974	Deep Learning Method Based on CT Images to Predict the Pathological Differentiation of Intrahepatic Cholangiocarcinoma. , 2022, , .		0
975	Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study. Cell Reports Medicine, 2023, 4, 100980.	3.3	15
976	Weakly supervised deep learning to predict recurrence in low-grade endometrial cancer from multiplexed immunofluorescence images. Npj Digital Medicine, 2023, 6, .	5.7	2
977	An automatic entropy method to efficiently mask histology whole-slide images. Scientific Reports, 2023, 13, .	1.6	2
978	Survival Prediction via Hierarchical Multimodal Co-Attention Transformer: A Computational Histology-Radiology Solution. IEEE Transactions on Medical Imaging, 2023, 42, 2678-2689.	5.4	2
980	BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images. PLoS ONE, 2023, 18, e0283562.	1.1	3
981	Kernel Attention Transformer for Histopathology Whole Slide Image Analysis and Assistant Cancer Diagnosis. IEEE Transactions on Medical Imaging, 2023, 42, 2726-2739.	5.4	2
982	Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nature Biomedical Engineering, 2023, 7, 1392-1403.	11.6	18
983	Artificial intelligence in precision medicine. , 2023, , 531-569.		1
984	Computational pathology to improve biomarker testing in breast cancer: how close are we?. European Journal of Cancer Prevention, 2023, 32, 460-467.	0.6	4
985	Using less annotation workload to establish a pathological auxiliary diagnosis system for gastric cancer. Cell Reports Medicine, 2023, 4, 101004.	3.3	1
986	Labeling confidence for uncertainty-aware histology image classification. Computerized Medical Imaging and Graphics, 2023, 107, 102231.	3.5	2
987	Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients. Nature Communications, 2023, 14, .	5.8	23
988	Classifying Malignancy in Prostate Glandular Structures from Biopsy Scans with Deep Learning. Cancers, 2023, 15, 2335.	1.7	0
989	Distribution based MIL pooling filters: Experiments on a lymph node metastases dataset. Medical Image Analysis, 2023, 87, 102813.	7.0	2
990	Augmenting Pathologists with NaviPath: Design and Evaluation of a Human-Al Collaborative Navigation System. , 2023, , .		4

0		 D	
	ТАТ	REDC	דעו
\sim			

#	Article	IF	CITATIONS
992	A fully-automatic semi-supervised deep learning model for difficult airway assessment. Heliyon, 2023, 9, e15629.	1.4	5
997	Combining Deep-Learned andÂHand-Crafted Features forÂSegmentation, Classification andÂCounting ofÂColon Nuclei inÂH &E Stained Histology Images. Communications in Computer and Information Science, 2023, , 686-698.	0.4	0
1008	Color-SIFT Features for Histopathological Image Analysis. Studies in Computational Intelligence, 2023, , 43-58.	0.7	0
1009	Classifying Pathological Images Based on Multi-Instance Learning and End-to-End Attention Pooling. , 2023, , .		0
1024	Pixel-Level Explanation ofÂMultiple Instance Learning Models inÂBiomedical Single Cell Images. Lecture Notes in Computer Science, 2023, , 170-182.	1.0	1
1048	Artificial Intelligence and Teledermatology. Updates in Clinical Dermatology, 2023, , 173-182.	0.1	1
1050	Axillary Lymph Node Metastasis prediction Using Deep Reinforcement Learning on Primary Tumor Biopsy Slides. , 2023, , .		0
1053	Algorithmic fairness in artificial intelligence for medicine and healthcare. Nature Biomedical Engineering, 2023, 7, 719-742.	11.6	35
1055	Application of Genetic Algorithm in Predicting Mental Illness: A Case Study of Schizophrenia. Springer Tracts in Nature-inspired Computing, 2023, , 161-183.	1.2	0
1065	Artificial intelligence in the neonatal intensive care unit: the time is now. Journal of Perinatology, 0, ,	0.9	1
1098	Artificial intelligence in pathology and application to liver disease. , 2023, , 93-107.		0
1099	Rethinking Overfitting of Multiple Instance Learning for Whole Slide Image Classification. , 2023, , .		0
1105	Bioinformatics in urology $\hat{a} \in \rakepine \rakepine$ molecular characterization of pathophysiology and response to treatment. Nature Reviews Urology, 0, , .	1.9	0
1114	Artificial intelligence for digital and computational pathology. , 2023, 1, 930-949.		9
1123	Editorial: Recent advances in fibrosis assessment for metabolic dysfunctionâ€associated fatty liver disease–Authors' reply. Alimentary Pharmacology and Therapeutics, 2023, 58, 638-639.	1.9	0
1124	Translation of tissue-based artificial intelligence into clinical practice: from discovery to adoption. Oncogene, 2023, 42, 3545-3555.	2.6	1
1128	Giga-SSL: Self-Supervised Learning for Gigapixel Images. , 2023, , .		5
1130	Benchmarking Self-Supervised Learning on Diverse Pathology Datasets. , 2023, , .		10

#	Article	IF	CITATIONS
1132	Hierarchical Discriminative Learning Improves Visual Representations of Biomedical Microscopy. , 2023, , .		2
1133	Sparse Multi-Modal Graph Transformer with Shared-Context Processing for Representation Learning of Giga-pixel Images. , 2023, , .		8
1134	Task-Specific Fine-Tuning via Variational Information Bottleneck for Weakly-Supervised Pathology Whole Slide Image Classification. , 2023, , .		2
1135	RankMix: Data Augmentation for Weakly Supervised Learning of Classifying Whole Slide Images with Diverse Sizes and Imbalanced Categories. , 2023, , .		Ο
1137	Visual Language Pretrained Multiple Instance Zero-Shot Transfer for Histopathology Images. , 2023, , .		10
1138	Multiple Instance Learning via Iterative Self-Paced Supervised Contrastive Learning. , 2023, , .		4
1139	Maximum Mean Discrepancy Kernels for Predictive and Prognostic Modeling of Whole Slide Images. , 2023, , .		1
1140	Self-Supervised Learning Guided Transformer for Survival Prediction of Lung Cancer Using Pathological Images. , 2023, , .		Ο
1141	Multiple Instance Learning with Critical Instance for Whole Slide Image Classification. , 2023, , .		0
1142	Active Learning Enhances Classification of Histopathology Whole Slide Images with Attention-Based Multiple Instance Learning. , 2023, , .		Ο
1153	Artificial intelligence in anatomical pathology. , 2024, , 35-46.		0
1160	Future Directions in Pathology. , 2023, , 235-243.		Ο
1161	Position-Aware Masked Autoencoder forÂHistopathology WSI Representation Learning. Lecture Notes in Computer Science, 2023, , 714-724.	1.0	0
1162	cOOpD: Reformulating COPD Classification onÂChest CT Scans asÂAnomaly Detection Using Contrastive Representations. Lecture Notes in Computer Science, 2023, , 33-43.	1.0	3
1163	Structured State Space Models forÂMultiple Instance Learning inÂDigital Pathology. Lecture Notes in Computer Science, 2023, , 594-604.	1.0	0
1164	DAS-MIL: Distilling Across Scales for MIL Classification of Histological WSIs. Lecture Notes in Computer Science, 2023, , 248-258.	1.0	3
1165	Multi-task Learning ofÂHistology andÂMolecular Markers forÂClassifying Diffuse Glioma. Lecture Notes in Computer Science, 2023, , 551-561.	1.0	3
1166	Detecting Domain Shift inÂMultiple Instance Learning forÂDigital Pathology Using Fréchet Domain Distance. Lecture Notes in Computer Science, 2023, , 157-167.	1.0	0

#	Article	IF	CITATIONS
1167	Multi-scale Prototypical Transformer for Whole Slide Image Classification. Lecture Notes in Computer Science, 2023, , 602-611.	1.0	0
1169	IIB-MIL: Integrated Instance-Level andÂBag-Level Multiple Instances Learning withÂLabel Disambiguation forÂPathological Image Analysis. Lecture Notes in Computer Science, 2023, , 560-569.	1.0	0
1170	Iteratively Coupled Multiple Instance Learning fromÂInstance toÂBag Classifier forÂWhole Slide Image Classification. Lecture Notes in Computer Science, 2023, , 467-476.	1.0	1
1176	BM-SMIL: A Breast Cancer Molecular Subtype Prediction Framework from H&E Slides with Self-supervised Pretraining and Multi-instance Learning. Lecture Notes in Computer Science, 2023, , 81-90.	1.0	0
1204	Attention to Detail: Inter-Resolution Knowledge Distillation. , 2023, , .		0
1209	Unsupervised, Self-supervised, and Supervised Learning for Histopathological Pattern Analysis in Prostate Cancer Biopsy. Lecture Notes in Networks and Systems, 2023, , 1-17.	0.5	0
1212	Histopathological Colorectal Cancer Image Classification by Using Inception V4 CNN Model. Lecture Notes in Electrical Engineering, 2023, , 1003-1014.	0.3	0
1222	Bioinformatics, Digital Pathology, and Computational Pathology for Surgical Pathologists. , 2023, , 69-89.		0
1223	Gleason Grading System for Prostate Cancer Diagnosis. , 2023, , 195-207.		0
1227	From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Information Science and Systems, 2024, 12, .	3.4	0
1230	Pathology-Based Ischemic Stroke Etiology Classification via Clot Composition Guided Multiple Instance Learning. , 2023, , .		0
1231	Order-ViT: Order Learning Vision Transformer for Cancer Classification in Pathology Images. , 2023, , .		0
1232	ALFA $\hat{a} \in$ Leveraging All Levels of Feature Abstraction for Enhancing the Generalization of Histopathology Image Classification Across Unseen Hospitals. , 2023, , .		0
1235	Cancer epigenetics: from laboratory studies and clinical trials to precision medicine. Cell Death Discovery, 2024, 10, .	2.0	0
1237	Considerations in the assessment of machine learning algorithm performance for medical imaging. , 2024, , 473-507.		0
1242	A comparative analysis between two convolutional networks architectures for semantic segmentation of histopathology breast cancer images. , 2023, , .		0
1249	Boosting Whole Slide Image Classification from the Perspectives of Distribution, Correlation and Magnification. , 2023, , .		0
1250	Improving Representation Learning for Histopathologic Images with Cluster Constraints. , 2023, , .		0

#	Article	IF	CITATIONS
1251	LNPL-MIL: Learning from Noisy Pseudo Labels for Promoting Multiple Instance Learning in Whole Slide Image. , 2023, , .		0
1252	Multiple Instance Learning Framework with Masked Hard Instance Mining for Whole Slide Image Classification. , 2023, , .		0
1253	CO-PILOT: Dynamic Top-Down Point Cloud with Conditional Neighborhood Aggregation for Multi-Gigapixel Histopathology Image Representation. , 2023, , .		0
1256	MGCT: Mutual-Guided Cross-Modality Transformer for Survival Outcome Prediction using Integrative Histopathology-Genomic Features. , 2023, , .		Ο
1257	Semantic-Similarity Collaborative Knowledge Distillation Framework for Whole Slide Image Classification. , 2023, , .		0
1261	Machine learning methods. , 2024, , 1-38.		Ο
1263	NearbyPatchCL: Leveraging Nearby Patches forÂSelf-supervised Patch-Level Multi-class Classification inÂWhole-Slide Images. Lecture Notes in Computer Science, 2024, , 239-252.	1.0	0
1265	A Comprehensive Review on Artificial Intelligence-Driven Radiomics for Early Cancer Detection and Intelligent Medical Supply Chain. Advances in Logistics, Operations, and Management Science Book Series, 2024, , 226-254.	0.3	Ο
1270	Artificial intelligence applications in histopathology. , 2024, 1, 93-108.		0
1274	Prediction Of User Ratings For Drug Side Effects Using Deep Neural Network With Contextual Co-occurrence Based Word-Embedding Vector. , 2023, , .		Ο
1291	MSAA-Net: Multi-Scale Attention Assembler Network Based onÂMultiple Instance Learning forÂPathological Image Analysis. Lecture Notes in Computer Science, 2024, , 49-68.	1.0	0
1292	Artificial Intelligence in Ovarian Digital Pathology. , 2023, , 731-749.		Ο
1305	RNN-Based Multiple Instance Learning for the Classification of Histopathology Whole Slide Images. Lecture Notes in Electrical Engineering, 2024, , 329-339.	0.3	0
1310	Artificial intelligence in cancer research and precision medicine. , 2024, , 1-23.		0
1316	Multi-level Graph Representations ofÂMelanoma Whole Slide Images forÂldentifying Immune Subgroups. Lecture Notes in Computer Science, 2024, , 85-96.	1.0	0